
HAL Id: hal-03692434
https://ifp.hal.science/hal-03692434v1

Submitted on 9 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mass fractal dimension from 2D microscopy images via
an aggregation model with variable compactness

Giulia Ferri, Severine Humbert, Jean-Marc Schweitzer, Mathieu Digne,
Veronique Lefebvre, Maxime Moreaud

To cite this version:
Giulia Ferri, Severine Humbert, Jean-Marc Schweitzer, Mathieu Digne, Veronique Lefebvre, et al..
Mass fractal dimension from 2D microscopy images via an aggregation model with variable compact-
ness. Journal of Microscopy, 2022, 286 (1), pp.31-41. �10.1111/jmi.13088�. �hal-03692434�

https://ifp.hal.science/hal-03692434v1
https://hal.archives-ouvertes.fr


Mass fractal dimension from 2D-microscopy images via an aggregation
model with variable compactness

Giulia Ferri1,∗,Severine Humbert1, Jean-Marc Schweitzer1, Mathieu Digne1, Veronique Lefebvre1

and Maxime Moreaud1,2

1 IFP Energies Nouvelles, Solaize, Rhône, 69360, France
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Microscopy-image analysis provides precious information on size and structure of colloidal ag-
gregates and agglomerates. The structure of colloids is often characterized using the mass fractal
dimension df , which is different from the two-dimensional fractal dimension dp that can be com-
puted from microscopy-images. In this work we propose to use a recent morphological aggregation
model to find a relationship between 2D image fractal dimension and 3D mass fractal dimension of
aggregates and agglomerates. Our case study is represented by scanning transmission electron
microscopy-images of boehmite colloidal suspensions. The behaviour of the computed df at different
acid and base concentration shows a fair agreement with the results of Small Angle X-Ray Scat-
tering and with the literature, enabling to use the df vs dp relationship to study the impact of the
composition of the colloidal suspension on the density of colloidal aggregates and agglomerates.

keywords: fractal dimension, morphological model, image analysis.

1 Introduction

Image-analysis is frequently used to characterize colloidal particles of silica1, alumina2, soot or car-
bon. These particles can exist as a powder or within liquid suspensions, and they find applications
in different domains like electronics, pharmaceutic and catalysis3. Such applications depend on
particles size and structure that are the result of the particles aggregation or agglomeration mech-
anism4;5;6. For this reason the control of aggregation and agglomeration within colloids is of high
importance. In literature, the terms aggregate and agglomerate are often used interchangeably.
When it is necessary to distinguish between them, authors refer to the type of cohesive force that
can be either strong or weak7. With regard to the colloidal boehmite suspensions characterised in
this work, assemblies of maximum diameter lower than or higher than 80 nm are called aggregates
or agglomerates, respectively.

The mass fractal dimension df is often used to characterize the structure of aggregates and
agglomerates. Assuming that an aggregate/agglomerate consists of N identical spheres of radius a,
the fractal dimension relates N to the gyration radius Rgyr

8;9;10.

N = kf

(
Rgyr

a

)df

(1)

where kf is the fractal pre-factor whose value varies typically between 1 and 1.2, depending on
the fractal dimension itself11. The mass fractal dimension is close to unity for linear clusters and
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increases up to a maximum value of 3 for clusters with several folded branches. df can be measured by
experimental scattering techniques such as Small Angle X-Ray12 or Neutron13 Scattering. A change
in df of a colloidal aggregate/agglomerate modifies its density, involving different dispersibility and
settling behaviour14. This changes the workability of a colloidal suspension, as well as the textural
properties of the solid obtained after a precipitation or drying process. In the context of γ-alumina
catalyst carriers synthesis, the porosity of the final solid depends on the size and shape of the
aggregates (meso-porosity ≃ 10 nm) and agglomerates (macro-porosity ≃ 100 nm) resulting from
colloidal inter-particle interactions during different stages of preparation. By varying the chemical
parameters of the colloidal suspension, it is possible to change the aggregation and agglomeration
processes15, leading to different size distribution and fractal dimension. Our interest is to use
microscopy-image analysis to study this behaviour, in order to determine the physical-chemical
parameters that lead to specific structure change within boehmite suspensions.

