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Abstract 

Worldwide sales of battery electric vehicles (BEVs) have been steadily increasing for several years 
and now account for several million vehicles, resulting in a high use of lithium-ion batteries (LIBs). It 
is then required to assess the real environmental impact of these LIBs and to avoid environmental 
impacts’ transfers. Life cycle assessment (LCA) 
methodology seems the most appropriate framework 
as it is a multi-stages and environmental multi-criteria 
ISO methodology. However, many studies exist on this 
subject and it appeared that no consensus is emerging 
on a common environmental value of LIB’s production 
and that the perimeters of the studies differ a lot. To fill 
this gap and to properly assess the environmental 
consequences of a massive electrification deployment, 
this study performs a qualitative and a quantitative 
review of more than 500 LCA studies referring to LIBs’ 
production for BEVs. 377 Observations for seven 
selected variables among more than 80 surveyed 
variables are presented and meta-analysis (MA) methodology is used to compare the final 32 
selected studies having not the same perimeter. After many statistical tests and 8 finalists selected, 
we find that the global warming potential (GWP) impact of mobile LIBs’ production can be explained 
by a reduced parametrized model containing four information: the geographical location of the 
corresponding author, the cell design of the battery, the battery specific energy, and the 
manufacturing energy. This allows a generic and systematic approach to assess GWP impacts of LIBs 
production. We also propose recommendations for LCA practitioners to harmonize LIBs’ 
environmental assessments and save time for further analysis. 

Highlights 

 A qualitative and quantitative meta-analysis review across more than 500 life cycle 
assessment studies from 3 search engines on automotive Lithium-ion batteries (LIBs). 

 32 selected studies and 377 observations assessed throughout 7 selected characteristics, 
equivalent to 21 variables. 

 Very high disparity and variability for LIBs’ Global Warming Potential (GWP) results. 
 A reduced model with only 4 explanatory characteristics: geographical affiliation of the 

corresponding author, cell design, battery specific energy, and manufacturing energy, can 
assess GWP for mobile LIBs. 
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1. Introduction 

By the end of 2019, the global personal vehicle fleet comprises 7.2 million of electrified vehicles, 
battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), representing about 1% of 
the light duty vehicle (LDV) fleet worldwide (International Energy Agency, 2020). Most of countries set 
ambitious targets for a massive electrification development supported by subsidies called production’s 
subsidy in the United States (US) for example, autonomy’s subsidy in China, bonus purchase in Europe, 
etc. These different directives result into legislative incentives for vehicles with limited tailpipe 
emissions, or rather like constraints on vehicles running with fossil fuels for instance. European 
Commission even edited a press release dealing with the sustainability of batteries production in 
accordance with the European Green Deal (European Commission, 2020) as a 14 fold increase of the 
global demand for batteries is projected by 2030. This popularity for BEVs led battery manufacturers 
to develop and increase their offer, both in terms of battery types: lithium-ion batteries (LIBs), nickel 
metal hydrate batteries (NiMH), lithium metal polymer (LMP), etc.; and also, in terms of battery 
performances: autonomy range, charging time, and weight. Thus, a plethora of mobile application 
batteries flooded the markets and environmental questions about the battery carbon footprint have 
been raised. Though the use of the BEVs improves urban air quality by eliminating tailpipe emissions, 
numerous studies highlighted that environmental performances of BEVs depend on the battery 
production process and its related end-of-life. The electricity mix used for charging the battery remains 
of course at stake regarding the environmental performances of BEVs (Bouter et al., 2020). This raises 
the question of the environmental footprint of BEV themselves. Today many studies deal with the 
potential environmental impacts of batteries (Almeida et al., 2019; Dunn et al., 2015; Ellingsen et al., 
2015; Peters et al., 2017; Zubi et al., 2018). Though these studies mainly use the standardized 
methodology of life cycle assessment (LCA) based on ISO norms (14040:2006, 2006; 14044:2006, 2006) 
to quantify the potential environmental impacts of the studied batteries, the definition of a value range 
for greenhouse gas (GHG) emissions of mobile application batteries remains an arduous task. The 
literature related to environmental topics is vast and grows especially quickly when it deals with LCA. 
Despite the ISO norms, the environmental assessment of one identical product can lead to several 
publications resulting in different results (Brandão et al., 2012). LCA results can then differ significantly 
from one study to another and exhibit a high range of uncertainties. This has been shown by some 
reviewing attempts, either already quite old (Hawkins et al., 2012) given the technological advances 
and changes in mobile LIBs technologies, or essentially dealing with literature review (Aichberger and 
Jungmeier, 2020; Peters et al., 2017) and not providing original inventory data. The present work is 
thus motivated by tackling these two issues: i) to conduct a literature review on an as exhaustive as 
possible up–to-date bibliographic corpus dealing with potential environmental impacts of mobile LIBs; 
ii) to attempt to synthetize this literature review into a common perimeter, both in terms of technology 
and LCA methodology related choices.  

To perform the second objective, meta-analysis (MA) methodology (Field and Gillett, 2010) is chosen 
as it allows to quantify the environmental potential impacts of one single technology based on a 
common chosen perimeter, as well as to be able to compare existing studies in a statistical sense. MA 
methodology can also be used to assess predictive potential environmental impacts of the studied 



 

 

technology for a same common perimeter. The technology studied in this work is LIB for automotive 
application. The environmental impact assessed is the global warming potential (GWP) indicator 
expressed in kilograms of CO2 equivalent per kWh of battery energy capacity. GWP provides the 
comparison basis between all the relevant studies selected after the literature review process. The 
second objective of MA is sub-divided into two parts. The first one aiming at identifying the variables 
that seem to influence the most the GWP result. The second one attempts to quantify the identified 
variables in a more statistical sense, allowing us to produce an innovative parameterized model using 
a limited number of common identified variables and aiming at predicting the potential GWP impacts 
for hypothetical LIBs’ production and facilitating LCAs for this product as well as providing 
recommendations for future LCAs studies. 

