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A two-step procedure for time-dependent reliability-based 
design optimization involving piece-wise stationary Gaussian 
processes

Alexis Cousin · Josselin Garnier · Martin Guiton · Miguel Munoz
Zuniga

Abstract We consider in this paper a time-dependent
reliability-based design optimization (RBDO) problem

with constraints involving the maximum and/or the in-
tegral of a random process over a time interval. We
focus especially on problems where the process is a sta-

tionary or a piece-wise stationary Gaussian process. A
two-step procedure is proposed to solve the problem.
First, we use ergodic theory and extreme value the-
ory to reformulate the original constraints into time-

independent ones. We obtain an equivalent RBDO prob-
lem for which classical algorithms perform poorly. The
second step of the procedure is to solve the reformulated

problem with a new method introduced in this paper
and based on an adaptive kriging strategy well suited to
the reformulated constraints called AK-ECO for Adap-

tive Kriging for Expectation Constraints Optimization.
The procedure is applied to two toy examples involving
a harmonic oscillator subjected to random forces. It is
then applied to an optimal design problem for a floating
offshore wind turbine.
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BP 3, 69360 Solaize, France

M. Munoz Zuniga
IFP Energies Nouvelles, 1-4 Avenue du Bois Préau, 92852
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Introduction

To ensure the reliability of a structure, it is important
to take into account the different sources of uncertainty
in the modelling of physical phenomena. For this pur-
pose, uncertainties are usually represented by random

variables. In the context of Reliability Analysis (RA)
(Lemaire et al. (2009)), failure probability is defined
as:

P (g (Xd, Xp, Xr) < 0) , (1)

where Xd, Xp, Xr are the random variables representing
respectively the uncertainties of the design variables d,
the model parameters, and the safety thresholds. The

function g is called performance function and failure
occurs when the function is negative. One evaluation of
the performance function often requires a call to a time-

consuming simulator. Therefore, the methods proposed
in RA aim to evaluate the failure probability accurately
and with as few calls to g as possible.

Optimization with a deterministic cost function and

constraints expressed as failure probabilities is called
Reliability-Based Design Optimization (RBDO). The
intuitive way to solve a RBDO problem is to couple a
classical optimization algorithm and a method to esti-
mate the failure probabilities. This approach is called
double-loop since two loops are nested: one estimates
the failure probabilities, the other one updates the de-
sign. The Reliability Index Approach (RIA) and the
Performance Measure Approach (PMA) (Tu et al. (1999))
are among the most popular double-loop approaches.
For RIA, the First-Order Reliability Method (FORM)
(Madsen et al. (2006)) is used to estimate the failure
probabilities. In PMA, the initial constraints are re-

placed by equivalent ones which are evaluated with an
inverse reliability analysis. A double loop strategy can
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also use a sampling method such as the Monte Carlo ap-
proach or one of the variance reduction techniques that
require a smaller sample size (El Hami et al. (2017);
Bourinet (2018)). In practice, the nesting of the two
loops turns out to be very expensive in terms of num-
ber of calls to the performance functions.

The Single-Loop Approach (SLA) (Liang et al. (2008);
Yang et al. (2020)) and the decoupled approaches have
been proposed to overcome this drawback. The decou-
pled approaches consist in solving a sequence of de-
terministic optimization problems. The final design of
an optimization cycle is the starting point of the next
one. The Sequential Optimization and Reliability As-
sessment method (SORA) (Du and Chen (2004)) sepa-
rates optimization and reliability loops. A deterministic
optimization cycle is carried out for fixed uncertainty
values. The latter are then shifted at the next cycle
to make the minimum more reliable. Different meth-
ods (Torii et al. (2016); Jiang et al. (2020); Wang et al.
(2020); Zhang et al. (2021)) use the same approach as

SORA but propose a different shifting strategy. Bench-
marks of the classical reliability approaches have been
carried out in Aoues and Chateauneuf (2010) and Lopez

and Beck (2012).

In recent years, in the context of RA, many articles

have adopted a strategy where the costly performance
function is replaced by an approximation model, called
metamodel, that is fast to evaluate. Therefore, the fail-
ure probability can be estimated with sampling meth-

ods since the sample size is no longer an issue. The es-
timation of failure probabilities with this approach can
lead to large errors if the metamodel fitting is of poor

quality. Thus, an initial calibration of the metamodel
is usually followed by an adaptive enrichment proce-
dure (also called active learning). A learning function
makes it possible to select optimal points in the input
space of the performance function where the fitting of
the metamodel must be improved. In RA, many adap-
tive procedures have been proposed and vary according
to the choice of metamodel, learning function and en-
richment stopping criterion. An extensive review and a
comparison of these adaptive approaches are detailed
in Teixeira et al. (2021).

Metamodels have also been applied to solve RBDO
problems. In Dubourg (2011), the performance func-

tions are replaced by kriging models (Krige (1951); Ras-
mussen (2004)) which are enriched during the optimiza-
tion algorithm. Kriging models with different enrich-
ment strategies are also used in Wu et al. (2021); Li
et al. (2020). In Shang et al. (2021), a combination
of the Polynomial Chaos Expansion (PCE) (Wiener
(1938)) and Radial Basis Functions (RBF) (Buhmann
(2003)) is preferred and is enriched before perform-

ing a gradient-based optimization to solve the RBDO
problem. A general modular framework is proposed in
Moustapha and Sudret (2019) to solve RBDO prob-
lem with metamodels: the user can choose the adaptive
metamodel, the reliability analysis method, and the op-
timization algorithm.

Other approaches combine metamodels with PMA,
SORA (Zhang et al. (2020b)) or SLA (Zhang et al.
(2020a)). The method proposed in Stieng and Muskulus
(2020) that we will call the Stieng method can deal with
general RBDO problems under the assumption that the
performance function can be approximated by the prod-
uct of two functions: one depending only on the design
variables which is the performance function evaluated
at the mean values of the uncertainties and the other
one depending on the uncertain variables. A metamodel
is fitted on the second function. The RBDO problem is
then solved with sequential cycles of optimization. Each
cycle is composed of the update of the metamodels and

a resolution with PMA of the problem.

In time-dependent Reliability Analysis (t-RA), the

performance function involves a time-dependent stochas-
tic process denoted Y. The failure probability is usually
written as follows:

P (∃t ∈ [0, T ], g (Xd, Xp, Xr,Y(t), t) < 0) . (2)

The methods estimating this quantity can be classified
into the out-crossing approach and the extreme per-

formance approach. The first one provides an upper
bound of the failure probability that requires the es-
timation of an outcrossing rate which can be obtained

in several ways (Hawchar (2017)). In the PHI2 method
(Andrieu-Renaud et al. (2004)), the outcrossing rate
for a given time t is obtained by performing two re-

liability analyses with FORM at t and t + ∆t. When
Y is stationary, the outcrossing rate needs to be es-
timated at only one time t whereas multiple evalua-
tions are required for the non-stationary case. On the
other hand, the extreme performance approaches di-
rectly provide an estimation of the failure probability.
A common way to proceed is to consider the random

variable Gmin = min[0,T ] g (Xd, Xp, Xr,Y(t), t) and the
probability (2) can then be obtained with a RA method
(Hawchar (2017); Hu and Du (2015)). Others methods
based on adaptive kriging have been proposed and rely
on different metamodel strategies (Hu et al. (2020a);
Wang and Chen (2016); Jiang et al. (2019); Hu et al.
(2020b)). For all of these methods, a sequential enrich-
ment strategy is usually performed to improve the accu-
racy of the metamodel. The failure probability is then
computed with Monte Carlo based on the metamodel
or with other sampling methods (Ling et al. (2019)).
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The time-variant Reliability-Based Design Optimiza-
tion (t-RBDO) methods seek to solve optimization prob-
lems with constraints involving failure probabilities ex-
pressed as in (2). The most straightforward approach to
solve a t-RBDO problem is to couple an optimization
algorithm with a t-RA method to estimate the con-
straints at each iteration of the optimization problem
(Hawchar (2017)). In TROSK (Hawchar et al. (2018))
and in PSO-t-IRS (Li and Chen (2019)), a kriging model
of the performance function is built and enriched over
all the design space and then the resolution of the op-
timization is done using Monte Carlo with the meta-
model. Finally, t-SORA and t-SLA are introduced in
Shi et al. (2020) and represent the time-variant versions
of SORA and SLA.

This paper is motivated by an optimal design prob-
lem that aims at minimizing the material cost of the
mooring system of a floating offshore wind turbine un-
der Fatigue Limit State reliability constraints. The struc-
ture (the wind turbine) is subjected to random loads

due to environmental conditions (wind and waves) which
leads to constraints expressed as time-dependent fail-
ure probabilities (Cousin et al. (2021)). These failure

probabilities are more complicated to estimate than the
usual ones in t-RA and t-RBDO since the distribution
of the time-dependent process involved in our problem

depends on random variables. The method cited above
do not suppose any assumption about the process Y.
However, in some applications, such as the one that
motivates our work, for fixed values of Xd, Xp and Xr

the performance function is a time-dependent process
with known distribution. In offshore engineering, the
wind speed and sea elevation are usually represented
as stationary or piece-wise stationary Gaussian pro-
cesses (Vorpahl et al. (2013)). When the linearization
of the movement equation is a reasonable approxima-
tion, quantities of interest such as the displacement of
the structure inherit the stationary and Gaussian prop-
erties of the input processes.

This linearization implies that the problem consid-
ered is in the scope of uncertain linear systems sub-
jected to a stochastic loading for which specific ap-
proaches have been proposed to estimate the proba-
bility of failure (Valdebenito et al. (2014)), for relia-
bility sensitivity estimation (Valdebenito et al. (2012))
and for t-RBDO problems as well (Jensen et al. (2008);

Jerez et al. (2022)). They rely on a discretization of the
random excitation and on an adapted sampling method
but we will see that a different approach is proposed in
this paper.

Motivated by the wind turbine problem, we focus in
this paper on t-RBDO with stationary and piece-wise

stationary Gaussian processes appearing in two types of

constraints: one involving the extreme value of a pro-
cess and another one, not usually addressed in t-RA
and t-RBDO, which involves the integral over time of
a process. Instead of following the classical approaches
in t-RBDO, we propose a two-step procedure better
suited to the characteristics of the studied problem. The
first contribution of this article is to use ergodic the-
ory and extreme value theory to reformulate the initial
constraints into time-independent ones that are much
easier to evaluate. This first part of the procedure is
described in section 1 for the stationary case and in sec-
tion 2 when a piece-wise stationary process is involved.
At this stage, we obtain a RBDO problem with specific
properties that make existing RBDO approaches sub-
optimal. Hence, we propose in section 3, a new adap-
tive kriging strategy called Adaptive Kriging for Ex-
pectation Constraints Optimization (AK-ECO) to solve
the reformulated problem efficiently. To illustrate the
methodology introduced in this paper, we study two
academic cases of a harmonic oscillator presenting the
same characteristics as the industrial offshore wind tur-

bine optimization problem. The numerical results ob-
tained with AK-ECO on the oscillator cases as well as
a comparison with state-of-the-art algorithms are pre-
sented in sections 4 and 5. Our approach is then applied

in section 6 to the offshore wind turbine optimization
problem.

1 Constraints defined in terms of a stationary
Gaussian process

Note 1 In this article, the notations PX and EX mean
that the probability and the expectation are considered
with respect to the distribution of X (X can be a ran-

dom variable, a random vector, a random process or a
combination of the latter).

1.1 Definition of the extreme-based and integral-based
constraints

Throughout this paper, we consider a t-RBDO problem
of the following form:

min
d∈Ωd

cost(d) such that

PXd,Xp,XrE ,Y
(

min
t∈[0,T ]

gE (XrE ,Y(Xd, Xp; t)) < 0

)
< ps

PXd,Xp,XrI ,Y

(∫ T

0

gI (XrI ,Y(Xd, Xp; t)) dt < 0

)
< ps.

(3)
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In the above equation, the cost function is deter-

ministic and depends on design variables gathered in

the vector d. The design space is denoted Ωd and is

a subset of Rnd . The uncertainties on the design vari-

ables, on the model and on the resistance thresholds are

respectively represented by the random vectors Xd, Xp,

XrE , and XrI which are assumed to have known proba-

bility density functions. The performance functions are

defined by:

gE(XrE ,Y(Xd, Xp; t)) = XrE − Y(Xd, Xp; t), (4)

gI(XrI ,Y(Xd, Xp; t)) = XrI − f (Y (Xd, Xp; t)) , (5)

where f : R → R is measurable. The time-dependent

process is denoted Y (xd, xp; .) and its distribution de-

pends on the outcomes of the random vectors Xd and

Xp. The constraints are met if the failure probabilities

do not exceed the failure probability threshold ps.

We will call extreme-based (resp. integral-based) con-

straint, constraints expressed as the first (resp. second)

constraint of problem (3). The failure probability in-

volved in an extreme-based (resp. integral-based) con-

straint will be denoted pE(d) (resp. pI(d)) and will be

called extreme-based (resp. integral-based) failure prob-

ability. Extreme-based failure probability refers to the

usual failure probability in t-RBDO except that the

process distribution of Y depends on the random vec-

tors Xd and Xp. The integral-based failure probability

is less studied in t-RBDO and represents the probabil-

ity that the accumulation of a quantity depending on Y
exceeds some threshold over the time interval [0, T ]. In

the industrial applications we are concerned with (i.e.

offshore wind turbines), the evaluation of the functions

gE and gI is costly, the time T is large and the proba-
bility threshold ps is small.