In this work, a characteristic fractal dimension dp is computed from microscopy images of
boehmite aggregates and agglomerates. dp is then related to the mass fractal dimension df . A
similar purpose has been addressed many times in literature. The fractal dimension computed on
two-dimensional images depends on the calculation method used16;17. For this reason, in order to
compare several images it is necessary to use the same computation algorithm. Other studies on the
relationship between cluster mass fractal dimension and their projection report that for 2 < df < 3
the difference df − dp increases with df

18.
In this work the projected fractal dimension dp is measured using the relationship between area

and perimeter19. This method is extensively used20;21, enabling to obtain directly a two-dimensional
fractal dimension from the slope of the graph log(P 2) vs log(A), where P and A are respectively
the perimeter and the area of the projections. The slope tends to 1 for circular objects and to 2
for linear objects. Since the fractal dimension of the projection dp is different from the mass fractal
dimension df , a relationship between these two parameters22;23;24;25;26 is needed.

The aim of our work is to numerically provide such relationship, using a recent morphological
aggregation model27. The model is used to build clusters with a statistical average fractal dimension,
as well as their opaque projections.

2 Determination of 3D-fractal dimension from 2D-microscopy
images

In this section, we consider Scanning transmission electron microscopy (STEM) images of colloids
of a boehmite suspension (on the left in Fig.1) and we explain the step-by-step strategy to extract
df from such images.

2.1 Image processing and determination of dp

To compute the perimeter and area on STEM images, several operations are applied. The image noise
is reduced28;29 by preserving the sharp edges of objects. Morphological black TopHat operator30 is
applied consisting on difference between the image and a morphological opening γ of the image, and
a threshold operator trs such that

trs(I(x)) =

{
1|I(x) > s

0|I(x) ≤ s
.

Extracted solid suspension can be expressed for an image I as trs(I−γB(I)) where s is obtained
by inter-class variance maximization on the histogram of I 31, and B is the structuring element which
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Figure 1: Experimental image (on the left) and its binary version (on the right).

in our case is a disc of radius 30 pixels. In order to reduce the remaining noise, the morphological
operations of opening γ and closing φ are applied, defined for the image I and the structuring element
C as γC(I) = δC(εC(I)) and as φC(I) = εC(δC(I)) where δ and ε are respectively morphological
dilation and erosion30, C is a disc of diameter 6 pixels. The last step of image cleaning consists in a
hole filling and in the removal of the objects touching the edges of the image30. The holes are not
always related to the existence of a real hole but rather to variations in thickness. While objects
touching the borders would provide a misleading perimeter and area. Fig.1 reports an example of an
experimental image and of the final binary image. On the binary images it is possible to calculate the
perimeter P and area A of each object. The dp is estimated from the slope of the line interpolating
the experimental points on the plot log(P 2) vs log(A)19. To estimate the df corresponding to a
given dp it is necessary to pass through a morphological model.
It is worth considering that the structures observed via STEM images are affected by the sample
preparation process (drying under IR lamp). Furthermore, the choice of structuring element B can
have a significant impact on the calculation of dp. For this reason, in order to compare the results, it
is important to prepare all samples following the same procedure and to perform the image analysis
using the morphological operations in the same order and with the same structuring elements.

