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Abstract 12 
This study uses a novel analysis methodology based on the Hierarchical Clustering Analysis (HCA) to 13 

determine the effectiveness of different preprocessing methods in minimizing undesired spectral 14 

variability in near-infrared spectroscopy due to both the consecutive and repetitive acquisition of the 15 

spectrum and the sample temperature. Nine preprocessing methods and different combinations of 16 

them were evaluated in four case studies: reproducibility, repeatability, sample temperature, and 17 

combination of the before mentioned cases. Eighty-four spectra acquired on seven different 18 

hydrocarbon samples from catalytic conversion processes have been selected as the real case study 19 

to illustrate the potential of the mentioned methodology. The approach proposed allows a more 20 

detailed discriminatory analysis compared to the classical methods for comparing the between-class 21 

and the within-class variances, such as the Wilks' lambda criterion, and hence constitutes a powerful 22 

tool to determine adequate spectral preprocessing strategies. This study also proves the potential of 23 

the discrimination analysis methodology as a general scheme to identify atypical behaviors either in 24 

the spectrum acquisition or in the measured samples.  25 

Keywords 26 
Spectral variability, Hierarchical Clustering Analysis (HCA), Principal Components Analysis (PCA), 27 
Preprocessing effectiveness, outliers, Qresidual, Hotelling's T², reproducibility, repeatability, sample 28 
temperature. 29 

1 Introduction 30 

In the past few decades, the use of Near-Infrared Spectroscopy (NIRS) in the development of non-31 

destructive and rapid measurement applications has been significantly increasing in several 32 

industries, such as food1, 2, pharmaceuticals3, 4, and petroleum5, 6. Due to the recent growth boom in 33 

using the NIR spectrum for real-time acquisition data7,8, the need to determine, analyze, and 34 

minimize spectral variability that is not associated with the physicochemical characteristics of the 35 

sample has notably arisen. This need becomes particularly evident when spectral variability is mainly 36 

generated by factors associated with the spectrum acquisition, such as spectrometer system, 37 
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operator, measurement conditions, and environmental factors such as temperature and humidity, 38 

rather than the physicochemical characteristics of the sample. An example of this is the possible 39 

generation of spectral variability in the consecutive and repetitive acquisition of NIR spectra on a 40 

sample whose physicochemical characteristics remain constant over the spectrum acquisition. A lack 41 

of minimization of this type of spectral variability can result in inaccurate analysis and interpretation 42 

of spectroscopic information, misleading conclusions and flawed decision making9, 10. 43 

Among the classical performance parameters needed to validate a measurement methodology, 44 

precision is the most affected by the aforementioned factors. Precision is defined as the closeness of 45 

agreement between measured values obtained by replicate measurements on the same or similar 46 

samples under conditions of repeatability or reproducibility11. Repeatability conditions include the 47 

same measurement procedure, the same operator, the same instrument and measurement 48 

conditions, the same location, and a short interval between repetitions12. On the other hand, 49 

reproducibility implies successive measurements of the same sample under changing measurement 50 

conditions13, such as measurement principle, measurement method, operator, measurement 51 

instrument, reference standard, location, conditions of use, and time. The NIR spectra acquisition is 52 

very sensitive to any change in measurement; even ensuring that both the spectrum acquisition 53 

conditions and the physicochemical characteristics of the sample do not change in a repetitive NIR 54 

spectrum acquisition, the resulting spectra may have differences that can lead to random errors and 55 

deviations, which must be corrected or minimized. 56 

Due to its high impact on NIR spectra acquisition accuracy, the temperature is the most studied 57 

influencing parameter14, 15. Hansen et al.16 showed that molecular bonds vibration intensity depends 58 

on temperature, leading to changes in the spectrum according to temperature variation. 59 

Furthermore, some physicochemical properties of samples, such as viscosity and density, are 60 

temperature-dependent, and many changes in the sample due to temperature are not permanent 61 

and do not reflect the intrinsic nature of the sample17–19. Nevertheless, these changes can 62 

significantly affect spectrum acquisition. As with the spectral variability generated by repetitive 63 

spectrum acquisition of a specific sample, the variability caused by sample temperature must be 64 

minimized to ensure the reliable description of the sample physicochemical behavior from the 65 

spectroscopic information extracted. 66 

Data preprocessing is a common step for reducing undesired effects and for minimizing spectral 67 

variability. There are different preprocessing algorithms for the correction of the undesired spectral 68 

variation; these can be divided into two main categories: scatter-correction methods, employed to 69 

correct the additive and multiplicative effects, and spectral derivatives, used to minimize the sources 70 
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of unwanted and non-informative spectral variations20. Among the most commonly preprocessing 71 

methods used in NIR spectroscopy, Savitsky-Golay derivative (Sav-Gol)21, Extended Multiple Signal 72 

Correction (EMSC)22, Standard Normal Variate (SNV)23, and recently, the Variable Sorting for 73 