In t-RBDO, methods used to estimate failure prob-

abilities are often time-consuming as they require nu-

merous evaluations of the performance functions. Under

the hypothesis that for fixed values xd, xp, the process

Y (xd, xp; .) is a stationary or a piece-wise stationary

Gaussian process, the first contribution of this article

is to show that it is possible to reformulate pE(d) and

pI(d) as expectations depending only on Xd, Xp, XrE ,

and XrI . Therefore, we obtain an optimization problem

much easier to solve. Indeed, the extreme-based failure

probability can be written:

pE(d) = EXd,Xp,XrE

[

PY|Xd,Xp,XrE

(
min
t∈[0,T ]

gE (XrE ,Y(Xd, Xp; t)) < 0

)]
(6)

and we will show that, for fixed values of Xd, Xp, XrE

and when T is large, limit theorems for functionals of

stationary or piece-wise stationary processes provide

a good approximation of the conditional probability

PY
(

mint∈[0,T ] gE (xrE ,Y(xd, xp; t)) < 0
)
. Furthermore,

this approximation only uses the spectral properties of

Y (xd, xp; .) and the resulting constraint is much easier

to evaluate since it does not require any additional eval-

uation of Y and only depends on the random vectors

Xd, Xp, and XrE . The same reasoning will be applied

to give an approximation of the integral-based failure

probability.

For fixed values xd and xp, we consider in this sec-

tion that the process Y (xd, xp; .) is a stationary Gaus-

sian process with zero mean. Its distribution is defined

by its spectral densityKY (xd, xp; .) which is the Fourier

transform of its autocorrelation function kY (xd, xp; .)

that depends on xd and xp:

KY (xd, xp;ω) =
1

2π

∫
R
kY (xd, xp; t) e

−iωtdt. (7)

The spectral moment of order n of Y (xd, xp; .) is

defined as:

mY,n(xd, xp) =

∫
R
ωnKY(xd, xp;ω)dω. (8)

1.2 Approximation of the extreme-based failure

probability

For fixed values of Xd, Xp, XrE , and with gE defined in

(4), the probability PY
(
mint∈[0,T ] gE (xrE ,Y(xd, xp; t)) < 0

)
involves the maximum of a stationary Gaussian pro-

cess. Thus, the extreme value theory (Leadbetter et al.

(1983)) and especially the following theorem are well

suited to provide a reformulation of pE(d). We present

a slightly modified version of the theorem 8.2.7 of Lead-

better et al. (1983) for a stationary Gaussian process

{ξ(t); t ≥ 0} with zero mean, autocorrelation function

kξ, spectral density Kξ and spectral moment of order

n denoted mξ,n.

Theorem 1 Suppose that the Gaussian stationary pro-

cess ξ has non-zero spectral moments mξ,0 and mξ,2 and

satisfies the following conditions:

kξ(τ) = mξ,0 −
mξ,2τ

2

2
+ o(τ2) as τ → 0, (9)

kξ(τ) log(τ)→ 0 as τ →∞, (10)

then, as T → +∞,

P
(
aT

(
max
t∈[0,T ]

ξ(t)
√
mξ,0

− aT
)
≤ x

)
→ exp

(
−e−x

)
,

(11)
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with aT =
√

2 log (T/Tc) and Tc = 2π
√
mξ,0/mξ,2.

The formulation of theorem 1 of this paper is ob-
tained by applying theorem 8.2.7 of Leadbetter et al.
(1983) to the process ξ (tTc).

Remark 1 It is possible to give sufficient conditions for
theorem 1 that are explicit in Kξ. Denoting K ′ξ the
derivative of Kξ, conditions (9) and (10) are met if we
have:

mξ,0 <∞,mξ,2 <∞, (12)

Kξ ∈ C1,Kξ and K ′ξ are integrable. (13)

For condition (13), we use that if Kξ ∈ C1 and Kξ

and K ′ξ are integrable then ∃c > 0 such that |kξ(τ)| ≤
c
|τ | and therefore, condition (10) is met. Other suffi-
cient conditions on the spectral density are discussed
in Berman (1991).

For fixed values xd and xp, if the process Y(xd, xp; .)
introduced in section 1.1 meets conditions (12) and
(13), we can apply theorem 1 and obtain ∀x, as T →
+∞:

PY

(
aT (xd, xp)

(
max
t∈[0,T ]

Y (xd, xp; t)√
mY,0 (xd, xp)

− aT (xd, xp)

)
≤ x

)
→ exp

(
−e−x

)
, (14)

with aT (xd, xp) =

√
2 log

(
T
2π

√
mY,2(xd,xp)
mY,0(xd,xp)

)
. Therefore,

for T large enough, it is reasonable to make the follow-
ing approximation:

pE(d) ' EXd,Xp,XrE

[

Fε

(
exp

(
aT (Xd, Xp)

2 − aT (Xd, Xp)XrE√
mY,0 (Xd, Xp)

))]
, (15)

with Fε(x) = 1 − exp(−x). The approximation error

made in equation (15) can be bounded with classical
results (Kratz and Rootzén (1997)) and is discussed in
section A.1 of appendix A.

Remark 2 The initial failure probability that depends
on a random process has been approximated by an ex-
pectation which only depends on random vectors. Fur-
thermore, to compute the quantity within the square

brackets in (15) only two spectral moments of Y (xd, xp; .)
need to be evaluated (for each outcome of Xd and Xp).

1.3 Approximation of the integral-based failure
probability

We focus now on pI(d). For fixed values xd, xp, the pro-
cess f (Y (xd, xp; .)) is denoted by F(xd, xp; .) . Since
Y (xd, xp; .) is stationary, F(xd, xp; .) is also stationary
and we denote by kF (xd, xp; .) its autocovariance func-
tion. In the following we will use the definition of er-
godicity below.

Definition 1 The process F (xd, xp; .) is said to be er-
godic if:

1

T

∫ T

0

F (xd, xp; t) dt
P−→

T→+∞
EF [F (xd, xp; 0)] , (16)

where
P−→ refers to the convergence in probability. A

sufficient condition for the stationary process F (xd, xp; .)
to be ergodic (cf section 13.1 of Papoulis (1991)) is that
kF (xd, xp; .) is integrable.

Suppose that F (xd, xp; .) is ergodic. Then, for al-
most every x (more exactly ∀x 6= EF [F (xd, xp; 0)]):

PY

(
1

T

∫ T

0

F (xd, xp; t) dt > x

)
→ 1EF [F(xd,xp;0)]>x,

(17)

as T → +∞. Thus, for T large enough, it is reasonable

to approximate the integral-based failure probability as
follows:

pI(d) ' EXd,Xp [FrI (TEF [F (Xd, Xp; 0)])] , (18)

with FrI the cumulative distribution function of XrI

(which is continuous). The approximation error made
in equation (18) is discussed in section A.2 of appendix

A.

Remark 3 To compute EF [F (xd, xp; 0)], it is necessary
to know the distribution of Y (xd, xp; 0). Since the pro-
cess Y (xd, xp; .) is Gaussian with zero mean, the vari-
ance of Y (xd, xp; 0) determines its distribution. Hence,

to compute the quantity within the square brackets in
(18), we only need to know the variance of Y (xd, xp; 0)
for each outcome of Xd and Xp.

1.4 Optimization problem involving a stationary
harmonic oscillator

We present in this section a concrete optimization prob-
lem with constraints involving extreme-based and integral-
based failure probabilities and we apply the reformula-
tion procedure described in sections 1.2 and 1.3.
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Let us consider a harmonic oscillator on an interval

of time [0, T ]: a spring/mass system. We denote respec-

tively by xd1 the mass of the object, xd2 the spring stiff-

ness, and xp the damping coefficient. An external force

is exerted on the system. To account for all the sources

of uncertainty of the experiment, the values of xd1 , xd2 ,

xp, and the external force are considered random. These

uncertainties are respectively represented by the ran-

dom variables Xd1 , Xd2 , Xp, and the stochastic process

η(t). We denote Xd the random vector (Xd1 , Xd2) of

outcome xd = (xd1 , xd2) whose distribution depends on

the design variable d = (d1, d2).

Consequently, for fixed values xd and xp, the dis-

placement of the mass with respect to the equilibrium

position is represented by a stochastic process denoted

D(xd, xp; .) which is solution of the harmonic oscillator

equation:

xd1D(2) (xd, xp; t) + xpD(1) (xd, xp; t) + xd2D (xd, xp; t)

= η(t) , t ∈ [0, T ], (19)

where D(1) (xd, xp; .) and D(2) (xd, xp; .) are respectively

the velocity and acceleration processes whose sample

paths are the first and second time derivatives of the

sample path of D(xd, xp; .).

The optimization problem consists in minimizing a

linear function cost(d) while constraints are imposed on

the design variable such that:

– the velocity and the acceleration of the oscillator

must stay below given thresholds xr1 and xr2 re-

spectively (this is a simplified model for the extreme

constraints that we have in mind in our industrial

application);
– the accumulated amount of acceleration of the ob-

ject exceeding the threshold ρ must remain under a

resistance threshold xr3 (this is a simplified model

for the fatigue constraint that we have in mind in

our industrial application).

The thresholds xr1 , xr2 , xr3 are also random and

therefore outcomes of random variables denoted Xr1 ,

Xr2 , and Xr3 . The optimization problem is formulated

as follows:

mind∈Ωd cost(d) such that

PXd,Xp,Xrk ,η
(

max
t∈[0,T ]

D(k) (Xd, Xp; t) > Xrk

)
< ps,

k = 1, 2

PXd,Xp,Xr3 ,η

(∫ T

0

(∣∣∣D(2) (Xd, Xp; t)
∣∣∣− ρ)+ dt > Xr3

)
< ps

(20)

with x+ = max(0, x). The design space is defined

as Ωd = [d−1 , d
+
1 ] × [d−2 , d

+
2 ] ⊂ R2. The distributions of

Xd and Xp are chosen such that the oscillator is under-

damped for almost all realizations i.e. X2
p −4Xd1Xd2 <

0 almost surely. Moreover, we assume that the process η

is stationary, Gaussian with spectral density Kη (ω) =
θ√
2π

exp
(
− (θω)2

2

)
with θ > 0. Finally all the sources

of uncertainty (Xd1 , Xd2 , Xp, Xr1 , Xr2 , Xr3 , η) are inde-

pendent.

For fixed values of Xd, Xp, it follows from equation

(19) and the stationarity of η (see Lindgren (2012))

that the process D (xd, xp; .) is stationary and can be

written as the output of a linear filter D (xd, xp; t) =

(hD (xd, xp, .) ∗ η) (t), with hD defined by:

HD (xd, xp;ω) = FT (hD (xd, xp; .)) (ω)

=
1

−ω2xd1 + iωxp + xd2
(21)

where FT refers to the Fourier transformation. It is

shown (see Lindgren (2012)) that the processD (xd, xp; .)

is then also Gaussian with zero mean and its spectral

density is given by:

KD (xd, xp;ω) = |HD (xd, xp;ω)|2Kη(ω). (22)

Furthermore, if the process D (xd, xp; .) has finite spec-

tral moment of order 2 and 4 (see theorem 2.2 of Lind-

gren (2012)), the processesD(1) (xd, xp; .) andD(2) (xd, xp; .)

are also zero-mean stationary Gaussian processes with

spectral densities, denoted respectively KD(1) (xd, xp, .)

and KD(2) (xd, xp, .), given by:

KD(k) (xd, xp;ω) = ω2kKD (xd, xp;ω) k = 1, 2. (23)

Remark 4 In fact, the result of theorem 2.2 of Lindgren

(2012) holds for the first and second order derivatives

of D (xd, xp; .) in the quadratic mean sense. But under

the supplementary condition that the spectral moment

of order 6 of D (xd, xp; .) is also finite, the result holds

for sample path derivatives too (see Lindgren (2012)).

The spectral moments of order n of D(k)(xd, xp; .)

k = 1, 2, are denoted mD(k),n (xd, xp) k = 1, 2. It follows

from the properties of the processes D(k) (xd, xp; .), k =

1, 2 that the two first constraints of problem (20) are

extreme-based constraints whereas the third constraint

is integral-based. We show in section A.3 in appendix

A that, for all xd, xp, the processes D(k) (xd, xp; .), k =

1, 2, meet the sufficient conditions (12,13) which allow

the reformulation of the two first constraints of the

problem under study. Since the process D(2) (xd, xp; .) is

Gaussian and its autocovariance function converges to 0
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at infinity and is integrable, it is easy to show that the

process F (xd, xp; .) =
(∣∣D(2) (xd, xp; .)

∣∣− ρ)+ has an
integrable autocovariance function and thus, F (xd, xp; .)
is ergodic.

Since all the required conditions are met, for T large
enough, we can apply the reformulation steps described
in sections 1.2 and 1.3 to the constraints of problem
(20). The two first constraints are replaced by the ap-
proximation given by (15) where aT , mY,0 and XrE

become respectively a1T , mD(1),0 and Xr1 for the first
constraint and a2T , mD(2),0 and Xr2 for the second con-
straint with:

akT (xd, xp) =

√√√√2 log

(
T

2π

√
mD(k),2 (xd, xp)

mD(k),0 (xd, xp)

)
, (24)

for k = 1, 2. The third constraint of problem (20) is
replaced by the approximation given by (18) with

F(xd, xp; 0) =
(∣∣∣D(2) (xd, xp; 0)

∣∣∣− ρ)+ , (25)

and XrI becomes Xr3 .

2 Constraints defined in terms of a piece-wise
stationary Gaussian process

2.1 Definition of the piece-wise stationary process

We consider in this section the optimization problem
(3) introduced in section 1 with extreme-based and
integral-based constraints except that the process Y
is now piece-wise stationary. The period [0, T ] is de-

composed into nT intervals Ii = [(i− 1)∆T, i∆T ] , i =
1, . . . , nT and for fixed xd, xp the process Y is defined
as:

Y(xd, xp; t) =

nT∑
i=1

Yi (xd, xp, si; t)1Ii(t) (26)

where s1, . . . , snT is a sequence of elements of the set
{s1, . . . , sns}. The processes Yi (xd, xp, si; .), i = 1, . . . , nT ,
are independent stationary Gaussian processes with zero
mean. The distribution of Yi (xd, xp, si; .) for i ∈ {1,
. . . , nT } is defined by its spectral densityKY(xd, xp, si; .)
and we denote mY,n (xd, xp, si) its spectral moment of
order n. We denote nj and pj , the quantities such that
nj = #{i ∈ {1, . . . , nT }, si = sj} and pj = nj/nT for
j = 1, . . . , ns.