This article is structured into 4 parts. The first one presents the methodology and the step-by-step 
construction of a reliable database to fulfill key assumptions and parameters of the selected studies. 
The second part describes the information contained in the database to identify the explanatory 
variables that will be retained for the statistical study presented in the third part. The last part deals 
about the statistical results from an LCA perspective and the regulatory developments. 

 

2. Methods 

2.1. Literature search methodological framework 

The literature search has been conducted in a systematic way to be exhaustive to identify all available 
studies of the English-language literature devoted to LCA methodology, applied to on-board vehicles’ 
LIBs’ production focusing on personal BEVs. GWP indicator is chosen as the most robust and 
consensual environmental indicator recommended in UNEP SETAC LCI, 2018. Furthermore and based 
on Dolan and Heath, 2012; Menten et al., 2013; Whitaker et al., 2012, the characterization method for 
GWP has an insignificant influence on LCA results. Thus, no harmonization has been performed 
between the accounted observations. Also, GWP show very low uncertainties in comparison to all 
other impact categories (Chen et al., 2021). 

 The timeframe ranges from 2015 to 2019. Elder studies identified as references given their number of 
citations in recent studies have been handily added: Dunn et al., 2012; Ellingsen et al., 2014; Li et al., 
2014; Majeau-Bettez et al., 2011; Notter et al., 2010; U.S. EPA, 2013; Zackrisson et al., 2010. The search 
has been performed with Scopus, Web of Science, and Springer browsers which cover a large 
perimeter of scientific publications. Some other search engines could have been used instead the three 
above mentioned but we are confident in the complementarity of the three browsers used based on 
experts’ discussions. The research strategy is iterative and is based on the combination of keywords 
and logical operators as detailed in Table 1. Regarding the Scopus results, a first broad research LCA 
oriented and focusing on LIB provided 368 results. The same search has been executed with Web of 
Science (108 articles) and Springer (88 articles) (Table 1). 

To ensure the homogeneity of the bibliographic corpus and to meet the MA requirements, (i) only 
primary results are included and literature reviews are excluded: Ellingsen et al., 2017; Marmiroli et 
al., 2018; Meshram et al., 2020; Nordelöf et al., 2019. Nevertheless, a reference cross checking is 
realized for literature reviews to take into consideration the potential missing entries of their 
bibliographic references. (ii) Studies shall follow LCA methodology according to ISO norms 14040-44 



 

 

(14040:2006, 2006; 14044:2006, 2006). (iii) Stationary batteries are excluded, and only “conventional” 
technologies are considered: no solid state for example nor prospective batteries’ technologies. 
(iv) The common quantitative variable GWP expressed in kg CO2 eq./kWh of battery energy capacity 
must be reported, either from the study, or easily calculable based on the hypothesis provided in the 
material and method description of the related publication. Some calculations have been necessary to 
convert the observation in a standard measure. For example, the functional unit (FU)† chosen in the 
LCA studies can differ, and thus results must be converted into the common unit chosen: 1 kWh of 
battery energy capacity for this analysis. This leads to a final database of 44 useable publications giving 
rise to 441 observations, where one publication can contain one or several observations depending on 
the study and the sensitivity analyses conducted. 

Table 1: Research strategy applied, and search engines used for the literature review 

Search engine Search strategy Search results 

Scopus 

(( TITLE-ABS-KEY (lca OR "life cycle analysis" OR "life-cycle analysis"  OR 
"life-cycle-analysis") OR TITLE-ABS-KEY ("life cycle assessment" OR "life-

cycle assessment" OR "life-cycle-assessment" OR "life cycle impact 
assessment" OR "environmental assessment" OR "environmental 

impact") OR TITLE-ABS-KEY ((carbon PRE/2 footprint))) AND PUBYEAR > 
2014) AND (((TITLE-ABS-KEY ((battery OR batteries)) AND TITLE-ABS-KEY 
(((lithium OR li) W/1 ion) OR "li-ion" OR "li ion" OR "li/ion" OR "lithium-

ion" OR "lithium ion" OR "lithium/ion")) AND PUBYEAR > 2014) OR 
(TITLE-ABS-KEY ((battery OR batteries) W/5 (libs OR lib OR lithium)) AND 

PUBYEAR > 2014)) 

368 results 

Web of Science 

TOPIC: (electric* NEAR/1 (vehicle$ or car$ or automo*)) 
AND TOPIC: ((lca or "life cycle analysis" or "life-cycle analysis" or "life-

cycle-analysis")) OR TOPIC: (("life cycle assessment" or "life-cycle 
assessment" or "life-cycle-assessment" or "life cycle impact 

assessment")) OR TOPIC: ((environmental NEAR/1 (assessment or 
impact))) OR TOPIC: ((carbon NEAR/2 footprint)) AND (TOPIC: ((battery 
or batteries) NEAR/5 (libs or lib)) OR TOPIC: ((battery or batteries)) AND 

TOPIC: ((lithium NEAR/1 ion) or "li-ion" or "li ion") 
Indexes=SCI-EXPANDED, CPCI-S, CPCI-SSH, CCR-EXPANDED, IC 

Timespan=2015-2019) 

108 results 

Springer 
“lithium-ion” AND "life cycle analysis" AND (battery OR batteries)' 

PY>=2015 
88 results 

 

2.2. Database building 

Several characteristics must be fulfilled to get a rapid scan of the several literature entries. Basically, 
they fall into three characterization categories: “Typology of the study”, “Technical data”, and 
“Methodological choices” as described in Table 2. 21 characteristics are gathered and compose the 
database. They are themselves divided into sub-characteristics later named variables as described in 
Table 3.  