Normalization (VSN)24, can be highlighted. However, the effectiveness of the preprocessing methods 74 

is highly dependent on the type of spectroscopic information analyzed and the factors that are 75 

causing its variability9.  76 

The preprocessing method effectiveness evaluation is generally based on the performance of 77 

prediction models25–27. Among the contributions reported in the literature, the work of Gerretzen et 78 

al.,28 which presents a novel approach for the selection of the most appropriate preprocessing 79 

methods based on the design of experiments, is worth mentioning. Similarly, the studies of Devos et 80 

al.,29 and Allegrini et al.,30 which, by means of a parallel workflow approach of preprocessing and 81 

variable selection, present an interesting alternative to the optimization of the preprocessing method 82 

selection. Nonetheless, the application of these approaches may be limited when the variability of 83 

the physicochemical characteristics of the samples is negligible, but significant spectral variability 84 

exists as a result of the repetitive spectrum acquisition and the sample temperature. In that case, a 85 

different analysis approach may yield more detailed results, helping to improve understanding of the 86 

impact of these parameters. Another less common approach to assessing preprocessing methods 87 

effectiveness is analyzing the spectral variance31. Different statistical tools are available to determine 88 

both within-class variance (multiple measurements of the same sample) and between-class variance 89 

(measurements of different samples). One of the most common criteria used to evaluate between-90 

class and within-class variances is the Wilks' lambda32.  91 

In this study, a novel and general strategy based on the Hierarchical Clustering Analysis (HCA)33 was 92 

proposed for evaluating the effectiveness of preprocessing methods in reducing the spectral 93 

variability generated by parameters related to the continuous and dynamic spectrum acquisition. To 94 

this aim, the effectiveness of nine preprocessing methods and different combinations of them in 95 

minimizing undesired spectral variability due to repeatability, reproducibility, sample temperature 96 

and combination of these parameters were evaluated. Eighty-four spectra acquired on seven 97 

different hydrocarbon samples from catalytic conversion processes have been selected as the real 98 

case study to illustrate the potential of the mentioned methodology.   99 

To obtain reliable conclusions and validate the results obtained by the analysis methodology 100 

proposed, the Wilks' lambda criterion32 was used as a reference method.   101 
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2 Material and methods 102 

2.1 Samples 103 

Twenty-four vacuum gasoil (VGO) samples were processed in the catalytic conversion pilot plant 104 

reactors at IFPEN (Solaize, France). From these reactors, ninety-three different hydrocarbon samples, 105 

known as total effluent, were obtained (see references34, 35 for a detailed description of catalytic 106 

conversion processes). From these 93 samples, 7 samples were selected, ensuring their 107 

representativeness and physicochemical diversity. Table 1 summarizes four relevant physicochemical 108 

properties of the selected samples: the density36 and the simulated initial boiling point and 109 

distillation temperatures range to obtain both 5% and 95% of sample distillate (Simulated Distillation 110 

IBP, T5 and T95)37. It can be observed that physicochemical variability between the selected samples 111 

is guaranteed. 112 

Table 1 Samples physicochemical properties. SimDis IBP, T5 & T95 description: Simulated distillation to determine the 113 
temperatures to start the sample evaporation and to recover both 5% and 95% of sample distillate  114 

  Sample Physicochemical Properties 
  Distillation Temperatures  

Sample ID Density (gr/ml) IBP (°C) SimDis T5 (°C) SimDis T95 (°C) 

Sample 1 0.8049 84.7 121.6 425.8 

Sample 2  0.8186 79.8 111.5 474.5 

Sample 3 0.8219 80.3 117.8 516 

Sample 4 0.8411 83.8 136.1 503.5 

Sample 5 0.847 83.7 129.1 512.6 

Sample 6 0.8962 148.9 227.6 504.6 

Sample 7 0.9181 159.8 231.6 502.9 

 115 

2.2 Spectral acquisition 116 
The spectra were recorded with a Fourier Transform Near-Infrared spectrometer (FT-NIR) MATRIX-F 117 

(Bruker, Optik GmbH, Ettligen - Germany) within the range of 9090 - 4600 cm-1 (1100 - 2160 nm) and 118 

a resolution of 4 cm−1. 32 scans were used to obtain the final spectrum after each measurement. For 119 

acquiring absorbance spectra, the spectrometer system was equipped with an immersion 120 

transflectance probe with an optical path fixed at 2 mm withstanding temperatures ranging from -40 121 

°C to 200 °C.  The software used with the spectrometer was OVP (OPUS Validation Program - Bruker, 122 

Optik GmbH, Ettligen - Germany) which automatically performs a series of analyses of the 123 

instrument's performance, evaluates them and ensures that it is operating within specifications. 124 

Besides, to ensure the spectrometer operation within specifications and that the spectral variability 125 

generated was due to the parameters evaluated and not to the instrument's inadequate functioning, 126 

the spectrometer performance was validated once a day using cyclohexane as an external reference 127 
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sample. Before NIR analysis, the samples were heated in closed flasks at 60°C for 1 hour in a water 128 

bath and shaken manually to ensure their liquid state and homogeneity. The initial boiling point (IBP) 129 

reported in Table 1 guarantees no loss of volatiles.  130 

Ensuring the integrity and stability of both the sample and the NIR spectrum acquisition conditions, 131 

spectral variability due to repeatability, reproducibility, and sample temperature was generated. A 132 

short description of the spectrum acquisition for the cases evaluated in this study is presented 133 

below. 134 

• Case 1. Spectral variability due to reproducibility: Each of the seven samples was analyzed 135 

one time per day during five consecutive days at 60 °C. Thirty-five spectra were obtained.  136 