Remark 5 The definitions of the objects introduced in
this section are motivated by the industrial case of a
floating offshore wind turbine. In this application, each
process Yi

(
xd, xp, s

j ; .
)

can be seen as the displacement

over time of the floating platform subjected to a sea el-
evation process characterized by a sea state defined by
sj , for some design and parametric variables xd and xp.
The constraints then relate to the maximum admissi-
ble displacement of the structure or to the accumulated
damage of the mooring lines. Furthermore, dividing the
time interval [0, T ] into nT intervals is standard in off-
shore models to represent the different sea states en-
countered during the period [0, T ]. We can refer for in-
stance to Labeyrie (1990) which justifies that 3 hours
can be considered as the mean duration of stationar-
ity from data measurements made in North Sea. This
duration may differ for another site. Furthermore, one
should also consider that due to the limited number of
years of measurement and the annual variation of the
environmental conditions, the long term statistics of sea
states are uncertain (see Moan et al. (2005)). To stay
close to the engineering terminology, sj will be called
the state of the process Yi

(
xd, xp, s

j ; .
)

in this paper.

The reasoning for extreme-based and integral-based
constraints reformulation is the same as for the station-

ary case: the purpose is to provide good approximations
that only rely on spectral properties of the processes
Yi (xd, xp, si; .).

2.2 Approximation of the extreme-based failure

probability

To approximate the extreme-based failure probability,
we claim that, for fixed xd, xp, xrE and for ∆T large
enough:

PY
(

max
t∈[0,T ]

Y (xd, xp; t) ≤ xrE
)

'
ns∏
j=1

PY1

(
max

t∈[0,Tpj ]
Y1
(
xd, xp, s

j ; t
)
≤ xrE

)
(27)

This approximation is justified in section B.1 of Ap-
pendix B.

Therefore, if for all xd, xp, xrE , and for all states
sj , the process Y1

(
xd, xp, s

j ; .
)

meets the conditions of
theorem 1, it follows from equation (27) and theorem 1
that for∆T sufficiently large, we can make the following
approximation:

pE(d) ' EXd,Xp,XrE

[
Fε

(
ns∑
j=1

exp
(
aTpj (Xd, Xp, s

j)2−
aTpj (Xd, Xp, s

j)XrE√
mY,0 (Xd, Xp, sj)

))]
(28)
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with

aTpj (xd, xp, s
j) =

√√√√2 log

(
Tpj

2π

√
mY,2 (xd, xp, sj)

mY,0 (xd, xp, sj)

)
.

(29)

Bounds on the approximation error of equation (28) are

proposed in section B.2 of Appendix B.

2.3 Approximation of the integral-based failure

probability

Proposition 1 We denote by F1

(
xd, xp, s

j ; .
)

the pro-

cess f
(
Y1
(
xd, xp, s

j ; .
))

. If for all xd, xp, sj, the pro-

cess F1

(
xd, xp, s

j ; .
)

is ergodic, we have for almost ev-

ery x:

PY

(
1

∆T

∫ T

0

f (Y (xd, xp; t)) dt > x

)
−→

∆T→+∞
1∑ns

j=1 n
jEF1

[F1(xd,xp,sj ;0)]>x. (30)

The proof of proposition 1 is given in section B.3 of

Appendix B.

Using proposition 1, when ∆T is large enough, we

can approximate the integral-based failure probability

as follows:

pI(d)

' EXd,Xp

FrI
T ns∑

j=1

pjEF1

[
F1

(
Xd, Xp, s

j ; 0
)] ,

(31)

with FrI the cumulative distribution function of XrI .

The approximation error made in equation (31) is dis-

cussed in section B.4 of Appendix B.

2.4 Optimization problem involving a piece-wise

stationary harmonic oscillator

The oscillator problem presented in section 1.4 is slightly

modified by considering a piece-wise stationary process

D as defined in section 2.1. For fixed values xd, xp and

for i = 1, . . . , nT , the process Di (xd, xp, si; .) is solution

of the harmonic oscillator equation (19) with an exter-

nal force η(si, .). The time-dependent process η(si, .) is

a zero-mean stationary Gaussian process with spectral

density:

Kη (si;ω) =
si√
2π

exp

(
− (siω)

2

2

)
, (32)

for si > 0. In the piece-wise stationary problem, the

processes D(1) and D(2) are defined by the following

equation:

D(k) (xd, xp; t) =

nT∑
i=1

D(k)
i (xd, xp, si; t)1Ii(t), (33)

for k = 1, 2, with D(k)
i (xd, xp, si; .), the first (k = 1)

and second (k = 2) time derivatives of Di (xd, xp, si; .).

Hence, the processes D(k)
i (xd, xp, si; .), k = 1, 2, are

zero-mean stationary Gaussian processes with respec-

tive spectral densities:

KD(k) (xd, xp, si;ω) = ω2k |HD (xd, xp;ω)|2Kη (si;ω) ,

(34)

for k = 1, 2. We denote mD(k),n (xd, xp, si), k = 1, 2,

their spectral moments of order n. Furthermore, the ar-

guments used in the stationary case allow to show that

the processes D(k)
i (xd, xp, si; .), k = 1, 2, meet all the

conditions to use the reformulation procedure described

in section 2.

If ∆T is large enough, it is reasonable to approxi-

mate the constraints of problem (20) with a piece-wise

stationary process D by applying the results of sections

2.2 and 2.3. The two first constraints are replaced by

the approximation given by equation (28) where aTpj ,

mY,0 and XrE become respectively a1Tpj , mD(1),0 and

Xr1 for the first constraint and a2Tpj , mD(2),0 and Xr2

for the second constraint with:

akTpj (xd, xp, s
j) =

√√√√2 log

(
Tpj

2π

√
mD(k),2 (xd, xp, sj)

mD(k),0 (xd, xp, sj)

)
,

(35)

for k = 1, 2. The third constraint of problem (20) is

replaced by the approximation given by equation (31)

with

F1(xd, xp, s
j ; 0) =

(∣∣∣D(2)
1

(
xd, xp, s

j ; 0
)∣∣∣− ρ)+ (36)

and XrI becomes Xr3 . We give the relation between

EF1

[
F1

(
xd, xp, s

j ; 0
)]

andmD(2),0

(
xd, xp, s

j
)

in appendix

B.5.

Remark 6 To evaluate akTpj
(
xd, xp, s

j
)
, k = 1, 2 and

EF1

[
F1

(
xd, xp, s

j ; 0
)]

, the spectral moments of the ve-

locity and acceleration processes need to be numerically

computed from the integrals∫
R
ωn |HD (xd, xp;ω)|2Kη

(
sj ;ω

)
dω, (37)

for n = 2, 4, 6. Hence, the evaluation of the spectral mo-

ments represents the expensive part of the evaluation

of the constraints.
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3 An active learning Kriging approach for the
reformulated optimization problem: AK-ECO

We consider in this section the general problem (3) in-
troduced in section 1 involving a piece-wise stationary
process. After the reformulation of the constraints pre-
sented in section 2, we end up with the following prob-
lem:

min
d∈Ωd

cost(d) such that

EXd,Xp,XrE

Fε
 ns∑
j=1

exp
(
ME

(
Xd, Xp, XrE , s

j
)) < ps

EXd,Xp

FrI
 ns∑
j=1

TpjMI

(
Xd, Xp, s

j
) < ps

(38)

with

ME

(
xd, xp, xrE , s

j
)

=aTpj
(
xd, xp, s

j
)2

−
aTpj

(
xd, xp, s

j
)
xrE√

mY,0 (xd, xp, sj)
, (39)

MI

(
xd, xp, s

j
)

=EF1

[
F1

(
xd, xp, s

j ; 0
)]
. (40)

All the notations appearing in problem (38) have been
introduced in section 2. The cost function is supposed
to be fast to evaluate. We remark that the problem

is now a time-independent one. Even though the re-
formulated constraints are easier to evaluate than the
initial ones, for each realization xd, xp and for each

state sj , the spectral moments of Y1
(
xd, xp, s

j ; .
)

are
required to compute the quantities ME

(
xd, xp, xrE , s

j
)

and MI

(
xd, xp, s

j
)
. The evaluation of those spectral

moments requires an expensive simulator. Therefore,
an estimation of one of the constraints with the Monte
Carlo method and a sample of size nMC would impose
nMC×ns calls to the simulator. This would be too com-

putationally expensive especially when we deal with
rare events (i.e. when ps � 1). We mentioned in the
introduction of the paper existing methods that solve
RBDO problems much faster than the brute Monte
Carlo. However, we will see the drawbacks of these
methods when applied to problem (38). We thus pro-
pose a new method, better suited for the reformulated
problem and called Adaptive Kriging for Expectation
Constraints Optimization (AK-ECO).

Remark 7 Presented as in problem (38), the reformu-

lated constraints depend on the same piece-wise sta-
tionary process Y. However the resolution methods that

are presented in this section can be applied to con-
straints that depend on different processes. When sev-
eral constraints depend on the same process, it can be
noticed that the outputs of each simulation can be used
in the estimation of the different constraints since they
depend on the same quantities (i.e. the spectral mo-
ments of the process).

Remark 8 For simplicity, we present a problem with
two constraints (one extreme-based and one integral-
based) but the resolution methods that we introduce
can be applied to several constraints of each type. Fur-
thermore, a problem with extreme and integral based
constraints but with a stationary process Y can be
solved with the same approaches since the reformulated
problem would be identical to the piece-wise stationary
case considering ns = 1.

All the effective approaches in the literature of RBDO
methods rely on the assumption that the constraints are
expressed as probabilities. Thus, we write the extreme-
based and integral-based reformulated constraints of

problem (38) as failure probabilities as follows:

PXd,Xp,XrE ,Xε
(
Xε

−
ns∑
j=1

exp
(
ME

(
Xd, Xp, XrE , s

j
))
< 0
)
< ps, (41)

PXd,Xp,XrI
(
XrI −

ns∑
j=1

TpjMI

(
Xd, Xp, s

j
)
< 0
)
< ps,

(42)

where Xε is a random variable with an exponential dis-

tribution of parameter 1. However, since each evalua-
tion of the functions ME and MI requires a call to an
expensive simulator, one evaluation of the performance
function of each of these constraints would need ns sim-
ulations. When ns is large, which is the case for offshore
applications (Vorpahl et al. (2013)), the double-loop,
single-loop and decoupled loop approaches can be too

expensive. This is also the case for the adaptive meta-
model approaches since they always replace the whole
performance function.

The limitations of the current methods in RBDO
have motivated the development of a new approach. For
each expectation constraint of problem (38), a meta-
model is built to replace the expensive function involved

in the reformulated failure probability. We thus obtain
as many metamodels as there are constraints. Then,
cycles of optimization are carried out. During each cy-
cle, the metamodels are sequentially enriched and the
design point is updated. The particularity of our ap-
proach lies in the metamodel and active learning strat-
egy which are adapted to the reformulated constraints
of the studied problem.
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3.1 Metamodel strategy: Kriging

In problem (38), since the expensive functions of the

extreme-based and integral-based constraints are ME

and MI, we propose to build a metamodel for each of

these functions. Unlike other metamodel approaches,

the metamodels do not replace the performance func-

tions. Thus, for each (xd, xp, xrE), the functions ME and

MI need to be evaluated only on the relevant state sj

as we will see below. This could drastically reduce the

number of calls to the simulator, especially when ns is

large.

As in Dubourg (2011) and Moustapha and Sudret

(2019), for each constraint, we build the metamodel in

a so-called augmented space which allows to use and

enrich a single model during the whole procedure of

AK-ECO. To do so, the augmented space spans both

the design space and the space of uncertainties. The

augmented spaces of ME and MI are respectively de-

noted ΩaugE and ΩaugI . To define precisely those spaces,

we need to introduce some notations.

Let (d1, . . . , dnd) ∈ Ωd = Ωd1 × . . . × Ωdnd ⊂ Rnd
be a design point and Xd1 , . . . , Xdnd

the random vari-

ables with respective cumulative distribution functions

Fd1 , . . . , Fdnd describing the uncertainties at this point.

The random vector Xp is composed of np random vari-

ables Xpi , (i = 1, . . . , np) with cumulative distribution

functions Fpi , (i = 1, . . . , np). Finally the cumulative

distribution function of XrE is denoted FrE . The aug-

mented spaces are then defined as follows:

ΩaugE = Ωaugd ×Ωaugp ×ΩaugrE ×ΩS , (43)

ΩaugI = Ωaugd ×Ωaugp ×ΩS , (44)

with (denoting by F−1 the quantile function associated

to a cumulative distribution function F )

Ωaugd =

nd∏
i=1

[
inf

di∈Ωdi
F−1di

(α), sup
di∈Ωdi

F−1di
(1− α)

]
, (45)

Ωaugp =

np∏
i=1

[
F−1pi (α), F−1pi (1− α)

]
, (46)

ΩaugrE =
[
F−1rE (α), F−1rE (1− α)

]
, (47)

ΩS = {s1, . . . , sns}, (48)

and α is a degree of confidence chosen by the user (dif-

ferent values of α could be considered for each set of

the Cartesian products Ωaugd , Ωaugp , and for ΩaugrE ).

The dimensions of ΩaugE and ΩaugI are respectively

equal to nd + np + 2 and nd + np + 1. We suppose that

nd+np is relatively small (less than 12). Under this as-

sumption, the kriging model is particularly well suited

to our approach. When using this technique, a meta-

model of an expensive function denoted M is built in

the form of a Gaussian stochastic process M̃ whose dis-

tribution is characterized by several parameters called

hyperparameters. The responses of M over a design of

experiments (DoE) are first used to calibrate those hy-

perparameters. The mean µ, the autocorrelation func-

tion and the standard deviation σ of the a posteriori

distribution M̃ are then analytically deduced from the

hyperparameters and the responses of M at the DoE

(Helbert and Carraro (2009)). Thus, at each point x

of the input space of M , the variable M̃(x) provides a

approximated model in the form of a Gaussian random

variable with distribution N
(
µ(x), σ(x)2

)
. The mean

µ(x) is used as predictor while the standard deviation

σ(x) measures the accuracy of the predictor. This lat-

ter information makes kriging metamodel particularly

well suited to active learning. Therefore, the metamodel

used in AK-ECO is the kriging model since it gives

good predictions and provides information about the

accuracy of its prediction through the variance of the

kriging which will be useful for the enrichment of the

models.