 
† A FU quantifies the performance of a product system intended to be used as a reference unit in a 



 

 

Table 2: The 21 characteristics of the three characterization categories 

Typology of the study Technical data Methodological choices 
Type of study Cathode chemistry Type of LCA approach 

Year of publication Anode type Battery application 
Geographical location of 

corresponding author 
Electrolyte System boundaries 

 

Solvent 
Method for considering 

uncertainties 

Separator 
Number and type of 

environmental indicator assessed 
in the study 

Cell design 

 

Battery lifetime 
Battery technical performance 

Battery size 
Process technical data 

Quantity of manufacturing energy 
Quality of electricity mix used 

End-of-life treatment 
 

The fulfillment of the database enables us to explain the differences regarding the results for the 
common variable: impact on climate change per kWh of battery capacity, based on the investigated 
variables (Table 3). Not all variables are described as only exploitable results are further presented. 

The first cut-off applied among all the variables depends on the number of their related observations. 
It is set up at 250 observations. This leads to the removal of: the number of cells per module (41 
observations), the number of cells per battery pack (45 observations), the weight of one cell (50 
observations), the battery lifetime expressed in years (51 observations), the charge/discharge 
efficiency (52 observations), the mass of the cathode and anode (54 observations), the energy capacity 
of one cell (54 observations), the number of modules per battery pack (67 observations), the battery 
specific power (76 observations), the depth of discharge (84 observations), the number of cycles (90 
observations), the state of charge (98 observations), the details regarding the mass composition of the 
separator (113 observations), the details regarding the nature of the electrolyte (166 observations), 
the weight of battery pack (191 observations) and the battery nominal capacity (205 observations). 

Studies and observations focusing on plug-in hybrid vehicles (PHEVs) have been removed (Cusenza et 
al., 2019a; Cusenza et al., 2019b; Hendrickson et al., 2015; Oliveira et al., 2015; Philippot et al., 2019a; 
Zackrisson et al., 2010). 

Table 3 presents the remaining selected variables after the cut-off processes to depict the observations 
identified in the publications’ database. 



 

 

Table 3: Remaining variables (in italic) based on Table 2, after the cut-off process  

Typology of the study Technical data Methodological choices 

Type of study 

Peer-
reviewed Cathode 

chemistry 

NMC‡ 
System 

boundaries 

Cradle to 
Gate NCA§ 

Non-peer-
reviewed 

LFP** Cradle to 
Grave LMO†† 

Year of publication Cell design 
Cylindrical 

 

Prismatic 
Pouch 

Geographical 
location of 

corresponding 
author 

Europe 

Battery specific energy China 

North America 

 

Quantity of manufacturing energy 

Quality of 
electricity mix 

used 

Europe 
China 
USA 

Other/Several/Not 
defined locations‡‡ 

 

Based on the selected variables from Table 3,Table 4 presents the 32 selected studies representing 377 
observations after the several cut-off selections. 

Table 4: The selected studies after cut-off iterations’ processes 

Study 
Number of 

observations 
Year of publication 

Geographical location of 
the authors 

Ambrose and Kendall, 2016 5 2016 North America 
Berg and Zackrisson, 2019 2 2019 Europe 
Burchart-Korol et al., 2018 1 2018 Europe 

Ciez and Whitacre, 2019 216 2019 North America 
Cox et al., 2020 4 2020 Europe 
Dai et al., 2019 1 2019 North America 

Deng et al., 2017a 4 2017 China 
Deng et al., 2017b 2 2017 China 

Deng et al., 2019 4 2019 China 
Dunn et al., 2012 4 2012 North America 

Ellingsen et al., 2014 3 2014 Europe 
Erik Emilsson, 2019 6 2019 Europe 

Hao et al., 2017 3 2017 China 
Jiang et al., 2020 2 2020 China 

Kallitsis et al., 2020 5 2020 Europe 
Kelly et al., 2019 7 2019 North America 

 
‡ Lithium nickel-cobalt-manganese oxide (NMC = LiNixCoyMnzO2) 
§ Lithium nickel-cobalt-aluminum oxide (NCA = LiNiCoAlO2) 
** Lithium iron phosphate (LFP = LiFePO4) 
†† Lithium manganese oxide (LMO = LiMn2O4) 
‡‡ Other location refers to Japan , Korea Jiang et al. (2020); Kelly et al. (2019); Philippot et al. (2019a) and 
Norway Cusenza et al. (2019a); Erik Emilsson (2019); Philippot et al. (2019b) Several locations refer to 
observations for which cell manufacturing takes place elsewhere than the battery cell assembly for example 
Cox et al. (2020); Dunn et al. (2012); Ellingsen et al. (2014); Erik Emilsson (2019); Tagliaferri et al. (2016); U.S. 
EPA (2013). 