• Case 2. Spectral variability due to repeatability: Each of the seven samples was analyzed 137 

three times on the same day at 60 °C. All samples were analyzed in less than 8 hours. 138 

Twenty-one spectra were obtained.  139 

• Case 3. Spectral variability due to the sample temperature: Each of the seven samples was 140 

analyzed at five different temperatures, ranging from 60 °C to 80 °C with a temperature 141 

increment of 5°C. The samples were heated in closed flasks at the desired temperature for 1 142 

hour. Evaporation losses of volatiles were null or negligible (see IBP in Table 1). Twenty-eight 143 

spectra were obtained.   144 

• Case 4. Spectral variability due to the combination of the aforementioned cases: In this 145 

case, all spectra acquired in the above-described cases were used.  146 

For each case, a matrix was generated. Each analyzed sample was defined as a class; thus, seven 147 

classes were defined in all matrices. 148 

2.3 Analysis methodology 149 

The main steps of the data analysis workflow proposed in this study are schematized in Figure 1. A 150 

brief explanation of the procedure is given as follows. 151 

The first step consisted in preprocessing each of the generated matrices. The nine most commonly 152 

preprocessing methods used in NIR data were divided into two categories; the filtering and 153 

normalization methods. The preprocessing methods from each category were analyzed individually. 154 

If the total reduction or compensation of the studied spectral variability were not achieved, the 155 

evaluated preprocessing method were complemented with the methods belonging to the opposite 156 

category. This allowed the evaluation of all possible combinations and order of use of the 157 

preprocessing methods. The methods evaluated are described in Table 2. It should be emphasized 158 

that each preprocessing scenario evaluated includes the data centering by columns. 159 
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Table 2 Preprocessing methods description  160 

# Category Name Acronym Parameters 

1 

Filtering 

Automatic Weighted Least 
Squares Baseline20 

AWLS-B   

2 Norris-Williams Derivation38 NW-D 
15-point window, gap size = 7,  
First order derivation 

3 Savitsky-Golay Derivative21 SG-D 
15-point window, polynomial order = 2 
First order derivative 

4 Detrend23 Dtd Polynomial order = 1 

5 
Extended Multiplicative 
Scatter/Signal Correction22 

EMSC 

Reference spectrum (basis to remove 
the scatter)  = mean of each matrix 
generated, polynomial order = 2,  
whole spectral range 

6 

Normalization 

Multiplicative Signal Correction39 MSC 
Reference data = mean of data,  
whole spectral range 

7 Standard Normal Variate23 SNV   

8 
Probabilistic Quotient 
Normalization40 

PQN   

9 
Variable Sorting for 
Normalization24 

VSN Automatic calculation 

 161 

 162 

Figure 1 – Methodology flow diagram  163 

Afterward, a preliminary inspection and dimension reduction of the corresponding dataset was 164 

performed by principal component analysis (PCA)41. The number of the chosen principal components 165 

(PCs) captured at least 99 % of the total variance in the dataset. The Q residual and Hotelling's T² 166 

tests were performed to determine the possible presence of anomalous data42. 167 

The chosen PCs scores were then used to perform the hierarchical clustering analysis (HCA) 168 

employing Ward's algorithm and the Mahalanobis distance. The HCA aims to group clusters to form a 169 
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new one to either minimize a statistical distance between classes or maximize a measure of similarity 170 

between them43, 44. The analysis starts with as many groups as individuals contained in the dataset. 171 

From these initial groups, clusters are formed in an ascending manner until all cases treated are 172 

included in at least one of them. Ward's algorithm seeks to minimize each group variance by 173 

calculating all samples mean in each cluster. The algorithm then calculates each case distance and 174 

the cluster mean, adding up the distances between all cases. Finally, the clusters whose sum of 175 

distances is minimal are grouped. This procedure creates homogeneous groups of a similar amount 176 

of individuals. For achieving the grouping of classes, it is necessary to define a comparison parameter 177 

to calculate the variance of each class concerning the others. The most common is the Mahalanobis 178 

distance39.  179 

A widespread manner of displaying the cluster analysis results is constructing a tree diagram known 180 

as a dendrogram. The resulting diagram shows the different groups' clustering order and the 181 

association measure's value, also known as the fusion level. The fusion level was defined for 182 

obtaining seven clusters corresponding to the seven classes. Finally, the number of correctly grouped 183 

sample measurements in each cluster was determined, and the percentage of clustering was 184 

calculated as: Number of correctly grouped samples / Total number of samples * 100.  185 

These steps were repeated for each preprocessing method scenario, and the results obtained were 186 

compared using the percentage of samples correctly grouped as a figure of merit to determine the 187 

effectiveness of the preprocessing methods evaluated.     188 

All the analyses were conducted with the PLS_Toolbox version 8.8 (Eigenvector Research Inc., 189 