We can notice that ΩaugE = ΩaugI × ΩaugrE . Thus, to

calibrate the metamodels, we only use one DoE of ΩaugE .

Using one DoE is interesting when the two constraints

depend on the same process Y since each simulation

can be used to enrich both metamodels. Indeed, in that

case, we recall that to evaluate ME and MI at a point(
xd, xp, xrE , s

j
)
, we only need the spectral moments of

the process Y1
(
xd, xp, s

j ; .
)
.

Remark 9 In this paper, the outputs are noise-free there-

fore the kriging method is adapted. When data noise is

considered, the Gaussian Process regression technique

(Rasmussen (2004)) can be used in AK-ECO.

3.2 Procedure

To solve the reformulated problem (38), AK-ECO be-

gins with the initialization of the design point and the

kriging models. Then, the reformulated problem is solved

through cycles of optimization. The initialization and

the optimization cycle structure are described below.

Initialization: the initial design point d0 is chosen by

the user. An initial DoE, denoted DoE0, is com-

puted and used to calibrate the initial metamodels

M̃E

0
, M̃I

0
of the functions ME and MI (see section

3.3 for more details). At the end of the initialization,

the first cycle of optimization (k = 1) can begin.

Optimization cycle: we respectively denote dk−1,DoEk−1,

M̃E

k−1
, and M̃I

k−1
, the design point, DoE, and krig-

ing models recovered from the initialization if k = 1
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or from the previous cycle if k > 1. Each cycle is
numbered k and is decomposed into two steps:

Step 1. Local enrichment at dk−1 of the metamod-

els M̃E

k−1
and M̃I

k−1
. For each metamodel:

Step 1.a. An accuracy criterion assesses the pre-
cision of the metamodel at dk−1 (we detail
this step in section 3.4).

Step 1.b. If the metamodel is not accurate enough,
one local enrichment is carried out. The lo-
cal refinement of the metamodel consists in
adding to the shared DoE the point xenr se-
lected by the procedure described in section
3.5. The simulator is evaluated at this point
and the spectral moments obtained are used
to recalibrate all the kriging models.

Steps 1.a and 1.b are repeated until each krig-
ing model meets the accuracy condition of step
1.a. At the end of step 1, the enriched DoE and

kriging models are denoted DoEk, M̃E

k
, and

M̃I

k
. For each point of the respective augmented

spaces, the predictive means of the kriging mod-

els are respectively denoted µkE
(
xd, xp, xrE , s

j
)

and µkI
(
xd, xp, s

j
)
.

Step 2. The reformulated problem (38) is solved us-

ing the optimization algorithm chosen by the
user starting from dk−1. At each iteration of the
optimization, the constraints are estimated with
Monte Carlo and the expensive functions are re-

placed by their current surrogates. For a design
d, those estimations, denoted pkE(d) and pkI (d),
are given by:

pkE(d) =

1

nMC

nMC∑
i=1

Fε

 ns∑
j=1

exp
(
µkE
(
xid, x

i
p, x

i
rE , s

j
)) ,

(49)

pkI (d) =

1

nMC

nMC∑
i=1

FrI

 ns∑
j=1

TpjµkI
(
xid, x

i
p, s

j
) , (50)

where {
(
xid, x

i
p, x

i
rE

)
, i = 1, . . . , nMC} = ΩMC(d)

is the Monte Carlo sample of the random vector
(Xd, Xp, XrE).
Step 2 does not require any call to the expen-
sive simulator. Once the optimization algorithm

has converged, a new design point denoted dk is
obtained.

At the end of each cycle k, the following condition
is evaluated:

∥∥∥dk−1 − dk∥∥∥ < εd OR
∣∣∣cost (dk−1)− cost (dk)

∣∣∣ < εcost

(stopping condition)

where d and cost (d) are the normalizations of d and
cost(d) in [0, 1]. If this condition is met, AK-ECO is
stopped and the minimum retained, denoted dmin, is
dk, otherwise, k = k + 1 and a new cycle begins from
step 1. The stopping criterion of AK-ECO does not in-
clude a condition on the satisfaction of the constraints
since this point is verified at the end of the optimiza-
tion during step 2. The full procedure of AK-ECO is
summarized in Figure 1.

Remark 10 If the random vector Xd depends on d such

that Xd = d + X with X a zero-mean random vector,
it is possible to use the same Monte Carlo sample ΩMC

throughout AK-ECO where ΩMC = {
(
xi, xip, x

i
rE

)
, i =

1, . . . , nMC} is a sample of (X,Xp, XrE). It follows that

ΩMC(d) = {
(
d+ xi, xip, x

i
rE

)
,
(
xi, xip, x

i
rE

)
∈ ΩMC}.

3.3 Kriging models initialization

The goal of the first kriging models is to provide good
predictions of their respective functions over the whole

augmented spaces. A space-filling DoE is therefore ap-
propriate. As explained above, we use one DoE for both
metamodels: only one sample of ΩaugE is needed. There-

fore a space-filling DoE of n0DoE points of Ωaugd ×Ωaugp ×
ΩaugrE is constructed. We then concatenate to this DoE
a uniform sample of n0DoE points of ΩS . The result-
ing DoE is denoted DoE0. The simulator is evaluated
for each point of DoE0 to calibrate the initial kriging

models denoted M̃E

0
and M̃I

0
.

3.4 Accuracy criteria

During step 1 of the k-th cycle of optimization, the cur-

rent kriging model M̃E

k−1
at
(
xd, xp, xrE , s

j
)

follows a
normal distribution with mean and standard deviation
denoted µk−1E

(
xd, xp, xrE , s

j
)

and σk−1E

(
xd, xp, xrE , s

j
)
.

To evaluate the precision of the approximation pk−1E (d)

of the true failure probability at d, we adapt the ap-
proach proposed by Dubourg (2011) and compute the
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Initialization: Choose d0, create DoE0, and calibrate M̃E
0

and M̃I
0
, cycle k = 0

New cycle of optimization k → k + 1

Is Criterion E.b met?

Select xenr among ΩMC
(
dk−1

)
that maximizes CE defined in (54)

Add xenr to DoEk−1

Recalibrate M̃E
k−1

and M̃I
k−1

Is Criterion I.b met?

Select xenr among ΩMC
(
dk−1

)
that maximizes CI defined in (56)

Add xenr to DoEk−1

Recalibrate M̃E
k−1

and M̃I
k−1

Step 1. Local enrichment

DoEk−1 → DoEk,

M̃E
k−1 → M̃E

k
, M̃I

k−1 → M̃I
k

Solve the reformulated problem
(38) starting from dk−1 and es-
timating the constraints with pkE
and pkI given by (49) and (50).

New design point: dk

Step 2. Optimization

Is stopping
condition met?

End of AK-ECO :
dmin = dk

yes

no

no

yes

yes

no

Fig. 1: Flowchart of AK-ECO

following quantities:

pk−1E,±(d) =
1

nMC

nMC∑
i=1

Fε

(
ns∑
j=1

exp

(
µk−1E

(
xid, x

i
p, x

i
rE , s

j
)
±2σk−1E

(
xid, x

i
p, x

i
rE , s

j
)))

.

(51)

As the exponential function and Fε are strictly in-

creasing, we have: pk−1E,−(d) < pk−1E (d) < pk−1E,+ (d). The

distance between pk−1E,−(d) and pk−1E,+ (d) is an indicator

of the uncertainty of the constraint estimation pk−1E (d).

In Dubourg (2011), a criterion based on the ratio be-

tween similar optimistic and pessimistic estimations of

the failure probability is proposed. However, since it is

useless to know precisely the true failure probability if

it is far from ps, we modify this latter criterion. In AK-

ECO, the metamodel is considered accurate enough if

the following condition is met:

|pk−1E (dk−1)− ps|
pk−1E,+ (dk−1)− pk−1E,−(dk−1)

> 1. (Criterion E)

This criterion is met if the distance between the low

and high estimations of the constraint at dk−1 is less

than the distance between the estimation of the con-
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straint at dk−1 and ps. In this case, we have reasonable
grounds to believe that the kriging model accurately
predicts whether a point near dk−1 belongs or not to
the feasible domain.

To avoid a too large number of enrichment steps
during the same cycle, a maximal number nmax of en-
richment steps is imposed for each metamodel and cy-

cle. Finally, M̃E

k−1
is considered accurate enough if

pk−1E,−(dk−1) > ps − εp and pk−1E,+ (dk−1) < ps + εp where
εp is chosen by the user. This last condition indicates
that it is not necessary to improve the accuracy of the
metamodel beyond a certain threshold defined by εp
and therefore it reduces the number of enrichments re-
quired. Hence, M̃E

k−1
is enriched if Criterion E.b is not

met and this criterion is defined as:

Criterion E is met OR
(
nkE ≥ nmax

)
OR(

ps − εp < pk−1E,−(dk−1) < pk−1E,+ (dk−1) < ps + εp

)
(Criterion E.b)

For the integral-based constraint, a similar crite-

rion is proposed. We consider the kriging model M̃I

k−1

whose mean and standard deviation at
(
xd, xp, s

j
)

are

denoted µk−1I

(
xd, xp, s

j
)

and σk−1I

(
xd, xp, s

j
)
. The func-

tion FrI is also increasing and pj > 0 for j = 1, . . . , ns.
Thus we have, for all d: pk−1I,− (d) < pk−1I (d) < pk−1I,+ (d)
with

pk−1I,± (d) =
1

nMC

nMC∑
i=1

FrI

(
ns∑
j=1

Tpj
(
µk−1I

(
xid, x

i
p, s

j
)
± 2σk−1I

(
xid, x

i
p, s

j
)))

. (52)

where nkE is the number of enrichment steps of the meta-
model during cycle k.

The accuracy criterion for the integral-based con-
straint at dk−1 is:

|pk−1I (dk−1)− ps|
pk−1I,+ (dk−1)− pk−1I,− (dk−1)

> 1. (Criterion I)

The metamodel M̃I

k−1
is enriched if Criterion I.b is

not met and this criterion is defined as:

Criterion I is met OR
(
nkI ≥ nmax

)
OR

(
ps − εp < pk−1I,− (dk−1) < pk−1I,+ (dk−1) < ps + εp

)
(Criterion I.b)

where nkI is the number of enrichment steps of the meta-
model during cycle k.

Therefore, during each cycle of AK-ECO, the num-
ber of enrichments is at most equal to nmax multiplied
by the number of metamodels.

When both criteria Criterion E.b and Criterion I.b
are met, step 1 ends and step 2 begins.

3.5 Selection of the enrichment point

During the k-th cycle, if Criterion E.b is not met, the

model M̃E

k−1
is not considered sufficiently accurate at

dk−1. To improve its precision, a point xenr maximiz-
ing a learning function CE is selected among the Monte
Carlo sample ΩMC

(
dk−1

)
used in equation (49) to esti-

mate the extreme-based constraint at dk−1. Hence, xenr
is given by:

xenr = argmax
ΩMC(dk−1)×{s1,...,sns}

CE(xidk−1 , x
i
p, x

i
rE , s

j). (53)

The goal of criterion CE is to favor points where the

uncertainty of prediction of M̃E

k−1
implies important

uncertainties on the constraint estimation at dk−1:

CE(xid, x
i
p, x

i
rE , s

j) = f(Xd,Xp,XrE)
(
xid, x

i
p, x

i
rE

)
×

[
Fε

(
eµ

k−1
E (xid,x

i
p,x

i
rE
,sj)+2σk−1

E (xid,x
i
p,x

i
rE
,sj)

+
∑
j′ 6=j

e
µk−1
E

(
xid,x

i
p,x

i
rE
,sj
′))

− Fε

(
eµ

k−1
E (xid,x

i
p,x

i
rE
,sj)−2σk−1

E (xid,x
i
p,x

i
rE
,sj)

+
∑
j′ 6=j

e
µk−1
E

(
xid,x

i
p,x

i
rE
,sj
′)) ]

, (54)

with f(Xd,Xp,XrE) the probability density function of

the random vector (Xd, Xp, XrE). Once xenr is selected,
it is added to the current DoE, DoEk−1, and one call
to the simulator is made at this point.

For the integral-based constraint, the idea is the
same, if Criterion I.b is not met, a new point xenr is
selected as follows:

xenr = argmax
ΩMC(dk−1)×{s1,...,sns}

CI(x
i
dk−1 , x

i
p, s

j), (55)
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where

CI(x
i
d, x

i
p, s

j) = f(Xd,Xp)
(
xid, x

i
p

)
×

[
FrI

(
Tpj

(
µk−1I

(
xid, x

i
p, s

j
)

+ 2σk−1I

(
xid, x

i
p, s

j
))

+
∑
j′ 6=j

Tpj
′
µk−1I

(
xid, x

i
p, s

j′
))

− FrI

(
Tpj

(
µk−1I

(
xid, x

i
p, s

j
)
− 2σk−1I

(
xid, x

i
p, s

j
))

+
∑
j′ 6=j

Tpj
′
µk−1I

(
xid, x

i
p, s

j′
)) ]

. (56)

Remark 11 Usually in reliability analysis, adaptive strate-

gies aim at improving a metamodel near the limit state

surface of the considered performance function (Teix-

eira et al. (2021); Moustapha et al. (2022)). The learn-

ing functions proposed in this paper do not pursue the

same goal since in our reformulated problem, each con-

straint involves an expectation and not a failure prob-

ability. Our approach is closer to the enrichment of the

metamodel seeking to reduce the variance of an expec-

tation of the form EX
[
M̃(X)

]
where X is a random

variable et M̃ is a kriging model as proposed in Huchet

et al. (2019).

In our case, the expectations involved in the refor-

mulated constraints can be written as follows:

EX

F
 ns∑
j=1

H(M̃
(
X, sj

) (57)

where F and H are two monotonic functions. The vari-

ance of this quantity with respect to the kriging dis-

tribution of M̃ is difficult to estimate. At each point x

of the Monte Carlo sample of X used to approximate

the expectation in (57), our learning functions therefore

simply consider the uncertainty of F
(∑ns

j=1H(M̃
(
x, sj

))
from the standard deviation of M̃

(
x, sj

)
.