 

 

Li et al., 2014 2 2014 North America 
Majeau-Bettez et al., 2011 20 2011 Europe 

Marques et al., 2019 8 2019 Europe 
Notter et al., 2010 1 2010 Europe 

Peters and Weil, 2018 7 2018 Europe 
Philippot et al., 2019a 1 2019 Europe 
Philippot et al., 2019b 10 2019 Europe 

Sanfélix et al., 2016 1 2016 Europe 
Sanfélix et al., 2015 4 2015 Europe 

Tagliaferri et al., 2016 2 2016 Europe 
U.S. EPA, 2013 6 2013 North America 

Wang et al., 2018 1 2018 China 
Wang et al., 2019 2 2019 North America 

Wu and Kong, 2018 9 2018 China 
Xiong et al., 2019 2 2019 China 

Zhao and You, 2019 32 2019 North America 
 

2.3. Meta-analysis methodology 

Meta-analysis (MA) is a quantitative research methodology aiming to compare in a statistical way the 
results of several individual quantitative studies with common characteristics (Brandão et al., 2012; 
Lipsey and Wilson, 2001). Each result from the individual studies can be grouped into a database and 
defined according to differentiating characteristics which represent their potential explicative 
variables (Menten et al., 2013). In a MA framework, the observations are a function of these explicative 
variables. MA enables to statistically identify and quantify the effect of the most influent 
characteristics. Besides, a MA allows to produce an estimation of the mean results weighted by the 
systematic influence of its main drivers. Once statistically estimated, the meta-function can be used to 
deduce original values of the results by specifying new values for the main drivers identified. 

 

3. Literature review results: datasets observation and discussion 

The variables related to the type of the study, depicted as peer-reviewed or not, are discarded from 
the sample as 355 observations over the 377 are sourced from peer-reviewed publications.  

The variable “year of publication” is also removed from the analysis as a vast majority of the studies 
are dated from 2019 with 290 related observations. 

Section 3 presents the main observations obtained from the sample of the remaining selected 
characteristics of Table 3. 

3.1. Observation per geographical location of corresponding authors 

Figure 1(a) depicts the results according to the three geographical locations of corresponding authors 
retained as variables. Of a total of 377 observations, 274 observations are associated with an American 
corresponding author, 75 with a European one, and 28 with a Chinese one. 

The decomposition of the GHG emissions factor distribution reveals some clear differences depending 
on the geographical location of the corresponding author. The median assessment of the GHG 
emissions factor within the studies with a corresponding author from the US is 45.9 kg CO2 eq./kWh. It 
is 157.9 kg CO2 eq./kWh with a corresponding author from Europe, and 156.9 kg CO2 eq./kWh with a 



 

 

corresponding author from China. GHG emissions for LIBs production published by American 
corresponding authors exhibit lower values and are less scattered than those published by either 
European or Chinese authors. This is difficult to explain as the fourth cathodes’ chemistries are 
represented. 

 
(a) (b) 

Figure 1: (a) Dispersion of LCA GHG emissions results by geographical location of corresponding author; The 
solid green line represents the median of the overall sample; the pink and blue lines represent the quartile and 

third quartile of the overall sample respectively ; (b) according to the cathode chemistry 
 

Figure 1(b) describes the results from two characteristics’ perspectives: the geographical location of 
the corresponding author and the cathode chemistry. It is noticeable that NCA cathode chemistry 
seems to be a North American subject of study, as well as the LFP chemistry. American studies are 
more occurring through this literature review with 274 observations versus European ones (75 
observations). GHG emissions results obtained by North American corresponding authors seem to be 
systematically lower than those coming from a European study for an equivalent cathode chemistry: 
NMC, LMO, and LFP. No explanation emerged at this stage as the fourth batteries’ chemistries are 
represented but it is noticeable that the curve’s shape, in green on Figure 1(b), is similar and with few 
variabilities among the four cathodes’ type. 

It is also noticeable and surprising that very few Asian authors appear in the literature review whereas 
they are well represented on the electric vehicles’ market (Tsiropoulos et al., 2018). 

3.2. Observation per cathode chemistry 

Figure 2 presents the LCA GHG emissions results depending on the cathode chemistry. The number of 
observations by cathode chemistry is presented below the cathode chemistry in brackets. The green 
line represents the median value among all the 377 observations, the pink one corresponds to the first 



 

 

quartile, and the blue one to the third quartile. Results are represented with box plots diagrams with 
whiskers with maximum 1.5 interquartile range§§. All other observed points are plotted as outliers. 

Results range from 15.0 kg CO2 eq./kWh for LMO cathode chemistry (Sanfélix et al., 2015) to 
487.0 kg CO2 eq./kWh for NMC cathode chemistry (Ellingsen et al., 2014). It highlights the high 
disparity among LIB’s GHG emissions’ results and the difficulty for politics and norms to rule on a 
default value for LIBs’ production. The median value among all the 377 publications is 
59.2 kg CO2 eq./kWh, where the median for NMC observations is 72.5 kg CO2 eq./kWh, 
73.5 kg CO2 eq./kWh for LFP, and 74.1 kg CO2 eq./kWh for LMO cathode chemistries. This is the median 
value for NCA cathode chemistry which is significantly lower than the other median values at 
41.7 kg CO2 eq./kWh which lowered the global median value. However, NCA chemistry for mobile LIB’s 
use is a specific market for automotive industry and the NCA results represent especially one industrial. 

 

 

Figure 2: Dispersion of LCA GHG emission results for the different types of LIB cathodes (32 studies, 377 
observations); The solid green line represents the median of the overall sample; the pink and blue lines 

represent the quartile and third quartile of the overall sample respectively. 

3.3.  Observation per cell design 

Besides cathode chemistry, cell design seems to be another differentiating characteristic. The prismatic 
and cylindrical designs represent the inner cell structure where the pouch design combines both the 

 
§§ Interquartile range is the distance between the upper and lower quartiles. 



 

 

prismatic inner cell structure and the shape of the LIB. Pouch design has several advantages in terms 
of energy and packing densities as well as of manufacturing costs (Dufner et al., 2020) and is over-
represented as depicted on Figure 3. Pouch design also allows an easy access to cells during the 
battery’s life for maintenance and reparability as well during the battery’s dismantling at the end-of-
life stage. 