Wenatchee, WA, USA) for MATLAB version R2019b (MathWorks, Natick, MA, USA). 190 

2.4 Results comparison 191 

To validate the results obtained with the methodology proposed in this study, the Wilks' lambda was 192 

used as a comparative criterion. This criterion evaluates how well the data set classes are separated 193 

by calculating a ratio involving between-class and within-class variances. Several versions of the 194 

Wilks' lambda exist. In this article, the ratio of the between-class variance over the total variance was 195 

used. This ratio varies between 0 and 1, where 0 means that all the classes are superimposed, and 1 196 

means that all the classes are perfectly separated.  197 

3 Results and discussion 198 

This section shows the results obtained from the application of the proposed methodology. A 199 

comprehensive description of its application for the case study of reproducibility (Case 1) is 200 

presented. However, only the main results from the case studies of repeatability, temperature effect, 201 
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and the combination of all cases are showed. Finally, the validation and the advantages of the 202 

proposed methodology are offered. 203 

3.1 Case 1 – Reproducibility  204 

For the reproducibility case, 35 spectra were used (5 spectra for each sample, see section 2.2). Figure 205 

2 shows the raw spectra over the entire spectral range used. At first glance it can be observed the 206 

variability of spectra due to the physicochemical nature of the sample, showing, with some 207 

exceptions, a trend consistent with the properties reported in Table 1; i.e., the spectra acquired on 208 

the sample with the lowest density (sample 1 - dark blue color) is at the bottom of the plot, and the 209 

spectra acquired on the sample with the highest density (sample 7 - red color) is at the top. This 210 

observation becomes more evident in the black square of Figure 2 where the spectra are magnified 211 

over a defined range (1340nm - 1430nm). In this same figure it is possible to visualize that the 212 

reproducibility measurements made on a single sample generate a variability that has a similar 213 

behavior to the variability caused by multiplicative effects, which can impact the final results 214 

obtained. 215 

 216 

Figure 2 – 35 raw spectra used in Case 1 evaluation over the entire spectral range. Legend: Color → samples analyzed. 217 

Black square → 35 raw spectra used in Case 1 evaluation magnified over the 1340nm - 1430nm spectral range       218 

In this first case, the proposed methodology application shows the impact of the variability in NIR 219 

spectra acquisition caused by reproducibility measurements as well as the effectiveness of 220 

preprocessing methods in minimizing this spectral variability. 221 

Firstly, an exploratory analysis using PCA was performed to visualize the similarity/dissimilarity 222 

among the 5 spectra (1 per day) acquired for each of the 7 hydrocarbon samples analyzed. The data 223 

set (35 spectra) was merely centered. The first two components (PC1 and PC2) explained 96.7% of 224 

the data set total variance. From the score plot of the first two components (see Figure 3a), it can be 225 

seen that all 5 measurements of samples 1 to 6 are grouped in a consistent pattern regarding to the 226 

variance within classes. However, there are measurements of different samples that intersect with 227 
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each other (between-class variance) (see Figure 3a-b), and hence their clustering can be influenced. 228 

Additionally, from these score plots, it can also be observed that the measurement of sample 7 on 229 

the fifth day is relatively distant from the other measurements of this sample. This could mean the 230 

presence of possible outliers in the dataset. Figure 3c shows the Hotelling's T² and Qresidual scores 231 

for the dataset. It can be observed that the same measurement identified previously (Sample 7, 5th 232 

acquisition day) was found to be above the threshold of both tests. Therefore, this measurement can 233 

be confirmed as an outlier.     234 

a) b)           235 

c)  236 

Figure 3 – a) Score plot of PC1 & PC2 for Case 1 with centered spectra, b) Score plot of PC3 & PC4 for Case 1 with centered 237 

spectra, c) Reduced Qresidual & Hotelling's T² for Case 1 using 4 PCs with centered spectra. Legend: Shapes → acquisition 238 

day. Color → samples analyzed (classes)  239 

The scores of the first 4 principal components yielded by the PCA analysis (99% explained variance) 240 

were used to perform the HCA analysis. Figure 4 shows the dendrogram obtained from the HCA, 241 

where a fusion level (black line) for obtaining seven clusters corresponding to the seven hydrocarbon 242 

samples is defined. This Figure also shows the correct grouping percentage achieved for each class. 243 

From the table embedded in the Figure, it can be observed that no sample achieves an accurate 244 

grouping of all its measurements. Samples 2 and 7 (orange and red classes) are the classes with the 245 

highest correct grouping percentage (4 out of 5 for 80%), while classes 3 and 4 (yellow and purple 246 

classes) do not have any correctly grouped measurements. Furthermore, measurement 35 that 247 

belongs to class 7 (red class) and identified in the previous steps as a potential outlier is the only 248 
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measurement grouped in class 4 (purple class). Based on these results, it can be considered that this 249 

measurement has no similarity with any of the other 34 measurements, which confirms its outlier 250 

status.  251 

 252 

Figure 4 – Dendrogram for Case 1 (all measurements) with centered spectra. Legend: Color samples measured (classes). 253 