3.6 Visualization of one cycle of AK-ECO

To illustrate one cycle of AK-ECO, we consider the min-

imization of a cost function in a two-dimensional de-

sign space with extreme-based and integral-based con-

straints. The level sets of the cost function that we want

to minimize are displayed in Figure 2. The infeasible do-

main is the black hatched area. After initialization of

the metamodels, the first cycle of AK-ECO begins by

evaluating their accuracy at the initial design point d0

(step 1.a). Since they are not accurate enough, enrich-

ment candidates of the augmented space are considered

(projections in the design space of several candidates

are represented with light blue crosses). Enrichment

points are then selected among these candidates until

the precision criteria are met (step 1.b). The projection

of 5 of these points are indicated by thick blue crosses in

the Figure 2. Once the accuracy criteria are met, step 2

begins and the optimization problem is solved with an

optimization algorithm using the enriched metamodels.

The iterations of this optimization are represented by

grey triangles. This resolution provides a new design

point d1 which will be the starting point of the next

cycle of AK-ECO.

Fig. 2: Visualization of the first cycle of AK-ECO

4 Application to the harmonic oscillator

problem introduced in section 2.4

To validate the method proposed in the previous sec-

tion, we study the resolution of the reformulated prob-

lem of the piece-wise stationary harmonic oscillator de-

scribed in section 2.4. First, a resolution of the prob-

lem with a double loop approach using the Monte Carlo

method to estimate the constraints is used as a refer-

ence. Then, the problem is solved with AK-ECO. These

two methods solve the reformulated problem with con-

straints involving expectations. The resolution of this

problem with a probabilistic formulation of the con-

straints (see section 3) is carried out with our imple-

mentation of RIA, PMA, SORA and the Stieng ap-

proach presented in the introduction section.

4.1 Cost function, sources of uncertainties and

parameters of the problem

Here the cost function is:

cost (d1, d2) = d2 − 10d1. (58)
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The optimization problem is solved on the design space
Ωd = [1, 5]× [20, 50] and for the parameters ρ, nT , ∆T ,
T , ns and ps given in Table 1.

Parameter ρ nT ∆T T ns ps
Value 1 100 216 21600 7 10−4

Table 1: Parameters of the problem

The distributions considered for the random vari-
ables Xd1 , Xd2 , Xp, Xr1 , Xr2 , and Xr3 are given in
Table 2 and the couples

(
sj , pj

)
, j = 1, . . . , 7 in Table

3.

Uncertainty Distribution

Xd1
U [d1 − 0.3, d1 + 0.3]

Xd2
U [d2 − 1, d2 + 1]

Xp U [0.5, 1.5]

Xr1 N (1, 0.12)

Xr2 N (2.5, 0.252)

Xr3 N (15, 32)

Table 2: Distributions of Xd1 , Xd2 , Xp, Xr1 , Xr2 , Xr3

The notations U [a, b] and N
(
µ, σ2

)
refer respec-

tively to the uniform distribution on [a, b] and the nor-

mal distribution of mean µ and standard deviation σ.

j 1 2 3 4 5 6 7

sj 1.20 1.16 1.10 1.05 0.99 0.95 0.90

pj 0.21 0.17 0.18 0.16 0.13 0.09 0.06

Table 3: Couples
(
sj , pj

)
Here, the functions involved in the constraints are

actually not very expensive and massive Monte Carlo
simulations with samples of size 30000 can be carried
out. So we are able to check the performances of the dif-
ferent optimization methods. The level sets of the cost
function and of the logarithm of the three constraints
are displayed in Figure 3. In Figure 3, the black dot-
ted lines correspond to the design points where each
failure probability equals ps and the estimation of the
i-th failure probability with Monte Carlo is denoted pi

(i = 1, 2, 3) in the legend.

4.2 Implementations

The reference results are obtained using the COBYLA
(Powell (1994)) optimization algorithm (which is a trust-

(a) Cost function (b) First constraint

(c) Second constraint (d) Third constraint

Fig. 3: Level sets of the cost function and of the loga-
rithm of the failure probabilities appearing in each con-
straint

region method performing linear approximations to the
objective and constraint functions) and a massive Monte

Carlo method to estimate the failure probabilities (this
approach is denoted MC). The COBYLA algorithm is
also used for the other methods. The FORM method in
RIA is performed with the Abdo-Rackwitz algorithm

(Abdo and Rackwitz (1991)) available in the python
package OpenTURNS (Baudin et al. (2016)). The HMV
algorithm (Youn et al. (2003)) is implemented to solve

the inverse reliability analysis in PMA. In SORA and
Stieng, the SQP (Nocedal and Wright (2006)) algorithm
is chosen instead of HMV since it performs better on

the studied case. For AK-ECO, the initial space-filling
DoE is a Latin Hypercube Sampling (LHS) maximin
(McKay et al. (2000); Santner et al. (2018)) of size 50.
The maximum number of enrichment steps per cycle
and per constraint nmax is set to 15. The size nMC

of the sample used in the MC method is 30000. For
Stieng, SORA and AK-ECO, the cycles of optimization
stop if the stopping condition introduced in section 3.2
is met for εd and εcost equal to 10−3. In Stieng and
AK-ECO, the kriging implementation of OpenTURNS
is used with a constant trend and a 3/2-Matérn co-
variance kernel. In AK-ECO, the states si are treated
as continuous variables by the kriging kernel since, in
the oscillator application, the sj , j = 1, . . . , ns are real
numbers. In Stieng, the initial DoE is a Sobol sequence
(Sobol’ (1967)) of size 12. A Sobol sequence of size 40 is
used for the second cycle, 160 for the third one and 400

for the next cycles. In this paper, the DoEs are always
normalized to calibrate the kriging models.
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4.3 Numerical results

The problem under study is solved with each approach

starting from the center (3, 35) of the design space. The

results are displayed in Table 4. The first and second

rows indicate the design point dmin obtained by each

approach and the value of the cost function at this

point. For i = 1, 2, 3, the i-th failure probability at dmin

is then estimated with a massive Monte Carlo of 30000

points and the result is denoted pMC
i (dmin). Finally,

as explained in remark 6, the expensive part of the

constraints is the evaluation of the spectral moments

of D1

(
xd, xp, s

j ; .
)
. Therefore, during the resolution of

the problem, one estimation of the spectral moments for

one point
(
xd, xp, s

j
)

is considered as one call to the ex-

pensive simulator. The number of calls to the simulator

by each method is denoted ncall. It is important to no-

tice that, unlike usual papers in reliability analysis, the

number ncall does not refer to the number of calls to

the performance functions but to the number of simu-

lations. Hence, for RIA, PMA, SORA and Stieng, the

number of calls to the performance functions is equal

to ncall/7 since ns = 7.

We observe that all the methods converge towards

the same design point. However, AK-ECO provides the

closest design point to the reference point obtained with

MC and requires far fewer calls to the expensive sim-

ulator than the comparison methods: only 252 calls

are required (50 for the initial DoE and 202 for local

enrichments of the metamodels during the optimiza-

tion cycles). This is due to the fact that AK-ECO is

well adapted to the reformulated problem: each call to

the simulator allows to enrich every kriging model and

the simulation is performed only at the relevant states

sj . Furthermore, among the compared methods only

RIA and AK-ECO provide an estimation of the failure

probabilities. At the design point obtained with RIA,

the first, second and third failure probabilities are esti-

mated with FORM as 1.1×10−4, 1.3×10−4, 0.8×10−4.

The probabilities estimated with AK-ECO at the de-

sign point obtained with this algorithm are 0.7× 10−4,

1.0×10−4, 0.1×10−4. Hence, with AK-ECO, we observe

a good approximation of the failure probabilities since

they are close to the reference probabilities obtained in

the column MC.

For SORA, the Stieng approach and AK-ECO, at

the end of cycle k a design point dk is obtained. The evo-

lution of log
(∣∣∣cost (dk−1)− cost (dk)

∣∣∣) for each method

and each cycle k is displayed in Figure 4a and the evolu-

tion of log
(∥∥∥dk − dk−1∥∥∥) in Figure 4b where cost (dk−1)

and dk refer respectively to the normalization of cost
(
dk
)

function and of dk in [0, 1].

(a) Evolution of log
(∣∣∣cost (dk−1)− cost (dk)

∣∣∣)

(b) Evolution of log
(∥∥∥dk − dk−1

∥∥∥)
Fig. 4: Evolution of the stopping condition for SORA,

Stieng and AK-ECO

We observe that the resolution of the studied prob-

lem takes 5 cycles for AK-ECO to converge while 7 and

20 cycles are necessary for SORA and Stieng to meet

the stopping condition. In AK-ECO, the closer the de-

sign point is to the true infeasible domain boundary,

the more enrichment steps are performed. During the

first cycle, 22 points are added to the DoE while 45 en-

richment steps are performed during the second, third

and last ones.

Moreover, the failure probabilities pMC
1 , pMC

2 , pMC
3

have been evaluated with a Monte Carlo of 30000 points

at the design point obtained at the end of each cycle

of SORA, Stieng and AK-ECO and their evolution is

displayed in Figure 5. We can see that with Stieng and

AK-ECO, the true constraints are satisfied at the end

of each cycle while it takes 4 cycles for SORA (actu-

ally, with AK-ECO, pMC
2 is slightly above the threshold

10−4 at the end of the third cycle).
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MC RIA PMA SORA Stieng AK-ECO

dmin (5.0, 35.74) (5.0, 35.22) (5.0, 35.04) (5.0, 36.77) (5.0, 37.29) (5.0, 35.73)

cost(dmin) -14.26 -14.78 -14.96 -13.23 -12.70 -14.27

pMC1

(
dmin

)
0.8× 10−4 1.0× 10−4 1.0× 10−4 0.4× 10−4 0.3× 10−4 0.8× 10−4

pMC2

(
dmin

)
1.0× 10−4 1.3× 10−4 1.3× 10−4 0.6× 10−4 0.5× 10−4 1.0× 10−4

pMC3

(
dmin

)
0.1× 10−4 0.8× 10−4 0.4× 10−4 0 0 0.1× 10−4

ncall 3.57× 106 791175 29393 15722 53200 252

Table 4: Results of AK-ECO and the comparison methods for the harmonic oscillator problem

Fig. 5: Evolution of the Monte Carlo estimation of the
failure probabilities for SORA, Stieng and AK-ECO

The resolution of the problem has also been re-
peated with AK-ECO from 20 different starting design
points selected with a LHS maximin of the design space.
Each time, the initial kriging models are calibrated with
a new DoE. The results show that the performance of
AK-ECO is not affected by the initial DoE or the initial
design point since the algorithm converges towards the
good design point each time and with a number of sim-
ulations varying from 174 to 416 with a mean number
of calls equal to 229.1.

5 Application to a second harmonic oscillator
problem

In this section we solve another oscillator problem to

show how AK-ECO performs when the number of states
ns increases compared to the other methods.

5.1 Second oscillator problem and reformulation

We consider in this section the following problem:

min
d∈Ωd

cost(d) such that

PXd,Xp,η
(

max
t∈[0,T ]

D (Xd, Xp; t) > r1

)
< ps

PXd,Xp,Xr2 ,η

(∫ T

0

(|D′′ (Xd, Xp; t)| − ρ)
+
dt > Xr2

)
< ps

(59)

where the random processes D, D′′, and η, the de-

sign space Ωd, the random vectors Xd and Xp, and the
values of T and ρ are the same as the ones used in the
previous oscillator problem. They are defined in section

2.4 and section 4.

In problem (59), the cost function is defined as fol-
lows:

cost (d1, d2) = exp

(
(d1 − 3)2

10
+

(d2 − 20)2

1000

)
. (60)

Moreover, we consider ps = 10−3, r1 = 0.3, Xr2 ∼
N
(
20, 52

)
, and the states are defined in Table 5.

ns sj for j = 1, . . . , 50 pj for j = 1, . . . , 50

50 1.4− (j − 1)
1.4− 0.8

ns − 1

1
j

50∑
i=1

1
i

Table 5: States of the second oscillator problem

Using the same reasoning as for the oscillator prob-
lem described in section 2.4, problem (59) can be refor-
mulated as an optimization problem with constraints
involving one extreme-based and one integral-based re-
formulated failure probability, as in problem (38).
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These reformulated constraints are evaluated by Monte

Carlo with a sample of 3000 points to obtain the level

sets displayed in Figure 6. The black dotted lines cor-

respond to the design points where each failure prob-

ability equals ps and the estimation of the i-th failure

probability with Monte Carlo is denoted pi (i = 1, 2)

in the legend. The level sets of the cost function are

displayed as well in the Figure 6.

(a) Cost function

(b) First constraint (c) Second constraint

Fig. 6: Level sets of the cost function and of the loga-

rithm of the failure probabilities appearing in each con-

straint

5.2 Implementations

As for the first oscillator problem, the optimizer used

for every method is COBYLA. The reference results

are obtained using Monte Carlo to estimate the refor-

mulated constraints. The configurations of RIA, PMA,

SORA, Stieng and AK-ECO are the same as those de-

tailed in section 4.2 except for the Monte Carlo sam-

ple size. Indeed, since the probability threshold is ps =

10−3, the Monte Carlo sample size for the reference

method and for AK-ECO is 3000. Moreover, the ini-

tial DoE of AK-ECO is now composed of 30 points. In

Stieng, the initial DoE is a Sobol sequence of size 9, a

Sobol sequence of size 30 is used for the second cycle,

90 for the third one and 300 for the next cycles.

5.3 Numerical Results

The reformulated problem studied in this section is

solved starting from the center point (3, 35) of the de-

sign space with every approach. The results are dis-

played in Table 6. We use the same notations for Table

4 and Table 6 except that pMC
i (i = 1, 2) are computed

with a Monte Carlo of 3000 points.

We observe in Table 6 that all methods converge

towards the same point even if the constraints are not

well estimated by each approach. Moreover, AK-ECO

requires far fewer expensive function calls than the com-

parison methods. Indeed, contrary to the other meth-

ods, AK-ECO is not sensitive to the number of states

ns and therefore it performs much better in terms of

ncall when ns increases compared to the alternatives.