The decomposition of the distribution of the GHG emissions factor reveals some clear differences 
depending on the cell design. The median assessment of the GHG emissions factor within the studies 
with a pouch cell design (227 observations) is 52.5 kg CO2 eq./kWh. It results in 51.7 kg CO2 eq./kWh 
for cylindrical cell design (111 observations), and 114.4 kg CO2 eq./kWh for prismatic cell design (38 
observations). 

 

Figure 3: Dispersion of LCA GHG emission results per cell design’s batteries; The solid green line represents the 
median of the overall sample; the pink and blue lines represent the quartile and third quartile of the overall 

sample respectively 

The sample for prismatic cell’s design contains few observations with high variability and it is 
noticeable that their production emits around twice more GHG than the cylindric and the pouch cell 
design. 



 

 

3.4.  Observation per battery specific energy 

Figure 4 displays the ratio of GHG emissions to the battery specific energy in Wh*** as a function of a 
battery specific energy (Wh per kg) for the different cathode chemistries. The distribution of the 
number of observations according to the cathode chemistry is given both for battery specific energy (in 
Wh/kg) on the horizontal axis and for GHG emissions (in kg CO2 eq./kWh) on the vertical axis.   

LFP cathode chemistry seems to be associated with a low battery specific energy (less than about 100 
Wh/kg) and low GHG emissions. The NCA cathode chemistry exhibits a high specific energy with very 
low associated GHG emissions. As for the NMC cathode chemistry, the specific energy values are more 
dispersed, even if the majority of GHG emissions remains low. Finally, the LMO cathode chemistry, 
which is the less represented chemistry, is associated with both low specific energy and low GHG 
emissions. 

 

Figure 4: Dispersion of LCA GHG emissions results according to the battery specific energy, for the different 
cathode’s chemistries. Bars (right) represent the number of observations per range of GHG emissions values, 

and bars (top) represent the number of observations per range of specific energy values  

It is noticeable that higher specific energies (> 150 Wh/kg) are only encountered for batteries with 
NCA and NMC cathode chemistries. 

 
*** 1 Wh = 3600 Joules 



 

 

3.5.  Observation per energy needed for battery manufacturing 

The observations according to the cathode chemistry are plotted as a function of the energy needed 
to produce the battery, also called manufacturing energy. The distribution of the observations is given 
for both GHG emissions in kg CO2 eq./kWh on the right vertical axis, and for the manufacturing energy 
on the top horizontal axis expressed in kWh per kg of battery pack.  

Some values for the manufacturing energy are very low: near 0 kWh/kg, and some other very high: 
above 100 kWh/kg. Based on Yuan et al., 2017 and our literature review experience, we decided to 
consider LIB manufacturing energy values accurate enough if they are ranging from 10 kWh/kg to 70 
kWh/kg, as presented in Figure 5. 

The manufacturing energy values for NMC cathode chemistry covers the entire range. The dispersion 
is less marked for LFP cathode chemistry as the maximum manufacturing energy value stands around 
38 kWh/kg. Few observations are made for LMO cathode chemistry. Values range for NCA cathode 
chemistry are grouped between 25 kWh/kg and 45 kWh/kg, corresponding to low GHG emissions. A 
group of observations for LFP cathode chemistry is also noticeable a little bit above the NCA 
observations regarding GHG emissions. 



 

 

 

Figure 5: Dispersion of LCA GHG emissions results according to the selected accurate range of manufacturing 
energy for EV LIBs production (10-70 kWh/kg) for the different cathode chemistries. Bars (right) represent the 

number of observations per range of GHG emissions values, and bars (top) represent the number of 
observations per range of specific manufacturing energy values 

It appears to be a correlation between LFP and NCA cathode’s chemistries, both in terms of GHG 
emissions and energy consumption for battery manufacturing. 

3.6. Observation per electricity mix used for battery production 

Figure 6(a) displays the results of GHG emissions for LIBs manufacturing according to the geographical 
location of the electricity mix used for battery manufacturing, and Figure 6(b) includes additional 
information on cathode chemistry. The decomposition of the GHG emissions factor distribution reveals 
some clear differences depending on the electricity mix used for battery production. The median 
assessment for a US electric mix (240 observations) is 43.0 kg CO2 eq./kWh. It is 74.3 kg CO2 eq./kWh 
with a Chinese electric mix (52 observations), and 170.7 kg CO2 eq./kWh with a European electric mix 
(52 observations). It is highly surprising that the GHG emissions for LIBs manufactured with the 
European electricity mix are the highest whereas the European electricity mix is the smallest GHG 
emitter among the three known electricity mixes studied: Chinese electricity mix (~1’020 g CO2 

eq./kWh), US electricity mix (~563 g CO2 eq./kWh), and European electricity mix (~420 g CO2 eq./kWh). 
Electricity mixes’ GHG emissions are calculated from the Ecoinvent v3.3 database (Frischknecht et al., 
2005) and the IPCC 2013 methodology (IPCC 2013). One possible explanation could be the difference 
in the number of observations for the three electricity mixes as the US one accounts for almost five 
times the number of the European observations. 



 

 

These counter intuitive results seem to be decorrelated from the geographical affiliation of the authors 
(see Figure 1(a)) as the results for this variable were similar from a European author to a Chinese one. 
The only common trend is the low results for both the US electricity mix variable (Figure 6(a)) and the 
US author affiliation (Figure 1(a)). 