Table: correct grouping percentage for each class  254 

In order to compensate the spectral variability caused by the lack of reproducibility and hence 255 

achieve a better clustering of all the classes, the use of appropriate preprocessing methods is 256 

needed. Nine preprocessing methods and different combinations of them were evaluated. Figure 257 

App 1, which can be found in the article's supplementary section, summarizes the correct grouping 258 

percentage results for each preprocessing scenario evaluated in the 4 cases. From this Figure, it can 259 

be seen that for Case 1 (diamond shape - blue color), none of the evaluated scenarios reaches a 260 

correct grouping percentage of 100%, implying that none of the scenarios achieved the total 261 

reduction of the spectral variability generated by the reproducibility measurements. With a correct 262 

grouping of 85%, the EMSC was the most effective preprocessing method scenario. Figure 5 shows 263 

for this scenario the score plot of the first two principal components of the PCA analysis and the 264 

Qresidual & Hotelling's T² results achieved using 2 PCs. It can be seen that all measurements are 265 

consistently grouped and are within the threshold of the two tests, except for measurement 35 266 

(potential outlier identified). From the HCA dendrogram and the table of its corresponding correct 267 

grouping percentage (see Figure 6), it could be observed that this measurement is still wrongly 268 

grouped as the unique measurement in class 2 (orange class). From these results, it can be assumed 269 

that all other measurements could be correctly grouped without this misgrouped measurement. 270 

Therefore, measurement 35 was removed from the data set, and the preprocessing methods 271 

scenarios were re-evaluated to confirm this assumption. 272 
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Figure App 1 (diamond shape – red color) shows that by removing measurement 35 from the data 273 

set, correct grouping of all measurements is possible in 6 scenarios (EMSC, AWLS-B+MSC, AWLS-274 

B+SNV, AWLS-B+VSN, SG-D+SNV, and MSC+AWLS-B). However, only one scenario uses a single 275 

method, which is the EMSC. In order to prevent loss of relevant information, the use of a minimum 276 

number of methods in the data preprocessing is generally recommended. Therefore, in this case, 277 

EMSC could be selected as the most efficient preprocessing method scenario to reduce the spectral 278 

variability due to the lack of reproducibility (see HCA dendrogram in Figure App 2 in the 279 

supplementary section).  280 

Figure App 1 also shows that both the order of use and the combination of preprocessing methods 281 

can influence the final result. An example of this statement can be seen by comparing the scenarios 282 

from Case 1 without the measurement 35, where the NW-D method was combined with the MSC, 283 

PQN, SNV, and VSN methods. When the NW-D method (filtering category) is used before applying 284 

the other preprocessing methods (normalization category), the correct clustering is lower (about 285 

30%) compared to when using the normalization preprocessing methods before the NW-D method. It 286 

can also be found by comparing the same scenarios that using complementary preprocessing 287 

methods does not always yield better correct clustering results than using a single method (NW-288 

D+PQN → 38% Vs NW-D → 47%). This is an important consideration when using more than one 289 

preprocessing method.    290 

a) b)  291 

Figure 5 – a) Score plot of PC1 & PC2 for Case 1 with EMSC preprocessing, b) Reduced Qresidual & Hotelling's T² for Case 292 

1 using 2 PCs with EMSC preprocessing. Legend: Shapes → day of measurement. Color → samples measured (classes) 293 

The results obtained in this case show the proposed discrimination methodology's ability to evaluate 294 

the effectiveness of preprocessing methods in minimizing spectral variability in NIR measurements 295 

due to the lack of reproducibility. Moreover, it is worth mentioning that these results also illustrate 296 

the versatility of the proposed methodology for detecting potential anomalous data (outliers) caused 297 

by possible errors in spectrum acquisition. 298 
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As mentioned before, no detailed description for cases 2, 3, and 4 are presented; only their main 299 

results are shown. The detailed results of these cases are shown in the article's supplementary 300 

section.  301 

 302 

Figure 6 – Dendrogram for Case 1 (all measures) with EMSC preprocessing. Legend: Color samples measured (classes). 303 

Table: correct grouping percentage for each class 304 

3.2 Case 2 – Repeatability  305 

Figure 7 shows the raw spectra used in the analysis of the variability caused by repeatability 306 

measurements. Analogous to case 1, the spectral variability generated by the physicochemical nature 307 

of the sample can be observed, presenting the same relationship (trend) with the properties 308 

reported in Table 1. However, the black square in Figure 7 shows that the variability caused by 309 

repeatability measurements seems to present a similar behavior to the variability generated by the 310 

combination of two different effects (additive and multiplicative), making the spectral differences of 311 

a single sample more evident in comparison with case 1. 312 

In this second case, a total of 21 spectra (7 samples performed in triplicate) were analyzed to 313 

demonstrate the proposed methodology's ability to evaluate the effectiveness of preprocessing 314 

methods in minimizing unwanted spectral variability due to the lack of repeatability. The correct 315 

grouping percentage achieved from all the preprocessing methods scenarios is shown in Figure App 1 316 

(squared shape – orange color). 317 
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 318 