Finally, the first constraint in dmin is over-estimated

with AK-ECO. To improve this estimation, it is pos-

sible to change the parameters of the accuracy criteria

discussed in section 3.4, for example by increasing the

maximum number of enrichments per cycle (we used

the same parameters for each problem presented in this

paper).

6 Application to the floating offshore wind

turbine problem

We now consider a modified version of the floating off-

shore wind turbine described in Robertson et al. (2014):

the wind turbine is equipped with a semi-submersible

floater connected to the seabed by three mooring lines

(see Figure 7). In this section, we aim at minimizing

the material cost of the mooring lines while considering

reliability constraints. The mooring system must limit

the floater movements to ensure the turbine production,

avoid compression in the mooring lines and withstand

the damage caused by fatigue. The resulting constraints

inherit the randomness of the marine conditions, the

material properties and the model parameters.

6.1 Design variables and design space

The material cost of the mooring system and the con-

straints depend on three design variables: the length

d1 of the mooring line that can be added to, or de-

ducted from, the nominal mooring length of 841.56m

(its domain is [−0.5, 2] (in m)), the mass per unit length

d2 ∈ [70, 180] (in kg/m), the position d3 of the con-

nection of the lines to the side columns of the floater

(taking values between 0 and 1 which respectively cor-

respond to the connection at the bottom and at the

top of the columns). We denote d = (d1, d2, d3) and the

design space Ωd = [−0.5, 2]× [70, 180]× [0, 1].



19

MC RIA PMA SORA Stieng AK-ECO

dmin ( 2.50, 29.51) (2.46, 29.60) (2.46, 29.60) ( 2.46, 29.57) (2.52, 29.60) ( 2.49, 29.57)

cost(dmin) 1.123 1.129 1.129 1.128 1.122 1.125

pMC1

(
dmin

)
1.00× 10−3 0.80× 10−3 0.80× 10−3 0.81× 10−3 1.04× 10−3 0.93× 10−3

pMC2

(
dmin

)
0.04× 10−3 0.04× 10−3 0.04× 10−3 0.04× 10−3 0.04× 10−3 0.04× 10−3

ncall 6× 106 725950 483050 56750 13850 122

Table 6: Results of AK-ECO and the comparison methods for the harmonic oscillator problem 2

Fig. 7: Perspective view of the floating offshore wind turbine model in DeeplinesTM

6.2 Definition of the time-dependent processes
involved in the constraints

The movements of the structure are determined from
the environmental loads occurring during the consid-
ered period [0, T ] (T is equal to one year) and in par-
ticular loadings induced by waves.

The swell is modelled as a succession of waves meet-
ing the structure and defined by their height at any time
at a given point. To account for all the possible sea
states, we discretize the interval of time [0, T ] into nT
subintervals Ii, i = 1, . . . , nT , of length ∆T (∆T = 3
hours). For each interval Ii, the sea elevation is rep-
resented by a zero-mean stationary Gaussian random
process defined by its spectral density. In this study, we
consider the JONSWAP spectral density (Hasselmann
et al. (1980)) which is characterized by three long term
parameters (the significant wave height, the peak pe-
riod, and the mean wind speed) grouped in si which

will be called the sea state. The sea elevation process
on Ii is denoted ηi (si; .). We consider that ηi (si; .) and
ηj (sj ; .) are independent processes for i 6= j. We as-
sume that there are only 7 possible sea states s1, . . . , s7

(i.e ∀si, i = 1, . . . , nT , si ∈ {s1, . . . , s7}). Moreover, we

consider only constant wind forces (thrust on Rotor-
Nacelle-Assembly and turbine torque) applied on the
structure for each sea state.

At the end of the optimization problem, the chosen
design variables must restrict the platform movements:
the horizontal shifting of the structure (called surge)
must be less than a conservative threshold Smax of 5%
of the water depth. Tension in the lines must stay pos-
itive and the accumulated fatigue damage in the line
must remain below a resistance threshold R. We con-
sider only the tension and the fatigue at the top of each
line.

For a fixed sea state si, the movements of the plat-
form and the lines are solutions of a linearized equation
of motion in which the forces come from environmental
loads. The surge and tension at the top of the line l,
l ∈ {1, 2, 3}, can be written as:

Si(t) = µSi + Si(t), T li (t) = µT li + T li (t), (61)

where µSi and µT li are constants obtained computing

the static equilibrium. Moreover, Si and T li are outputs
of linear filters with the sea elevation ηi (si; .) as input.
Taking into account the different sea states, the surge
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and the tension at the top of the line l, l ∈ {1, 2, 3},
on [0, T ], denoted respectively S and T l, are defined as

follows:

S(t) =

nT∑
i=1

Si(t)1Ii(t), T l(t) =

nT∑
i=1

T li (t)1Ii(t). (62)

We deduce from these definitions and the properties

of the sea elevation process that the surge and tension

processes are piece-wise stationary Gaussian processes.

We can represent the instantaneous damage occur-

ring at the top of the l-th mooring line, l ∈ {1, 2, 3}, as

follows:

Dl (t) =

nT∑
i=1

Dli (t)1Ii(t) ,∀t ∈ [0, T ], (63)

where Dli(t) is the instantaneous damage caused by

T li (t). The accumulated damage over [0, T ], also called

fatigue, is defined as the integral
∫ T
0
Dl (t) dt. The dis-

tributions of the surge process, the tension processes

and the fatigue depend on the design variables d and

on model parameters denoted xp1 , xp2 , and xp3 (as well

as on a parameter xd2 for the fatigue) which are pre-

sented below.

6.3 Model and fatigue threshold uncertainties

To account for the lack of knowledge on certain param-

eters, uncertainties are considered on:

– the wave heading which is represented by a random

variableXp1 uniformly distributed between plus and

minus 10◦ around the wind turbine axis;

– two quadratic viscous drag coefficients for the surge

and the pitch of the floater, denoted Xp2 and Xp3 ,

to account for the approximation of the fitting from

decay tests (Burmester et al. (2020)). Each of these

random variables follows a uniform law respectively

on [105, 106] (in N.s2.m−2) and [3 × 1010, 7 × 1010]

(in N.m.s2.rad−2);

– the y-intercept of the fatigue law Xd2 accounting

for experimental scattering. It follows a log-normal

distribution with parameters, chosen after the Stiff’s

fatigue curve for chain, σd2 = 0.8 and µd2 which

depends on the mass per unit length d2 via a linear

relation of the Breaking Load (see Rossi (2005) for

the fatigue law relation);

– the threshold resistanceR for approximation of time-

independent Palmer Miner damage approach. It is

a log-normal distribution of parameters µR = 1 and

σR = 0.3 (Leira et al. (2005)).

All of these variables are independent and Xp de-

notes the random vector Xp = (Xp1 , Xp2 , Xp3).

6.4 Optimization problem formulation

Taking into account all the sources of uncertainty, we

consider the following optimization problem:

min
d∈Ωd

cost(d) such that

P
(

max
[0,T ]
S(d,Xp; t) > Smax

)
< 10−4

P
(

min
[0,T ]
T l(d,Xp; t) < 0

)
< 10−4 , l = 1, 2, 3

P

(∫ T

0

Dl (d,Xp, Xd2 ; t) dt > R

)
< 10−4 , l = 1, 2, 3.

(64)

The threshold probability of 10−4 is recommended

by international standards for mooring lines (Det Norske

Veritas (2013)) and the cost function is cheap to eval-

uate. We notice that the surge and tension constraints

are extreme-based constraints while the fatigue con-

straints are integral-based. Besides, since the surge and

tension processes are piece-wise stationary Gaussian pro-

cesses, we can reformulate the problem as described in

section 2. We thus obtain a reformulated problem which

can be solved with AK-ECO.

Remark 12 Another formulation of the problem stud-

ied in this section could have been considered. Indeed,

instead of solving an optimization problem with prob-

abilistic constraints, it is also possible to minimize the
total expected cost which takes into account the cost of

the mooring lines and the costs of failures weighted by

their probabilities of occurrence (Kanda (2021); Kroetz

et al. (2020)). However, although from an economical

standpoint the total expected cost is interesting, this

formulation has not been chosen here because the costs

of failures are often confidential and difficult to esti-

mate, but more importantly, the standards (Det Norske

Veritas (2013)) impose to consider constraints as formu-

lated in problem (64).

6.5 Resolution of the reformulated problem

We now solve the reformulated version of the floating

offshore wind turbine problem. For given design vari-

ables d, parameters xp and sea state sj , the means

and the spectral moments of the surge and the ten-

sion processes are all outputs of a single simulation and

are computed with the frequency domain solver of the
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DeeplinesTM software (Le Cunff et al. (2008)) dedicated
to offshore engineering applications. This software is
based on the finite elements method and the computa-
tional time of one simulation (about 1 minute) is too
high to apply naive approaches such as a brut Monte
Carlo. The reformulated problem is thus solved with
four methods: AK-ECO, SORA, Stieng and a method
denoted MC+K1600 which provides the reference re-
sults. Since it would be too expensive to evaluate the re-
formulated constraints with Monte Carlo, in MC+K1600,
the expensive functions are replaced by kriging mod-
els built from a LHS of 1600 points. The Monte Carlo
method is then used with these kriging models to esti-
mate the constraints during the resolution of the opti-
mization problem. For SORA and Stieng, we solve the
probabilistic formulation of the problem (see section 3).

The optimization algorithm used for each approach
is the COBYLA algorithm. In SORA and Stieng, the
SQP algorithm is chosen to solve the inverse reliability

analyses. For AK-ECO, the initial DoE is a LHS max-
imin of size 60. Moreover, a work has been done, but will
not be presented in this paper, to reduce the dimension

of the variables sj from 3 to 1. Thus the metamodels
of AK-ECO are actually built in a 7-dimensional space.
The maximum number of enrichment steps per cycle
and per constraint nmax is set to 15. For Stieng, SORA

and AK-ECO, the cycles of optimization stop if the
stopping condition introduced in section 3.2 is met for
εd and εcost equal to 10−3. For AK-ECO, MC+K1600,

and Stieng, a kriging with constant trend and 3/2-
Matérn covariance kernel is used for every metamodel.
A Sobol sequence of 30 points is used to calibrate the

kriging models of the first cycle of Stieng. For the sec-
ond cycle, the size of the sequence is 90 and 300 for the
next ones. The same Monte Carlo sample of Xp of size
30000 is used in MC+K1600 and AK-ECO to estimate

the reformulated failure probabilities.

6.6 Numerical results

The results obtained by each approach, considering an
initial design point at the center of the design space
(0.75, 125, 0.5) are given in Table 7. The design point
obtained by each method is denoted dmin and cost(dmin)
is the cost function evaluated at this point normal-
ized between [0, 1] (this normalization is possible since

the optima of the cost function are known here). The
surge, tension, and fatigue failure probabilities at dmin

obtained by each method have been evaluated with
Monte Carlo and the kriging models of the MC+K1600
method. The results are denoted pK1600

S
(
dmin

)
, pK1600
T l

(
dmin

)
and pK1600

Dl
(
dmin

)
(l = 1, 2, 3). Finally, the number of

simulations performed during the resolution of the stud-
ied problem with each method is denoted ncall.

We observe that each method provides a reliable
optimum. However, the design proposed by AK-ECO
is much closer to the reference result obtained with
MC+K1600 than the ones proposed by SORA and Stieng.
This difference is due to the inverse reliability analyses
performed during these methods which underestimate
the reliability associated with the last constraint. This
leads to a sub-optimal design point provided by these
approaches. Furthermore, AK-ECO requires much less
evaluations of the simulator since only 305 calls were
needed (60 for the initial DoE and 245 for the enrich-
ment procedure during the optimization cycles).

7 Conclusion

We have considered in this paper a time-dependent
RBDO problem with two types of constraints which in-
volve the maximum and the integral function of a time-
dependent stationary or piece-wise stationary Gaussian

random process. This kind of problems is inspired by
applications that arise in offshore wind turbine design
where the movements of a structure are time-dependent
stochastic processes whose properties can be derived

from input processes representing the marine conditions
(i.e. the wind speed and the sea elevation).

To solve this problem efficiently, we have proposed

a two-step procedure. First, we use limit theorems to
reformulate the constraints into easier to evaluate con-
straints that are time-independent and depend only

on uncertainties represented by random vectors. The
extreme value theory enables us to approximate the
extreme-based failure probability while the ergodicity
of the process appearing in the integral-based constraint
is used to reformulate it. Therefore, we obtain a RBDO
problem with constraints involving expectations instead
of failure probabilities.

A sum of ns terms appears in each expectation con-
straint (where ns is the number of different stationary
distributions involved in the piece-wise stationary pro-
cess) and one call to an expensive simulator is required
to compute each of these terms. We thus propose a
new method based on adaptive kriging and called AK-
ECO that solves the reformulated problem much faster

than the approaches in the literature. In the usual ap-
proaches, for each constraint, a metamodel is built to
replace the performance function and one evaluation of
the performance function leads to ns simulations. In
AK-ECO, the metamodel replaces the expensive func-
tion involved in the sum. Thus, one enrichment of the
metamodel only requires one simulation. The number of
calls to the expensive simulator is dramatically reduced
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MC+K1600 SORA Stieng AK-ECO

dmin (0.862, 108.86, 0) (2, 141.22, 0) (2, 140.58, 0) (0.947, 109.52, 0)

cost(dmin) 0.2818 0.5883 0.5819 0.2867

pK1600
S

(
dmin

)
1.0× 10−4 0 0 0.9× 10−4

pK1600
T l

(
dmin

)
(l = 1, 2, 3) 0 0 0 0

pK1600
Dl

(
dmin

)
(l = 1, 2) 0 0 0 0

pK1600
D3

(
dmin

)
1.0× 10−4 0.2× 10−4 0.2× 10−4 0.9× 10−4

ncall 1600 16394 5754 305

Table 7: Results of AK-ECO and the comparison methods for the wind turbine problem

especially when ns is large as in the offshore wind tur-

bine application.

To illustrate the procedure, two problems involv-

ing a harmonic oscillator are introduced. We apply the

reformulation and then, we solve the obtained prob-

lems with AK-ECO and state-of-the-art algorithms in

RBDO. The results show that AK-ECO is better suited

than the presented competing approaches for the type

of problems considered in our paper. The two-step pro-

cedure is then applied to minimize the material cost of

a mooring system of a floating offshore wind turbine

under extreme and integral based constraints. A reli-

able optimum is thus obtained with few calls to the

expensive simulator.