2.2 Morphological aggregation model

The morphological aggregation model27 builds clusters consisting of N non-overlapping elementary
objects arranged according to a given statistical average fractal dimension df . Clusters are built
by sequential addition, assigning a different sticking probability to the points on the cluster. In
particular, ”concave points”, leading to compact clusters, are distinguished from ”non-concave”
points, leading to loose structures. In addition the concave points closest to the center of mass of
the cluster are distinguished as well, in these points the maximum compactness is reached. The
model enables to obtain clusters with a fractal dimension df between 1.3 and 3. A fast scheme is
available in case of spheres27 and is used in this present work. A new object P is stuck to a cluster
C either in a point on the cluster dilation

XP = F (δP (C)), (2)
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either on a concave point of the dilation

XCV
P = F (δP (C)) ∩ F (φr(δP (C))/δP (C)) (3)

or in the concave point closest to the center of mass of the cluster C

XM
P = x ∈ XCV

P |infd(x,M). (4)

The expression φr(δP (C))/δP (C) means the difference between the two sets. F (X) is the set of
points at the border of X, F (X) = {z : Bz ∩ X̆ ̸= ∅}, with B unit ball, M is the center of mass
of the cluster C and d(x,M) is the euclidean distance between the position x of the concave point
and M . Fig.2 illustrates how the morphological operations enable to select the concave regions of a
cluster’s boundary. An implementation of this model is available on the plugim! platform32.

𝑃 

𝑃  ∈ 𝑋𝑃
𝑀  

𝑃  ∈ 𝑋𝑃  

𝑃  ∈ 𝑋𝑃
𝐶𝑉  

Figure 2: The dilated set XP (in gray), the set of concave regions XCV
P (in blue) and XM

P are
illustrated for a cluster C during the simulation. P is the primary particle.

2.3 Construction of df vs dp chart

In order to compute dp of a cluster generated by the model, it is necessary to generate the projections
of numerous clusters for a given df in the largest range for N (the number of elementary spheres).
The mass fractal dimension df of each cluster is determined with Eq.(1) using the plots reported
in Appendix A. In the present study a fractal pre-factor kf of 1.2 is used, in order to establish
reference values for df of the clusters generated27. This value has been chosen because it provides a
mass fractal dimension less than or equal to 3 for simulated clusters consisting of spherical particles.

The model inlet parameters were chosen in order to obtain a target statistical average df . Only
the clusters with

∣∣df − df
∣∣ ≤ 0.01 were used to compute the projection. For each cluster, one

orthogonal projection is computed, since a large number of simulations is performed it is possible
to assume that area and perimeter computed on the projection are anisotropic. Fig.3 represents
three-dimensional clusters with their projection for different number of elementary spheres N . A
hole filling operation is performed to obtain projection comparable to experimental images30. The
computation of area and perimeter enables the construction of the log(P 2) vs log(A) plot, whose
slope is dp

19.
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Figure 3: Illustration of three-dimensional clusters and their projections for α = β = 0.1 and
N = 20, 40, 160. α and β are the compactness parameters of the morphological aggregation model,
more details are in Ferri et al.27.

2.4 Relationship between dp and and df

In Fig.4(a) the aggregation morphological model is used to compute the df vs dp chart. The higher
is df , the lower the dp of its projection, similar results were obtained by Ehrl et al.26, with a linear
relationship between the two parameters. In our case a polynomial of third degree represents more
accurately the results

df = 6.03 · (dp)3 − 25.63 · (dp)2 + 34.13 · dp − 11.55. (5)

The coefficients of the polynomial minimize least-squares fit.
Eq.(5) is valid for the morphological aggregation model described in a previous work27, using

spherical primary particles. Since there is no one-to-one correspondence between the fractal dimen-
sion of a cluster df and the dimension of its projection dp, it is not possible to conclude whether
this relationship can also be valid for other random aggregation models.

2.5 Validity region

To compare experimental and model projections, the perimeter-area plots are represented as log(P 2)
vs log(A/A0), where A0 is the projection of the elementary object forming the cluster.