Figure 7 – 21 raw spectra used in Case 2 evaluation over the entire spectral range. Legend: Color → samples analyzed. 319 

Black square → 21 raw spectra used in Case 2 evaluation magnified over the 1340nm - 1430nm spectral range       320 

In the scenario that is assumed that the variability generated in the repeatability measurements do 321 

not have a significant impact on the grouping of sample measurements, that is, that no additional 322 

preprocessing methods are needed besides the data centering, only 48% of the measurements were 323 

correctly grouped (see Figure App 1 (squared shape – orange color) mean center scenario). 324 

Therefore, it can be preliminarily concluded that preprocessing methods to reduce spectral variations 325 

due to repeatability are needed. From the PCA analysis (data not shown) of this scenario (centered 326 

data), it could be determined that the first repetition of each sample differs significantly from its 327 

second and third repetitions. However, all of them were within the Qresidual and Hotelling's T² test 328 

thresholds (data not shown). Therefore, they cannot be considered as anomalous data (outliers).  329 

From all the evaluated scenarios, fourteen achieved a correct grouping of 100% (AWLS-B+MSC, 330 

AWLS-B+SNV, Dtd+MSC, Dtd+PQN, Dtd+SNV, EMSC+PQN, EMSC+SNV, MSC+AWLS-B, MSC+Dtd, 331 

PQN+EMSC, SNV+AWLS-B, SNV+Dtd, SNV+EMSC, and VSN). Among these scenarios, only one uses a 332 

single method, which is VSN (see HCA dendrogram in Figure App 4). Therefore, VSN could be selected 333 

as the most effective preprocessing method to minimize the spectral variability due to the lack of 334 

repeatability. As in Case 1, Figure App 1 shows that the order of use of the preprocessing methods 335 

affects the correct grouping result. Comparing the same scenarios as in Case 1, it can be reaffirmed 336 

that the results are more promising when the filtering methods are applied after the normalization 337 

methods.     338 

From these results, it can be concluded that spectral variability due to repeatability has a lesser 339 

impact than those generated by reproducibility. Nevertheless, the proposed methodology 340 

demonstrated that the two cases' variability could be entirely compensated using an appropriate 341 

data preprocessing strategy.  342 
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3.3 Case 3 – Temperature effect 343 

As previously mentioned in the introduction of the manuscript, sample temperature is one of the 344 

factors having significant impact on the NIR spectra acquisition. Figure 8 shows that the spectral 345 

variability generated by the sample temperature presents a behavior similar to the multiplicative 346 

effect. However due to the absorbance shift caused by the temperature increase, which prevents 347 

having a direct relationship between this parameter and the height of the acquired spectra, the 348 

spectral difference presents a nonlinear growth45. This can be corroborated in the black square of 349 

Figure 8, where it is observed that with a temperature variation greater than 15°C the spectral 350 

variability is more evident than when the delta in temperature is less than 15°C. This non-linear 351 

impact of the sample temperature on the spectrum acquisition could limit the performance of the 352 

different preprocessing methods evaluated. 353 

 354 

Figure 8 – a) 35 raw spectra used in Case 3 evaluation over the entire spectral range. Legend: Color → samples analyzed. 355 

Black square → 35 raw spectra used in Case 3 evaluation magnified over the 1340nm - 1430nm spectral range       356 

In this third case, spectra acquired at 5 different sample temperatures (35 spectra) were analyzed to 357 

find the most effective preprocessing scenario to reduce undesired spectral variability due to the 358 

sample temperature. The correct grouping percentage achieved from all the evaluated preprocessing 359 

strategies is shown in Figure App 1 (triangle shape – green color). 360 

From Figure App 1, it can be seen that if no other preprocessing method than data centering is 361 

applied, the percentage of correctly grouped measurements is 49%. This result reflects, as expected, 362 

the need to apply preprocessing methods to reduce variability caused by sample temperature. The 363 

clustering results shown in Figure App 1 reveal that no evaluated preprocessing scenario could 364 

entirely compensate the spectral variability due to temperature variations, meaning that the entire 365 

accurate measurement grouping was not achieved in any scenario. The best performing scenario is 366 

the SG-D+SNV with an accurate grouping percentage of 80%. Although Figure App 1 shows that the 367 

best performance scenario does not achieve the correct grouping of all 35 measurements, the results 368 

shown in Figure App 5 (scenario SG-D+SNV) show that samples 1, 2, 3, 5, and 6 have an accurate 369 
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grouping in all their measurements (5 out of 5 = 100%). The class affecting the overall measurement 370 

clustering is sample 4 (purple), which does not have any measurements grouped correctly. As in Case 371 

1, it could be assumed that the whole misgrouping of sample 4 is due to the presence of some 372 

atypical data. However, no measurement was found above the Qresidual and Hotelling's T² tests 373 

thresholds in any scenario (data not shown). 374 

The results analyzed in this case show that sample temperature is a very influential parameter on the 375 

spectrum acquisition. Therefore, it is recommended to use a strategy that evaluates this variable's 376 

impact more thoroughly for a more efficient solution9, 45. 377 

3.4 Case 4 – cases 1, 2 & 3 combined 378 

The parameters causing unwanted spectral variability evaluated in the 3 cases previously described 379 

are likely to occur simultaneously, mainly when online NIR measurement is used for real-time data 380 

analysis. For this reason, a fourth case was evaluated where the spectral variability generated by 381 

these three cases was combined.  382 

The dataset used in this case comprises 84 spectra (35 from reproducibility Case, 21 from 383 

repeatability Case, and 28 from sample temperature Case). As in the 3 cases already studied, the 384 