The AK-ECO efficiency relies on the assumptions

that the cost function is fast to evaluate and that the

dimension of the augmented space is small (say, less

than 12). In high dimension, kriging models perform

poorly and additional work would be necessary to adapt

AK-ECO. In addition, when ns becomes large, the esti-

mation of the failure probabilities with Monte Carlo as

well as the selection of enrichment points can become

cumbersome. Hence, AK-ECO would benefit from be-

ing coupled with a variance reduction technique. Fur-

thermore, it is assumed that the inital DoE quality is

good enough to capture the shape of the feasible do-

main since the metamodels are only enriched locally

during AK-ECO. To improve the quality of the initial

DoE, it would be interesting to implement a procedure

before starting AK-ECO that enriches the DoE so that

the failure probabilities are accurately estimated over

the entire design space, which would ensure a good es-

timation of the feasible domain.

Finally, AK-ECO has been implemented to be cou-

pled with a local optimization algorithm and thus pro-

vides a local optimum. To obtain a global optimum, it is

possible to perform multistart optimization with AK-

ECO from several initial design points. If one wishes

to couple AK-ECO with a global optimizer, it will be

necessary to adapt the AK-ECO enrichment strategy.

Indeed, the approach proposed in the paper only per-

forms local enrichments of the metamodels in order to

obtain a good approximation of the constraints near the

current design point at each iteration of the local op-

timizer. Using a global optimizer implies that the user

must determine at each iteration where the local en-

richments of the metamodels should be performed (i.e.

where the constraints should be known with accuracy

over the entire design space).

A Appendix of section 1

A.1 Extreme-based failure probability reformulation

error

Bounds can be obtained on the approximation (15) using the
theorem 2.2 of Kratz and Rootzén (1997). We present here
the theorem for a process ξ satisfying the conditions of the-
orem 1 and we show how it can be applied to control the
reformulation error.

A.1.1 Rate of convergence of theorem 1

Theorem 2 (Theorem 2.2 of Kratz and Rootzén (1997))
Let ξ be the process introduced in theorem 1 satisfying con-
dition (9) and the following conditions:

E [(ξ′(t)− ξ′(0))]2 = 2
(
k′′ξ (τ)− k′′ξ (0)

)
≤ cτ2, τ ≥ 0, (65)

|kξ(τ)| ≤ Ct−α, |kξ(τ)|+ k′ξ(τ)2 ≤ C0t
−α, τ ≥ 0, (66)

for some α > 2 and constants c, C, C0. Then there is a
constant K which depends on kξ but not on u or T such
that, for T ≥ T0 > 1,∣∣∣∣∣P
(

max
t∈[0,T ]

ξ(t)
√
mξ,0

≤ u

)
− exp

(
−
√
mξ,2

mξ,0
Tµ(u)

)∣∣∣∣∣
≤ K

log
(√

mξ,2

mξ,0
T
)1+1/α

(√
mξ,2

mξ,0
T
)δ , (67)
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with µ(u) = 1
2π
e−

u2

2 , δ = min{1/2, infτ≥0 ρ(τ)} and ρ(τ) =(
1−

kξ(τ)

mξ,0

)2

1− 1

m2
ξ,0

kξ(τ)2+
1

mξ,0mξ,2
k′
ξ
(τ)|k′ξ(τ)|

.

When the process ξ is known through its spectral density
Kξ, conditions (65) and (66) are met if we have:

mξ,4 <∞, (68)

Kξ ∈ C3,K
(i)
ξ and ωK

(j)
ξ are integrable for i = 0, 1, 2, 3

and j = 0, 1, 2, (69)

with K
(i)
ξ the i-th derivative of Kξ.

Proposition 2 If a process ξ meets all the conditions of the-
orem 2, it follows that for all xr ∈ R:

∣∣∣∣P( max
t∈[0,T ]

ξ(t) ≤ xr
)
− exp

(
−e

a2
T
− aT xr√

mξ,0

)∣∣∣∣
≤ K

log
(

2π T
Tc

)1+1/α

(
2π T

Tc

)δ + exp

(
−
T

Tc
exp
− x2r

2mξ,0

)
. (70)

with aT =

√
2 log

(
T
Tc

)
and Tc = 2π

√
mξ,0

mξ,2
.

Proof (Proof of proposition 2) We have, ∀xr ∈ R:

a2T − aT
xr
√
mξ,0

+
x2r

2mξ,0

≥ min
x′
r
∈R
a2T − aT

x′r√
mξ,0

+
x′r

2

2mξ,0
=
a2T
2
. (71)

Taking the exponential of right- and left-hand sides gives:

exp

(
−e

a2
T
− aT xr√

mξ,0

)
≤ exp

(
−
T

Tc
exp

(
−

x2r
2mξ,0

))
, ∀xr ∈ R.

(72)

It follows from this result and theorem 2 with u = xr√
mξ,0

that:∣∣∣∣P( max
t∈[0,T ]

ξ(t) ≤ xr
)
− exp

(
−e

a2
T
− aT xr√

mξ,0

)∣∣∣∣ (73)

≤
∣∣∣∣P( max

t∈[0,T ]
ξ(t) ≤ xr

)
− exp

(
−
T

Tc
exp

(
−

x2r
2mξ,0

))∣∣∣∣
+

∣∣∣∣exp

(
−e

a2
T
− aT xr√

mξ,0

)
− exp

(
−
T

Tc
exp

(
−

x2r
2mξ,0

))∣∣∣∣
(74)

≤K
log
(

2π T
Tc

)1+1/α

(
2π T

Tc

)δ + exp

(
−
T

Tc
exp

(
−

x2r
2mξ,0

))
(75)

ut

A.1.2 Application of proposition 2 to extreme-based
failure probability approximation

Proposition 3 We denote by frE the probability density func-

tion of XrE and Tc (xd, xp) = 2π

√
mY,0(xd,xp)
mY,2(xd,xp)

. We assume

the following conditions:

(1) ∃K,α, δ such that ∀xd, xp, the process Y (xd, xp; .) satis-
fies the conditions of theorem 2,

(2) ∃T1 > 0, T2 > 0, m1 > 0 such that ∀xd, xp, T1 ≤
Tc (xd, xp) ≤ T2 and m1 ≤ mY,0 (xd, xp),

(3) ∃c1 > 0, cr > 0 such that ∀x, |x| ≥ c1, frE(x) ≤
cr exp

(
− x2

m1

)
.

Then, if
√
m1 log(T ) > c1, the error made in the approxi-

mation (15) can be bounded as follows:

∣∣∣∣∣pE(d)− EXd,Xp,XrE

Fε
eaT (Xd,Xp)

2−
aT (Xd,Xp)XrE√
mY,0(Xd,Xp)

 ∣∣∣∣∣
≤ K

log
(

2π T
T1

)1+1/α

(
2π T

T2

)δ +
T2 + cr

√
πm1√

T
. (76)

Proof (Proof of proposition 3)

∣∣∣∣∣∣pE(d)− EXd,Xp,XrE

Fε
eaT (Xd,Xp)

2−
aT (Xd,Xp)XrE√
mY,0(Xd,Xp)

∣∣∣∣∣∣
≤EXd,Xp,XrE

[∣∣∣∣∣PY
(

max
t∈[0,T ]

Y (Xd, Xp; t) ≤ XrE
)

− exp

−eaT (Xd,Xp)
2−

aT (Xd,Xp)XrE√
mY,0(Xd,Xp)

∣∣∣∣∣
]

≤EXd,Xp,XrE

[∣∣∣∣∣K
log

(
2π T

Tc(Xd,Xp)

)1+1/α

(
2π T

Tc(Xd,Xp)

)δ
+ exp

(
−

T

Tc (Xd, Xp)
exp

(
−

X2
rE

2mY,0 (Xd, Xp)

)) ∣∣∣∣∣
]

≤K
log
(

2π T
T1

)1+1/α

(
2π T

T2

)δ + EXrE

[
exp

(
−
T

T2
exp

(
−
X2
rE

2m1

))]
.

The two last equations are obtained using successively propo-
sition 2 and assumption (2). Denoting αT =

√
m1 log(T ), it
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follows from assumption (3):

EXrE

[
exp

(
−
T

T2
exp

(
−
X2
rE

2m1

))]
(77)

=

∫ αT

−αT
exp

(
−
T

T2
exp

(
−

x2

2m1

))
frE(x)dx (78)

+

∫
R/[−αT ,αT ]

exp

(
−
T

T2
exp

(
−

x2

2m1

))
frE(x)dx (79)

≤ exp

(
−
T

T2
exp

(
−
α2
T

2m1

))
+

∫
R/[−αT ,αT ]

frE(x)dx (80)

≤ exp

(
−
√
T

T2

)
+ cr

∫
R/[−αT ,αT ]

exp

(
−
x2

m1

)
dx (81)

≤
T2√
T

+ cr

(
√
πm1 −

√
πm1

√
1− exp

(
−
α2
T

m1

))
(82)

≤
T2√
T

+ cr
√
πm1

(
1−

√
1−

1

T

)
(83)

≤
T2√
T

+ cr

√
πm1

T
. (84)

Equation (82) is obtained considering I =
∫ αT
0

exp
(
− x2

m1

)
dx,

then I2 can be bounded working in polar coordinates. ut

A.2 Integral-based failure probability reformulation

error

Proposition 4 We denote by frI the probability density func-
tion of XrI and for fixed values xd, xp, ZT (xd, xp) the ran-

dom variable 1
T

∫ T
0
F (xd, xp; t) dt. We assume the following

conditions:

(1) ∃c1 > 0, cr > 0 such that ∀x ≥ c1, frI(x) ≤ cr
x

,

(2) ∃T0, c2 > 0 such that ∀xd, xp and ∀T > T0, ZT (xd, xp) ≥
c2 almost surely,

(3) ∃cF > 0 such that for all xd, xp:

∫
R
|kF (xd, xp; τ)| dτ < cF . (85)

Then, if T > T0 and T > c1
c2

, we have:

∣∣pI(d)− EXd,Xp
[FrI (TEF [F (Xd, Xp; 0)])]

∣∣ ≤ cr

c2

√
2cF

T
.

(86)

Proof (Proof of proposition 4)

∣∣∣pI(d)− EXd,Xp
[FrI (TEF [F (Xd, Xp; 0)])]

∣∣∣ (87)

≤EXd,Xp,Y

[∣∣∣FrI (TZT (Xd, Xp))− FrI (TEF [ZT (Xd, Xp)])
∣∣∣]

(88)

≤EXd,Xp,Y

[∣∣∣TZT (Xd, Xp)− TEF [ZT (Xd, Xp)]
∣∣∣

max

(
cr

(TZT (Xd, Xp)
,

cr

(TEF [ZT (Xd, Xp)]

)]
(89)

≤EXd,Xp,Y

[
T
∣∣∣ZT (Xd, Xp)− EF [ZT (Xd, Xp)]

∣∣∣ cr
c2T

]
≤
cr

c2
EXd,Xp

[√
Var (ZT (Xd, Xp))

]
(90)

≤
cr

c2

√
2cF

T
. (91)

Conditions (1), (2) and T ≥ c1
c2

imply equation (89). In

(90), we apply the Cauchy–Schwarz inequality and equation
(91) follows from:

Var(ZT (xd, xp)) =
1

T 2

∫ T

0

∫ T

0

kF (xd, xp; |t− t′|) dtdt′

≤
2

T

∫ T

0

|kF (xd, xp; τ) |dτ. (92)

ut

A.3 Proof of the sufficient conditions to reformulate

the stationary harmonic oscillator problem

Proof To apply the approximation (15) to the first and sec-
ond constraints of the oscillator problem we need to show
that for all xd, xp and for k = 1, 2, the following conditions
are satisfied:

mD(k),0(xd, xp) <∞,mD(k),2(xd, xp) <∞ (93)

KD(k)(xd, xp, .) ∈ C1,KD(k)(xd, xp, .) and K′D(k)(xd, xp, .)

are integrable. (94)

As we have the relationKD(k) (xd, xp;ω) = ω2kKD (xd, xp;ω)

∀ω, to show (93) and (94), it is sufficient to prove that ωiK
(j)
D

is integrable for the appropriate values of i and j where K
(j)
D

is the j-th derivative of KD. In fact, in our case it is true
for all i and j. Indeed, it follows from relation (22) that
KD (xd, xp; .) is the product of a rational function (with no
real pole) and a Gaussian function. Hence, we can demon-

strate that ∀i ∈ N, ∀j ∈ N, ωiK
(j)
D (xd, xp; .) is integrable.

ut

B Appendix of section 2

B.1 Extreme-based failure probability reformulation

For j = 1, . . . , ns, let us denote Ij =
⋃

i,si=s
j
Ii. Hence, Ij is

the union of nj intervals of length ∆T . For fixed xd, xp, xrE ,
we have:
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PY
(

max
t∈[0,T ]

Y(xd, xp; t) ≤ xrE
)

(95)

= PY

(
max
t∈[0,T ]

nT∑
i=1

Yi (xd, xp, si; t)1Ii(t) ≤ xrE

)
(96)

= PY

(
max
t∈I1

nT∑
i=1

Yi
(
xd, xp, s

1; t
)
1Ii(t) ≤ xrE , . . . ,

max
t∈Ins

nT∑
i=1

Yi (xd, xp, s
ns ; t)1Ii(t) ≤ xrE

)
(97)

=

ns∏
j=1

PY1,...,YnT

(
max
t∈Ij

nT∑
i=1

Yi
(
xd, xp, s

j ; t
)
1Ii(t) ≤ xrE

)
(98)

=

ns∏
j=1

PY1,...,Ynj

(
max

t∈[0,nj∆T ]

nT∑
i=1

Yi
(
xd, xp, s

j ; t
)
1Ii(t) ≤ xrE

)
.

(99)

The independence of Yi (xd, x,si; .) and Yi′ (xd, xp, si′ ; .) for
all i 6= i′ is used to obtain equation (98). The last equation re-
sults from the fact that Yi

(
xd, xp, sj ; .