Aggregation simulations were performed with a sphere of radius 10 pixels, corresponding to an
opaque projection of area A0 of 380 pixels. This is important so that the relationship shown in
Fig.4(a) does not depend on the size scale and unit of measurement. The Eq.(5) is valid within
limits, in terms of projected log(A/A0), for a given df . The lower and the upper limit (respectively
lA,min and lA,max) are reported as reachable limit ranges by the aggregation model. The upper limit
is also due to the maximum simulation volume, which in our case is of 109 voxels for time computing
constraints.
The lower and the upper limits can be described as a function of df fitting respectively the lowest
and the highest log(A/A0) of the opaque projections of the simulated clusters.
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Figure 4: df vs dp relationship described in Eq.(5) in (a) and its validity in terms of surface area A
in (b).

lA,min = 0.67 · (df )4 − 5.12 · (df )3 + 14.37 · (df )2 − 17.12 · df + 7.49

lA,max = −7.17 · (df )4 + 68.19 · (df )3 − 241.09 · (df )2 + 377.70 · df − 220.91. (6)

The validity region and its limits are represented in Fig.4(b). A0 does not influence the results for
dp, but only the domain of validity of the relationship in Eq.(5) on the log(P 2) vs. log(A/A0) plot.

3 Experimental application to boehmite suspensions

In this section, we use the relationship between df and dp to compute the mass fractal dimension
from STEM images of different boehmite suspensions. Results are compared to Small Angle X-Ray
Scattering and literature.

3.1 Boehmite suspensions preparation

Boehmite suspension are prepared with a highly dispersible powder from Sasol GmbH whose crys-
tallites have the geometry of a rectangular beam with dimensions 5.2, 8.1 and 2.4 nm. These values
are obtained from the X-Ray diffractogram using generalized Debye equation2. The colloidal sus-
pensions are prepared with different concentration of 1M Fisher Scientific nitric acid (J/5550/PB15)
and 1M Chem-Lab ammonia (CL05.0101.1000). The powder concentration is kept at 0.02 g/L in
order to minimize overlapping in STEM images. The composition of the samples is shown in Tab.1.
The table also reports the measured pH (Mettler-Toledo Seven2Go pH meter). A2 and B0 are the
same suspension, which represents the initial conditions before ammonia addition (samples B1-3).

3.2 STEM Images Acquisition

A droplet of 10 µL of the suspension is deposited on copper grids with carbon membranes without
holes and dried under IR lamp. After 2 min, the excess water is drawn off with a tissue paper.
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Table 1: Composition, fractal dimension and average diameter of the boehmite suspension samples
Sample Name HNO3 [mM] NH3 [mM] pH dp df D [nm]

A0 0 0 5.6 1.21 2.91 37
A1 0.75 0 3.4 1.26 2.83 22
A2-B0 1.5 0 2.9 1.28 2.79 21
A3 37.5 0 2.6 1.37 2.62 25
B1 1.5 1.9 4 1.37 2.62 682
B2 1.5 2.2 7.5 1.34 2.68 915
B3 1.5 3.2 9.6 1.22 2.90 1122

The samples are characterized with Scanning Transmission Electron Microscope (STEM), using
a FEI Nova NanoSEM microscope operating at 15keV.

The different chemical parameters of the suspensions (acid and base concentration) of the samples
causes the formation of structures ranging within a wide size range (10 nm - 10 µm). For this reason,
the magnification level for a given sample is chosen in order to visualize the largest objects in their
entirety. In particular we use a magnification of X 50000 for the samples A0, A1, A2 and A3, and
a magnification of X 1500 is used for B1, B2 and B3.

3.3 Small Angle X-Ray Scattering

The analyses were performed at the SWING beamline at synchrotron SOLEIL in Saint Aubin,
France. The boehmite suspensions are placed in a stirred reactor, from which the sample is pumped
continuously through a quartz capillary of 1.5 mm, crossed by the X-ray beam, whose incident
energy is 10 keV. The experiments are realized on an initial boehmite suspension analogous to the
A2-B0 at 1 g/L. The SAXS curves measured 30 min after the base injection are fit with Beaucage
model33 in order to compute the mass fractal dimension. The model is detailed in Appendix B.