Qresidual and Hotelling's T² analyses were applied to the centered dataset to determine the possible 385 

presence of atypical data (data not shown). The measurement identified as an outlier in Case 1 386 

(Sample 7, 5th acquisition day) once again exceeds the thresholds of the two tests. Thus, this 387 

measurement was removed, and the methodology proposed in this study was applied to the other 388 

83 measurements.    389 

In this case, 5 scenarios (EMSC, EMSC+PQN, PQN+EMSC, SNV+EMSC, and VSN+EMSC) had the best 390 

performance, where 80 out of 83 measurements were correctly grouped, that is, 96% of correct 391 

grouping. All 5 scenarios identified involve the use of EMSC, which, when evaluated individually, 392 

yields the same percentage of correct grouping (96%). It could be preliminarily inferred that for this 393 

case, the normalization methods do not give any additional improvement, and thus EMSC would be 394 

selected as the most effective preprocessing method scheme. Nevertheless, the use of the proposed 395 

methodology allows a more detailed analysis to determine at what level each type of variability is 396 

minimized in each of the 5 scenarios mentioned. In this way, the most effective preprocessing 397 

scheme's determination can be done more conveniently according to the researcher's objective.  398 

Figure 9 shows the PCA score plot and the Qresidual & Hotelling's T² results for the VSN+EMSC 399 

preprocessing method scenario. The three measurements that were not correctly grouped 400 

correspond to the measurement at 80°C of samples 3 (highest value of residual Q test) and 4, and the 401 
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measurement at 75°C of sample 4. From Figure App 1, it is also concluded that the EMSC and VSN 402 

methods have a better performance when grouping the samples measured at different temperatures 403 

in Case 4 (circle shape – purple color, combined cases) than in Case 3 (triangle shape – green color, 404 

sample temperature case).  405 

Although the conclusion made previously that no method can entirely compensate the measurement 406 

variability caused by sample temperature is reaffirmed, the reduction of this variability was quite 407 

considerable in delta temperature lower than 20°C. 408 

a) b)  409 

Figure 9 – a) Score plot of PC1 & PC2 for Case 4 with VSN+EMSC preprocessing, b) Reduced Qresidual & Hotelling's T² for 410 
Case 4 using 3 PCs with VSN+EMSC preprocessing. Legend: Color → samples measured (classes) 411 

To sum up the results obtained by using the analysis methodology proposed, it could be concluded 412 

that for cases 1 and 2 (reproducibility and repeatability), the variability affecting the measurement 413 

clustering was fully compensated using a single preprocessing method. On the other hand, cases 3 414 

and 4 (sample temperature and combination of cases) needed the combination of two methods, and 415 

still, the correct grouping of all the measurements was not achieved. The sample temperature has a 416 

high impact on the spectrum acquisition. Therefore, it is recommended to use a methodology that 417 

evaluates this variable more thoroughly for a more efficient solution 9, 45.  418 

4 Results comparison 419 

In order to validate the consistency and reliability of the proposed approach, the analysis 420 

methodology results were compared with those obtained by Wilks' lambda criterion.  421 

 422 

Table 3 summarizes each case's most relevant results achieved by both the proposed approach and 423 

Wilks' Lambda.  424 
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 425 

 426 

Table 3 % Results comparison using Wilk's Lambda algorithm 427 

Case Preprocessing  
method 

Methodology  
(% Grouped/100) 

Wilk's 
Lambda 

Case 1  
(All Measurements) 

Mean Center 0.46 0.95 

EMSC 0.85 0.96 

Case 1  
(Measurement 35 removed) 

Mean Center 0.53 0.68 

EMSC 1.00 0.99 

Case 2 
Mean Center 0.48 0.69 

VSN  1.00 0.99 

Case 3 
Mean Center 0.49 0.55 

SavGol + SNV 0.82 0.95 

Case 4 
Mean Center 0.51 0.66 

VSN+EMSC 0.96 0.99 

 428 

The results shown in  429 

 430 

Table 3 validate the approach proposed in this study. It can be seen that the results between the two 431 

methodologies are comparable, except for Case 1, including all measurements, when the data have 432 

been only mean-centered. In this case, Wilks' Lambda value is close to 1, while the value obtained by 433 

the proposed methodology is 0.46. The difference may be attributable to the presence of the outlier 434 

identified in Case 1 and how each approach handles this type of data. While the Wilks' lambda 435 

criterion assumes that there is no presence of outliers in the analyzed dataset, the methodology used 436 

in this study provides a preliminary analysis of the dataset for the identification and removal of 437 

possible anomalous data. This premise can be supported by observing that the two approaches' 438 

results are comparable when the identified outlier is removed from the dataset (see  439 