(a) (b) 
Figure 6: (a) Dispersion of LCA GHG emissions results according to the geographical origin of the electricity mix 
used for battery manufacturing. The solid green line represents the median of the overall sample; the pink and 

blue lines represent the quartile and third quartile of the overall sample respectively; (b) breakdown by 
cathode’s chemistry 

 

The results for the NCA cathode chemistry are in line with the results of Figure 2 showing that NCA LIB 
are produced mainly in the US in our sample. It appears that NMC batteries are rather produced in the 
US as well, even if Europe and China are also represented. LMO LIB are mainly depicted as produced 
in China and that those produced in China emit a very consensual amount of GHGs around 72.8 kg CO2 
eq./kWh on average. The same trend can be observed for NCA LIB produced in the US with average 
emissions around 48.7 kg CO2 eq./kWh. On a general way, NMC LIB and LFP LIB produced in the US are 
also associated to a very consensual value for GHG emissions as the shape of the curve is very steep. 
It seems that less consensual values are linked with a European production as the associated curves 
(Figure 6(b)) are flatter than those for the other production countries. 

3.7.  Observation per methodological choices: cradle-to-gate and cradle-to grave 

The last characteristics to be studied represent the system boundaries of the studies and is depicted 
in Figure 7. The observations are well divided into both perimeters. They highlight the fact that the 
inclusion of the end-of-life stage into the system boundaries seems to decrease the median value of 
the observations (43.5 kg CO2 eq./kWh), in comparison to a cradle-to-gate perimeter 
(74.2 kg CO2 eq./kWh). Results for cradle-to-grave perimeter present much less variability than the 
cradle-to-gate perimeter due to the high number of observations for cradle-to-grave perimeter (162 
observations) from Ciez and Whitacre, 2019. 



 

 

 

Figure 7: System boundaries represented by the two variables “cradle-to-gate” and “cradle-to-grave”; The solid 
green line represents the median of the overall sample; the pink and blue lines represent the quartile and third 

quartile of the overall sample respectively 

 

4. Statistical analysis 

The variability of the GWP indicator has been highlighted in the section 3. This partly reflects the 
diversity of approaches, definitions, and assumptions that have been adopted in the literature. The 
objective of this paragraph is: (i) to distinguish the effect of differences in hypotheses and approach 
from the effect of uncertainty; (ii) to quantify the effect of the adoption of different assumptions on 
the GWP indicator; (iii) to use all the collected information to predict the GWP indicator associated 
with a given set of assumptions and study’s characteristics. 

To clarify the comparison between the available assessments, we statistically estimate a model where 
the GWP indicator depends simultaneously on several explanatory variables reflecting the 
characteristics and hypotheses of the study. This model is referred to as a "meta-model" in which the 
variable of interest is not derived from observations but is itself the result of simulations of different 
models. Estimation of the meta-model thus allows us to quantify and isolate the effect of each variable 
on the GWP factor. We can then interpret the influence of each of the selected variables ceteris 
paribus. In addition, the statistical relationship obtained allows us to predict the GWP factor associated 
with a given combination of variables. This paragraph briefly describes the estimated meta-model, the 
estimation strategy used, the explanatory variables selected, and the treatments performed on the 
sample. 



 

 

A classic problem faced in a MA is the multi-collinearity between the explanatory variables. In case of 
strict collinearity, the model is not selected. The quasi-collinearity between different linear 
combinations of variables does not prevent the estimation but affects the robustness of the estimated 
coefficients. The risk of collinearity increases with the number of explanatory variables. 

Most of our selected variables are dichotomous variables, except the “Battery specific energy” and 
“Manufacturing energy” which are ordinal quantitative variables. For dichotomous variables, if their 
number is less than or equal to 3, we can obviously delete a variable to avoid direct collinearities. It 
results into 14 remaining variables to be simultaneously tested, representing 9 couples: possible 
combinations of 2 among 3, for two families.  

We performed a step-by-step top-down approach consisting in considering a model with the 15 
explanatory variables, and to proceed by successive elimination of variables. A Student's test is 
performed for each explanatory variable and the least significant one is discarded until all the variables 
are significant. Then a final step consists in checking the model assumptions by analyzing the residuals, 
which must display a normal distribution for the errors. 

The regression analysis and the test for error normality are performed with the Python StatsModels 
package (Seabold and Perktold, 2010). The results are presented in Table 5. “***”, “**”, and “*” 
respectively indicate 1%, 5%, and 10% significance levels. For every final model, the Variance Inflating 
factor (VIF) is used to test the presence of multi-collinearity in our regression models (Table 5).  

The 9 initial models with 14 explanatory variables lead to 8 models with 6 explanatory variables and 
one model with 9 explanatory variables. The statistical performance of the 8 models with 6 variables 
is very comparable but models #1 and #3 can be distinguished because they have the lowest 
collinearities. The 9-variables model has high collinearity. The coefficients resulting from the ordinary 
least squares (OLS) regression with the 6 explanatory variables for model #1 and #3 are listed with 
their standard error and p-value in Table 6. Only the pair of cell design variables differ for models #1 
and #3. 