3.4 Monitoring of boehmite dispersion upon acid addition

The aggregates (observed in the samples A0, A1, A2 and A3) have an average diameter D between
20 and 40 nm (Tab.1). This diameter is calculated by averaging the diameters of objects on binary
microscopy images. The diameter of each object is calculated as the average of the minimum and
maximum diameters. For these objects A0 is the one of an elementary crystallite. The average
surface of the opaque projection of the crystallite is 38.25 nm2, obtained by averaging on 1000 pro-
jections considering random 3D orientations34 with a precision of 0.1 nm/voxels. Such estimation
accounts for discretization issues, and it is close to the one computed using the Cauchy average
projected area theorem, which is 37.02 nm2.
We report the STEM images of the aggregates at different acid concentrations and their correspond-
ing log(P 2) vs log(A)/ log(A0) plots in Fig.5.

The grey regions in these graphs refer to the validity limits of the df - dp relationship (Fig.4).
The results of dp and df (computed with Eq.(5)) are reported in Tab.1. The dispersion in acid leads
to an increase in dp, indicating the formation of loose structures. This is in agreement with df , and
quite visible from the STEM images. The objects present in A3 are more elongated than the ones
in A0-1. We observe a change of around 0.3 units of df . The difference between A3 and A2 is less
noticeable, but the image processing enables to identify it. In conclusion, the acid content decreases
fractal dimension of the boehmite suspension as it has been observed in other research works35.

7



500 nm

(a) STEM image of A0 (b) log(P) vs log(A) plot of A0

500 nm

(c) STEM image of A1 (d) log(P) vs log(A) plot of A1

500 nm

(e) STEM image of A2-B0 (f) log(P) vs log(A) plot of A2-B0

500 nm

(g) STEM image of A3 (h) log(P) vs log(A) plot of A3

Figure 5: STEM images and log(P 2) vs log(A) plots of boehmite suspensions for varying acid
content.
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30 µm

(a) STEM image of B1 (b) log(P) vs log(A) plot of B1

30 µm

(c) STEM image of B2 (d) log(P) vs log(A) plot of B2

30 µm

(e) STEM image of B3 (f) log(P) vs log(A) plot of B3

Figure 6: STEM images and log(P 2) vs log(A) plots of boehmite suspensions for varying base
content.
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Figure 7: df computed via image analysis and Eq.(5), and measured with Small Angle X-Ray
Scattering at different pH.

3.5 Monitoring of boehmite agglomeration upon alkaline addition

In a similar way, the relationship between df and dp is used to characterize objects of a bigger
scale, the agglomerates (in samples B1-3), obtained by ammonia addition to the suspension A2-B0.
The average diameter D is of several hundreds of nanometers (Tab.1). In this case, the elementary
particle is the aggregate, and A0 was taken as the average area of the dispersed sample A2-B0,
which is 453 nm2. We now focus on the STEM images in Fig.6. The effect of the base content seems
to favour the formation of more compact structures with a decrease in dp. Between samples B1-2
and B3, we notice an evident change in the structure. Sample B3 presents highly compact objects
Fig.6(e), for which the mass fractal dimension is 2.9. For B3 the pH is close to the Point of Zero
Charge (PZC) of the suspension36. In these conditions the agglomeration is typically favoured37.
We were able to observe an increase in the mass fractal dimension towards the PZC also with in-situ
Small Angle X-Ray Scattering. Details on SAXS data are reported in Appendix B. The fractal
dimension of SAXS agglomerates is compared to the one obtained from microscopy images in Fig.7.

The behaviour observed in SAXS results suggests that the proximity to PZC, besides favouring
faster kinetics, leads to more compact structures. Since the operating conditions required by each
analysis technique are different, a comparison can only be made on the basis of a trend. Even if
the concentration and the sampling is different, the STEM image processing also showed that a pH
close to PZC lead to more compact structures.

For a further improvement of our approach, it would be interesting to investigate in the future the
effect of drying (under IR lamp) on the fractal dimension of boehmite agglomerates. Or to compare
the fractal size estimated from scattering data with that obtained from liquid phase microscopy
techniques.