 440 

Table 3 - Case 1 (Measurement removed)).  441 

Moreover, the proposed methodology provides a more detailed discrimination analysis in 442 

comparison with Wilks' lambda criterion. As a way of example, both the proposed approach and the 443 

Wilks' lambda results obtained from the individual evaluation of the nine preprocessing methods in 444 

Case 1 were compared. From Table 4, it can be seen that Wilks' lambda criterion presents no 445 

significant differences in 4 preprocessing methods (SG-D, EMSC, MSC, SNV), which could lead to the 446 

conclusion that the 4 methods have equal effectiveness in minimizing the unwanted spectral 447 
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variability. On the contrary, the proposed methodology allows to identify that out of these 4 448 

methods, two are equally effective in minimizing the unwanted spectral variability (MSC, SNV), the 449 

least effective is the SG-D, and the most effective preprocessing method, which achieves the 450 

maximum compensation of the unwanted spectral variability, is the EMSC. Therefore, the 451 

methodology used in this work could help to select the preprocessing method in a more precise and 452 

reliable way. Finally, the proposed methodology allows identifying measurements and samples that 453 

have been properly or poorly discriminated, information that the Wilks' lambda does not provide as 454 

it is a global measurement. 455 

Table 4  Case 1 detailed results comparison  456 

Preprocessing Method 
Explored Methodology  

(% Grouped/100) 
Wilk's Lambda 

Mean Center 0.53 0.68 

AWLS-B 0.65 0.88 

NW-D 0.56 0.73 

SG-D 0.65 0.98 

Dtd 0.65 0.90 

EMSC 1.00 0.99 

MSC 0.82 0.99 

PQN 0.68 0.87 

SNV 0.82 0.99 

VSN 0.94 0.85 

5 Conclusions 457 
The results obtained in this study shows the capacity of the analysis methodology used to assess the 458 

effectiveness of preprocessing methods in reducing the undesired spectral variability of near-infrared 459 

spectroscopy (NIRS) measurements in a more thoughtfully and detailed manner than other 460 

approaches based on the dataset variance analysis such as the Wilks' lambda criterion.   461 

In this study, an original strategy not previously reported in literature was proposed to evaluate and 462 

determine the effectiveness of different preprocessing methods in minimizing the unwanted spectral 463 

variability due to parameters related to the continuous and repetitive NIR spectra acquisition such as 464 

repeatability, reproducibility, sample temperature, and the combination of these three parameters. 465 

It is essential to stress the twofold benefit of using the proposed methodology. On the one hand, the 466 

detailed discrimination analysis provides a significant aid in determining the most effective data 467 

preprocessing scheme. On the other hand, the methodology provides a preliminary data analysis 468 
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step for identifying and removing the potential anomalous data from the dataset, thus improving the 469 

reliability of the final results.  470 

The results obtained using the proposed analysis methodology suggest that the variability caused by 471 

repeatability and reproducibility can be fully corrected when using the adequate preprocessing 472 

scheme; however, no preprocessing scenario could entirely compensate the unwanted spectral 473 

variability caused by the sample temperature. Similarly, the detailed discriminant analysis employed 474 

in this study showed that the EMSC preprocessing method presents interesting and promising results 475 

in all cases. 476 

The preprocessing scheme's ultimate selection should be conducted in a careful manner considering 477 

the researcher's objective. The proposed methodology offers an analysis strategy that could help 478 

determine the most effective preprocessing scheme more reliably. 479 

The conclusions reached in this work promote further optimization and automation of the proposed 480 

methodology to improve its implementation in large datasets.   481 

The strategy proposed was shown to work for a case study including seven different hydrocarbon 482 

samples but can be generally applicable in any study involving spectroscopic information analysis 483 
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Appendix 599 
 600 

 601 
Figure App 1 Comparative summary of the effectiveness of the preprocessing scenarios evaluated in the 4 case studies. 602 

Legend : Shapes and color → Case studies. Description : Circumferential lines → Percentage of correct grouping (0% 603 
Center - 100% outer line). Radial lines → Evaluated preprocessing scenario, from left to right the order of use of the 604 

methods. 605 
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 606 
Figure App 2 Dendrogram for Case 1 (all measurements) with EMSC preprocessing. Legend: Color samples measured 607 

(classes). Table: correct grouping percentage for each class 608 

 609 

 610 

Figure App 3 Dendrogram for Case 1 (removing measurement 35) with EMSC preprocessing. Legend: Color samples 611 
measured (classes). Table: correct grouping percentage for each class 612 

 613 

 614 
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 615 

Figure App 4 dendrogram for Case 2  with VSN preprocessing. Legend: Color samples measured (classes). Table: correct 616 
grouping percentage for each class 617 

 618 

 619 

Figure App 5 dendrogram for Case 3  with SG-D+SNV preprocessing. Legend: Color samples measured (classes). Table: 620 
correct grouping percentage for each class 621 

 622 
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 623 

Figure App 6 dendrogram for Case 4  with VSN+EMSC preprocessing. Legend: Color samples measured (classes). Table: 624 
correct grouping percentage for each class 625 