 

 

 

Table 5: Presentation of the 9 initial models obtained by the top-down method 

    Model #1 Model #2 Model #3 Model #4 Model #5 Model #6 Model #7 Model #8 Model #9 
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Final 
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p-
stud
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VIF 

Initia
l 

Varia
bles 

Final 
Varia
bles 

p-
stud
ent 

VIF 

Geographical 
location of 

corresponding 
author 

American 
author                         y y *** 2,3 y y *** 2,4 y y *** 2,3 y y *** 2,3 y y *** 2,3 y y *** 2,4 

Europe 
author 

y y *** 2,2 y y *** 2,3 y y *** 2,3                         y       y       y       

China 
author y y *** 1,1 y y *** 1,1 y y *** 1,1 y       y       y                               

Cell Design 

Prismatic 
cell design 

y y ** 1,5         y       y       y y ** 1,6                 y       y y ** 1,6 

Pouch cell 
design 

y y *** 1,4 y                       y y *** 1,6 y       y               y y *** 1,6 

Cylindrical 
cell design         y y *** 1,4 y y *** 1,4 y y *** 1,4         y y *** 1,4 y y *** 1,4 y y *** 1,4         

Cathode 
Chemistry 

NMC y       y y *** 4,8 y y *** 4,8 y y *** 4,5 y y *** 4,8 y y *** 4,5 y y *** 4,5 y y *** 4,5 y y *** 4,8 

NCA y       y y *** 4,5 y y *** 4,5 y y *** 4,1 y y *** 4,4 y y *** 4,1 y y *** 4,1 y y *** 4,1 y y *** 4,4 

LFP y       y y *** 3,2 y y *** 3,2 y y *** 3 y y *** 3,2 y y *** 3 y y *** 3 y y *** 3 y y *** 3,2 

LMO y y *** 1,3 y       y       y       y       y       y       y       y       

Quality of 
electricity mix 

used 

US Elec. 
Mix y       y       y       y       y       y       y       y       y       

Europe 
Elec. Mix y       y       y       y       y       y       y       y       y       

China Elec. 
Mix 

y       y       y       y       y       y       y       y       y       

Battery specific energy y y *** 2,9 y y *** 3,2 y y *** 3,2 y y *** 2,9 y y *** 3,1 y y *** 2,9 y y *** 2,9 y y *** 2,9 y y *** 3,1 

Quantity of manufacturing 
energy 

y y *** 1,9 y y *** 1,8 y y *** 1,8 y y *** 1,6 y y *** 1,6 y y *** 1,6 y y *** 1,6 y y *** 1,6 y y *** 1,6 

Cradle to Grave y       y       y       y       y       y       y       y       y       

  Total Initial 
Variables 

14       14       14       14       14       14       14       14       14       

  Total Final 
Variables 

  7       8       8       7       8       7       7       7       8     

  Adj. R-
squared 

  0,81
5 

      0,76       0,76       0,74
6 

      0,78
2 

      0,74
6 

      0,74
6 

      0,74
6 

      0,78
2 

    

  AIC   2975       3193       3193       3316       3213       3316       3316       3316       3213     

  BIC   3005       3228       3228       3347       3248       3347       3347       3347       3248     

  
Number of 
observatio

ns 
  323       337       337       349       343       349       349       349       343     

 



 

 

 

Table 6: Coefficients resulting from the OLS regression for model #1 and #3 

 

The value of the intercept at the origin for model #1 (82.55±11.24) is closer to the value of the sample 
median (83.18±71.18) than the value obtained with model #3 (98.09±12.15) and its uncertainty is 
somewhat lower. Therefore, we consider model #1 as the best model we have obtained. 

The regression obtained with model #1 for 6 variables is represented in Figure 8. 

 

Figure 8: Predicted and collected values for the GHG emissions of LIB production (in kg CO2 eq./kWh) for model 
#1 

 

Model Variable coef stderr t P>|t| [0.025 0.975]
#1 Intercept 82.56 11.24 7.35 0.000 60.44 104.67

Europe author 115.58 8.36 13.83 0.000 99.13 132.02
China author 61.06 11.34 5.39 0.000 38.75 83.37
Prismatic cell design 51.38 10.75 4.78 0.000 30.22 72.53
Pouch cell design 5.54 5.08 3.06 0.002 5.55 25.54
Battery specific energy  (Wh/kg) -0.55 0.04 -13.51 0.000 -0.63 -0.47
Manuf. Energy (kWh/kg) 2.15 0.34 6.38 0.000 1.49 2.81

#3 Intercept 98.10 12.16 8.07 0.000 74.18 122.02
Europe author 115.58 8.36 13.83 0.000 99.13 132.02
China author 61.06 11.34 5.39 0.000 38.75 83.37
Cylindrical cell design -15.54 5.08 -3.06 0.002 -25.54 -5.55
Prismatic cell design 35.84 10.15 3.53 0.000 15.86 55.81
Battery specific energy  (Wh/kg) -0.55 0.04 -13.51 0.000 -0.63 -0.47
Manuf. Energy (kWh/kg) 2.15 0.34 6.38 0.000 1.49 2.81



 

 

5. Discussion 

According to Table 6, the 6 final explanatory variables have a comparable weight on the regression (in 
absolute value) except for “Pouch cell design” whose influence is an order of magnitude less. The 
“Battery specific capacity” varies from 50 to 300 Wh/kg (section 3.4) and its average influence is 
- 97 kg CO2 eq./kWh. The same calculation for “Manufacturing Energy” leads to the value of 
+ 86 kg CO2 eq./kWh. Interestingly, cathode chemistry and the definition of the electricity mix used for 
GWP estimation do not emerge from our analysis whereas the results for the electricity mix used were 
highly surprising and counter-intuitive, this is not a significant variable for the statistical model. This is 
not because these variables are not relevant for conducting an LCA of a battery but because in the 
sample studied these variables are strongly correlated to another one: the geographical location of the 
corresponding author of the publication here. 

Another trend from our statistical results shows up from the characteristic “system boundaries” which 
were systematically excluded from the results of the models (cf. Table 5). This is surprising as the end-
of-life stage for batteries is very highlighted as it plays an important role for resources depletion 
indicator and circular economy. However, the high number of observations for cradle-to-grave 
perimeter (162 observations) from Ciez and Whitacre, 2019, will lead to collinearity between perimeter 
and authors.  