)
and Yi′

(
xd, xp, sj ; .

)
for i 6= i′ are i.i.d processes.

Finally, when ∆T is large, we consider that each term of
the product appearing in equation (99) can be approached
by PY1

(
maxt∈[0,nj∆T ] Y1

(
xd, xp, sj ; t

)
≤ xrE

)
which leads

to approximation (27) since nj∆T = Tpj .

B.2 Extreme-based failure probability reformulation
error

Proposition 5 We denote frE the probability density func-

tion of XrE and Tc
(
xd, xp, sj

)
= 2π

√
mY,0(xd,xp,sj)
mY,2(xd,xp,sj)

. We

assume the following conditions:

(1) ∃K,α, δ such that ∀xd, xp, sj , the process Y1

(
xd, xp, sj ; .

)
satisfies the conditions of theorem 2,

(2) ∃T1 > 0, T2 > 0, m1 > 0 such that ∀xd, xp, sj , T1 ≤
Tc
(
xd, xp, sj

)
≤ T2 and m1 ≤ mY,0

(
xd, xp, sj

)
,

(3) ∃c1 > 0, cr > 0 such that ∀x, |x| ≥ c1, frE(x) ≤
cr exp

(
− x2

m1

)
.

Then, if
√
m1 log(∆T ) > c1 the error made in equation (28)

can be bounded as follows:∣∣∣∣∣pE(d)−

EXd,Xp,XrE

Fε
 ns∑
j=1

e
aTpj (Xd,Xp,s

j)
2−

a
Tpj (Xd,Xp,s

j)XrE√
mY,0(Xd,Xp,sj)


 ∣∣∣∣∣

≤ ns

nTK log
(

2π∆T
T1

)1+1/α

(
2π∆T

T2

)δ + (nT + 1)
T2 + cr

√
πm1√

∆T

 .

(100)

Proof (Proof of proposition 5) We introduce the following
notations:

Pj(T ) = PY1

(
max
t∈[0,T ]

Y1

(
xd, xp, s

j ; t
)
≤ xrE

)
, (101)

Ej(T ) = exp

−eaT (xd,xp,sj)
2−

aT (xd,xp,sj)xrE√
mY,0(xd,xp,sj)

 , (102)

E−(T ) = min
j=1,...,ns

Ej(T ) , E+(T ) = max
j=1,...,ns

Ej(T ), (103)

p− = min
j=1,...,ns

pj , p+ = max
j=1,...,ns

pj . (104)

For fixed values of xd, xp, xrE , we have ∀j ∈ {1, . . . , ns}:

∣∣∣Pj (∆T )n
j

− Ej
(
Tpj

)∣∣∣
≤
∣∣∣Pj (∆T )n

j

− Ej (∆T )n
j
∣∣∣+

∣∣∣Ej (∆T )n
j

− Ej
(
Tpj

)∣∣∣ .
(105)

Besides, using Pj(∆T ) ∈ [0, 1], Ej(∆T ) ∈ [0, 1], proposition
2 and assumption (2), we obtain:

∣∣∣Pj (∆T )n
j

− Ej (∆T )n
j
∣∣∣ ≤ nj |Pj (∆T )− Ej (∆T )|

≤ nT

K log
(

2π∆T
T1

)1+1/α

(
2π∆T

T2

)δ + exp

(
−
∆T

T2
exp

(
−
x2rE
2m1

)) .

(106)

Since Ej(T ) is a decreasing function with respect to T
and that its images are in [0, 1], we have for nj > 0:

−E+

(
Tp−

)
≤ Ej (∆T )n

j

− Ej
(
Tpj

)
≤ E+ (∆T ) . (107)

It follows, with Tp− > 1 (i.e. if nj > 0, ∀j) and applying the
preliminary result of proof A.1.1:

∣∣∣Ej (∆T )n
j

− Ej
(
Tpj

)∣∣∣ ≤ E+(∆T )

≤ exp

(
−
∆T

T2
exp

(
−
x2rE
2m1

))
. (108)
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We therefore can use equations (106) and (108) to bound the
approximation error:

∣∣∣∣∣pE(d)− EXd,Xp,XrE

[

Fε

 ns∑
j=1

e
aTpj (Xd,Xp,s

j)
2−

a
Tpj (Xd,Xp,s

j)XrE√
mY,0(Xd,Xp,sj)

]∣∣∣∣∣
=

∣∣∣∣∣EXd,Xp,XrE

1−
ns∏
j=1

Pj (∆T )n
j


− EXd,Xp,XrE

1−
ns∏
j=1

Ej
(
Tpj

) ∣∣∣∣∣
(109)

≤EXd,Xp,XrE

∣∣∣∣∣∣
ns∏
j=1

Pj (∆T )n
j

−
ns∏
j=1

Ej
(
Tpj

)∣∣∣∣∣∣
 (110)

≤nsEXd,Xp,XrE

[
nTK

log
(

2π∆T
T1

)1+1/α

(
2π∆T

T2

)δ
+ (nT + 1) exp

(
−
∆T

T2
exp

(
−
X2
rE

2m1

))]
(111)

≤ns

nTK log
(

2π∆T
T1

)1+1/α

(
2π∆T

T2

)δ + (nT + 1)
T2 + cr

√
πm1√

∆T


(112)

In equation (109), we use the following equalities:

pE(d) = EXd,Xp,XrE

[
1−

ns∏
j=1

PY1,...,Ynj

(

max
t∈[0,nj∆T ]

nT∑
i=1

Yi
(
xd, xp, s

j ; t
)
1Ii(t) ≤ xrE

)]
(113)

=EXd,Xp,XrE

[
1−

ns∏
j=1

PY1

(
max

t∈[0,∆T ]
Y1

(
xd, xp, s

j ; t
)
≤ xrE

)nj ]
. (114)

Equation (110) holds since, for ai, bi ∈ [0, 1], n ∈ N∗, if
|ai − bi| < c, i = 1, . . . , n then

∣∣∏n
i ai −

∏n
i bi

∣∣ < nc. Fi-

nally, in equation (112), EXrE

[
exp

(
−∆T
T2

exp

(
−
X2
rE

2m1

))]
is bounded applying the reasoning of proof A.1.2. ut

B.3 Proof proposition 1

Proof (Proof of proposition 1) For fixed values xd, xp and x,
we have:

PY

(
1

∆T

∫ T

0

f

(
nT∑
i=1

Yi (xd, xp, si; t)1Ii(t)

)
dt > x

)

= PY

(
1

∆T

nT∑
i=1

∫
Ii

f (Yi (xd, xp, si; t)) dt > x

)
(115)

= PY

(
nT∑
i=1

1

∆T

∫ ∆T

0

f (Yi (xd, xp, si; t)) dt > x

)
. (116)

The last equality is obtained using the stationarity of the
processes f (Yi (xd, xp, si; .)) and the independence between
f (Yi (xd, xp, si; .)) and f (Yj (xd, xp, si′ ; .)) for i 6= i′. Let

Ui,∆T be the random variable 1
∆T

∫∆T
0

f (Yi (xd, xp, si; t)) dt.

It follows from the assumption that f
(
Y1

(
xd, xp, sj ; .

))
is er-

godic for all sj that:

Ui,∆T
P−→

∆→+∞
ui, (117)

with ui = EYi [f (Yi (xd, xp, si; 0))]. Using the independence
of Ui,∆T and Ui′,∆T for i 6= i′, we deduce that:

nT∑
i=1

Ui,∆T
P−→

∆T→+∞

nT∑
i=1

ui. (118)

Therefore, we have the convergence in distribution:

PY

(
nT∑
i=1

1

∆T

∫ ∆T

0

f (Yi (xd, xp, si; t)) dt > x

)
−→

∆→+∞
1∑nT

i=1 EYi [f(Yi(xd,xp,si;0))]>x, (119)

for all x 6=
∑nT
i=1 EYi [f (Yi (xd, xp, si; 0))], with

nT∑
i=1

EYi [f (Yi (xd, xp, si; 0))]

=

ns∑
j=1

njEY1

[
f
(
Y1

(
xd, xp, s

j ; 0
))]

. (120)

ut

B.4 Integral-based failure probability reformulation

error

Proposition 6 We denote frI the probability density func-
tion of XrI and for fixed values xd, xp:

Z∆T (xd, xp) =
1

∆T

∫ T

0

f (Y (xd, xp; t)) dt (121)

=
1

∆T

nT∑
i=1

∫
Ii

f (Yi (xd, xp, si; t)) dt, (122)

with kF1
(xd, xp, si; .) the autocovariance function of the pro-

cess F1 (xd, xp, si; .). We assume that the following assump-
tions are valid:

(1) ∃c1 > 0, cr > 0 such that ∀x ≥ c1, frI(x) ≤ cr
x

,
(2) ∃∆T0, ∃c2 > 0 such that ∀xd, xp and ∆T > ∆T0,

Z∆T (xd, xp) ≥ c2 almost surely,
(3) for each state sj , ∃cF,sj > 0 such that for all xd, xp:∫

R

∣∣kF1

(
xd, xp, s

j ; τ
)∣∣ dτ < cF,sj . (123)
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Then, if ∆T > T0 and ∆T ≥ c1
c2

, the approximation error

made in equation (31) can be bounded as follows:

∣∣∣∣∣∣pI(d)− EXd,Xp

FrI
T ns∑

j=1

pjEF1

[
F1

(
Xd, Xp, s

j ; 0
)]∣∣∣∣∣∣

≤
cr

c2

√√√√2nT

∆T

ns∑
j1

pjcF,sj . (124)

Proof [Proof of proposition 6]

We denote in this proof, for fixed values xd, xp:

Ai =

∫
Ii

f (Yi (xd, xp, si; t)) dt, (125)

Fi (si; t) = f (Yi (xd, xp, si; t)) , (126)

and

kFi,Fj (si, sj ; t, t
′) = EFi,Fj [Fi (si; t)Fj (sj ; t

′)]

− EFi [Fi (si; t)]EFj [Fj (sj ; t
′)] . (127)

We calculate EY [Ai] ,EY [AiAj ], and VarY (Z∆T (xd, xp))
which are used further down in the proof. For the first quan-
tity, we use Fubini’s theorem to obtain:

EY [Ai] = ∆TEFi [Fi (si; 0)] . (128)

Besides,

EY [AiAj ]

=EY

[∫
Ii

∫
Ij

Fi (si; t)Fj (sj ; t
′) dtdt′

]
(129)

=

∫
Ii

∫
Ij

(
kFi,Fj (si, sj , t, t

′)

+ EFi [Fi (si; t)]EFj [Fj (sj ; t
′)]

)
dtdt′. (130)

– if i 6= j: by independence of Fi (si; .) and Fj (sj ; .) we
have kFi,Fj (si, sj ; t, t′) = 0 and it follows that EY [AiAj ]
= EY [Ai]EY [Aj ],

– if i = j: we use the stationarity of Fi (si, .) to obtain the
following equalities:

EY
[
A2
i

]
=

∫
Ii

∫
Ii

(
kFi,Fi(si, si, t, t

′) + EFi [Fi (si; t)]
2
)
dtdt′

(131)

=

∫
Ii

∫
Ii

kFi(si, |t− t
′|)dtdt′ +∆T 2EFi [Fi (si; 0)]2

(132)

Let us calculate VarY (Z∆T (xd, xp)):

VarY (Z∆T (xd, xp))

= EY
[
Z∆T (xd, xp)2

]
− EY [Z∆T (xd, xp)]2 (133)

=
1

∆T 2

(
nT∑
i=1

EY
[
A2
i

]
+ 2

∑
i<j

EY [AiAj ]

−
nT∑
i=1

EY [Ai]
2 − 2

∑
i<j

EY [Ai]EY [Aj ]

)
(134)

=
1

∆T 2

(
nT∑
i=1

∫
Ii

∫
Ii

kFi(si, |t− t
′|)dtdt′

)
(135)

≤
2

∆T

nT∑
i=1

∫ ∆T

0

|kFi (si; τ)| dτ. (136)

To bound the approximation error made in equation (31),
the reasoning used in proof A.2 in the stationary case is ap-
plied here: assumptions (1), (2) and ∆T > c1

c2
imply the sec-

ond inequality while the Cauchy-Schwarz inequality is used
to obtain the third inequality:∣∣∣∣∣∣pI(d)− EXd,Xp

FrI
T ns∑

j=1

pjEF1

[
F1

(
Xd, Xp, s

j ; 0
)]∣∣∣∣∣∣
(137)

≤EXd,Xp,Y

[∣∣∣∣∣FXrI
(∆TZ∆T (Xd, Xp))

− FXrI
(∆TEY [Z∆T (Xd, Xp)])

∣∣∣∣∣
]

(138)

≤
cr

c2
EXd,Xp,Y

[∣∣∣Z∆T (Xd, Xp)− EY [Z∆T (xd, xp)]
∣∣∣] (139)

≤
cr

c2
EXd,Xp

[√
VarY (Z∆T (Xd, Xp))

]
(140)

≤
cr

c2

√√√√2nT

∆T

ns∑
j=1

pjcF,sj . (141)

ut

B.5 Computation of the quantity involved in the
integral-based constraint of the oscillator problem

We recall that the random variable D(2)
1

(
xd, xp, sj ; 0

)
follows

a normal distribution with zero-mean and standard deviation
σD(2)

(
xd, xp, sj

)
. We denote the latter σ in the following cal-

culations. Thus, we have for the oscillator problem:

EF1

[
F1

(
xd, xp, s

j ; 0
)]

= E
[(∣∣∣D(2)

1

(
xd, xp, s

j ; 0
)∣∣∣− ρ)+]

=

∫
R

(|y| − ρ)+
1

σ
√

2π
exp

(
−
y2

2σ2

)
dy. (142)

The integral in the last equation is decomposed into integrals
over (−∞,−ρ] and [ρ,+∞) and the calculations lead to:

EF1

[
F1

(
xd, xp, s

j ; 0
)]

=

√
2

π
σ exp

(
−
ρ2

2σ2

)
+ 2ρ

(
Φ

(
ρ

σ

)
− 1

)
, (143)

with Φ the cumulative distribution function of the standard
normal distribution.
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