4 Conclusion

The presented work provides a strategy to compute the mass fractal dimension from two-dimensional
microscopy images. A relationship between dp and df is numerically found using a recent morpho-
logical aggregation model. The mass fractal dimensions we obtained are in fair agreement with a
visual estimate, enabling to use STEM images to determine the impact of different operating con-
ditions on the structure of aggregates and agglomerated formed within a colloidal suspension. This
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allows a better insight of the physical-chemical aspects that produce such structures In particular,
we observed that an increase in acid concentration, causes the formation of more loose structures,
with a decrease in df . While the increase of base content leads to more compact structures, leading
to higher df . A complete validation of our approach is achieved by comparison of our results for
boehmite suspension at different acid and base contents, with the literature and Small Angle X-Ray
Scattering experiments.
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Appendix

A log(P) vs log(A) plots

This section shows the plots produced by relating the perimeter and area of the morphological model
projections for df = 2, df = 2.3, df = 2.5 and df = 3 in Fig.8. The dp is obtained from the slope of
these plots.
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Figure 8: Log(P ) vs log(A) plots obtained with the morphological model.
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B SAXS data

B.1 Beaucage model

The general formula of the model for n structural levels is

I(q) =

n∑
i=1

Gi · exp
(
−

q2R2
gyr,i

3

)
+Bi

(
−

q2R2
gyr,i+1

3

)
·


(
erf

(
q · ki · Rgyr,i√

6

))3

q


Pi

(7)

• n equals to 1,2 or 3 for agglomerates, aggregates and crystallites respectively.

• Gi is the Guinier pre-factor depending on the number concentration of the structural unit
Nd ·r2e ·∆ρ2 ·Vi (Nd is the particles number density, re is the electron radius, ∆ρ is the electron
density difference between the sample and the environment, V is the average particle volume).

• Rgyr,i is the gyration radius.

• Bi is a constant pre-factor depending on the type of power-law scattering and on Pi
38.

Bi =
Gi · Pi

R(gyr, i)Pi
· Γ

(
Pi

2

)
·
(

6 · P 2
i

(2 + Pi) · (2 + Pi)

)Pi
2

. (8)

• ki is an empirical constant that depends on Pi
38, its value is close to 1.

• Pi is the slope of the curve in the structural level i, corresponding to the fractal dimension.

In our case, the SAXS curves present three scales. A nonlinear Least-Square Algorithm DN2FB39

has been used for the curve fitting.

B.2 SAXS results

The scattering curve of a boehmite suspension at 1 g/L at pH close to the PZC (9.4) is reported in
Fig.9. The three contributions of the simulated scattered intentity by agglomerates, aggregates and
crystallites are illustrated.

The experimental data are fit within a range of 0.001255 Å−1 ¡ q ¡ 0.1998 Å−1 for the scattering
vector. Corresponding to a maximum diameter ξl between 3 and 500 nm. According to the model,
the agglomerates scatter in a range of 0.0078 Å−1 ¡ q ¡ 0.1998 Å−1, for a maximum diameter 80 nm
¡ ξl ¡ 500 nm according to the relationship

ξl =
2π

q
. (9)

Due to the size limit of SAXS results, the comparison with microsopy images is made under the
assumption that the fractal dimension is the same even for objects larger than 500 nm in diameter.
This assumption can be confirmed in terms of dp by the microscopy images analysis. Fig.10 shows
a microscopy image of our boehmite suspension, its binary image and the relative plot log(P 2) vs
log(A) in which the points relative to the objects with a maximum diameter higher and lower than
500 nm are highlighted in different colours. The points can be represented by the same line, and
therefore by the same dimension dp.
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Figure 9: Experimental and simulated scattered intensity of a boehmite suspension at 1 g/L and
pH close to the PZC. The simulated curve is given by the sum of three terms corresponding to
agglomerates, aggregates and crystallites.

(a) (b)

(c)

Figure 10: (a) STEM image of boehmite agglomerates obtained with a magnification of X 3000.
Binary STEM image in (b). In (c) log(P ) vs log(A) plot where the blue and green dots refer to the
objects whose maximum diameter is below and above 500 nm respectively.
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