Today, EVs are seen as the best alternative for reducing polluting emissions in cities. While the local 
benefit on emissions is undeniable, particular attention must be paid to the GWP of an EV compared 
to internal combustion engine vehicles. Studies have shown that the manufacturing stage of the 
battery explains a large part of the GWP of an electric vehicle (Bouter et al., 2020; Ternel et al., 2021) 
and that other environmental indicators could be at stake for batteries’ production: energetic 
indicator, resources depletion indicator, toxicity indicators, etc. (Bouter et al., 2021). As mentioned in 
section 1, the purchase of EV is subsidized in many countries. At the end of 2020, the European 
Commission stated: "From 1 July 2024, only industrial rechargeable batteries and batteries for electric 
vehicles for which a carbon footprint declaration has been made may be placed on the market". It is 
highly interesting how European Commission points out the sole climate change indicator through the 
carbon footprint and not the entire picture of the other environmental indicators whereas it is known 
that especially for batteries’ sector, the consumption of resources is at stake as well as the 
exploitation’s conditions which are related to through toxicity’s indicators: human an eco-toxicity. This 
should be further addressed in another paper. A very interesting question can be raised: is it possible, 
based on LCA studies, to define a GWP threshold for an electric vehicle battery so that subsidies can 
be used to promote the development of the most virtuous batteries? 

Today, the batteries’ specific energy of the two most sold vehicles in France, a NMC cathode type for 
a B-Segment10 vehicle and a NCA cathode type for a D-Segment11 vehicle, is around 150±15 Wh/kg. 
Assuming that the pouch cell design will be the trend for future, and according to our statistical model, 
the GWP of the above mentioned batteries varies from 27 to 271 kg CO2 eq./kWh (Table 7). It is difficult 
based on this wide range to set a threshold that must be met by future batteries. 

 
10 The B-Segment category is the second one for European cars and is described as small cars. In practice these 
cars have an approximative length of 4 meters. 
11 The D-Segment category is the fourth one for European cars and is described as large cars. 



 

 

Table 7: GWP calculated with the statistical model #1 described in Table 6, for a battery specific energy of 
150 Wh/kg 

  GWP [ kg CO2 eq./kWh] 
  North America China Europe 

Manufacturing Energy [kWh/kg] 
10 27 87 142 
30 70 131 185 
70 155 216 271 

 

We are convinced that LCA is the right tool to provide GWP for EVs’ batteries. However, reading the 
academic literature highlights that there is still too much disparity in results to guide the allocation of 
public subsidies. Based on our results, it seems essential that more details and transparency be 
provided on the industrial manufacturing processes, so that LCA studies can provide tighter GWP 
values. 

 

6. Conclusion 

This article aims at systematically analyzing the LCA studies dealing with LIBs for automotive 
application and their environmental potential impact on climate change, from 2015 to 2019. Our 
bibliographic corpus showed a large variability in the results. This raises the question of the possibility 
to reach a consensus about GHG emission for LIB production. We decided to analyze this question and 
to use an unbiased statistical analysis according to meta-analysis’ approach. The first part of the 
assessment brought an extensive overview and allowed us to identify the main drivers inducing GHG 
emissions’ variations: 1) the geographical location of corresponding authors which highlighted that 
GHG emissions for LIBs production published by American corresponding authors exhibit lower values 
and are less scattered than those published by either European or Chinese authors; 2) cathode 
chemistry highlighted the high disparity among LIB’s GHG emissions’ results from this perspective; 
3) cell design shows the environmental benefits of pouch and cylindrical designs as well as their market 
domination; 4) high battery specific energy are represented through NCA and NMC cathode 
chemistries; 5) energy for battery manufacturing seems to be related to cathodes’ chemistries; 
6) electricity mix used for battery production shows surprising results as the European one results into 
the highest GHG emissions; and 7) methodological choices about the perimeter highlighting that the 
inclusion of the end-of-life stage into the system boundaries seems to decrease the median value of 
the observations. The second part of the work statistically confirmed or not the first qualitative and 
quantitative approach. We provided a reduced parametrized model estimating the GHG emissions 
related to LIBs’ production thanks to four different information: the geographical location of the 
corresponding author, the cell design, the battery specific energy, and the manufacturing energy. The 
positive and negative signs of the regression coefficients give an easily understandable relationship 
between the variables and the GHG emissions as the negative sign related to the battery specific 
energy highlighting that increasing energy density will decrease the related GHG emissions for 
example. The absence of some variables, such as the origin of the electricity mix used to produce the 
battery, and the chemistry of the cathode revealed some very surprising information, not commonly 
highlighted in the literature. It can be explained by the sample studied whose variables are strongly 
correlated with the geographical location of the corresponding author of the publication. This last point 



 

 

could reflect differences in the application of LCA according to geographical location and should be 
dug into another research work. 

Some limitations to the work can be highlighted such as the difficulty to get an up-to-date literature 
review, meaning that the in-depth analysis needed to fulfill the characteristics of the database is very 
time-consuming. And due to the high number of publications dealing with this subject, the 
achievement of a clean database before performing the statistical analysis can be delayed from the 
first literature review. Another limitation comes from the lack of transparency in accessibility to the 
primary data used in the scientific studies. 

Results of meta-analysis are very encouraging as such a method allows for some harmonization among 
a huge amount of literature dealing with the same subject but presenting a quite large variability in 
the results. However, it narrows the perimeter to a very constraint one, given that the selection is 
based on the least common denominator. This is pointing out a drift among LCA studies which should 
be more transparent into the description of their assumptions and life cycle inventory data, even when 
it refers to industrial processes. 
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