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Bayesian Estimation and Control of Engine 
Knocking Level for Transient Operation

Maxime Jean   , Thomas Leroy, and Fabien Vidal-Naquet

Abstract— The contribution of this article is to propose a knock
controller based on the estimation of the distribution quantile of
the knock intensity measurements. Despite the quantile estima-
tion randomness, the corrections undertaken by the controller are
moderated by the level of confidence in the quantile estimation.
This strategy offers a fast control ensuring a better compromise
between the engine efficiency and the prevention of knock
phenomenon. The design of the controller reduces the engine
torque fluctuations and is suited for engine transient operations.

Index Terms— Bayesian inference, knock control, quantile
estimation, spark-ignition engine, transient response.

I. INTRODUCTION

THE spark-ignition timing of four-stroke engines is a
critical degree of freedom to be carefully controlled by

the electronic control unit. An optimally advanced ignition 
timing with respect to the top dead center helps to reach 
higher pressure in the combustion chamber and enables to 
retrieve more mechanical power from the gas oxidization [1]. 
For this reason, maximizing engine efficiency encourages to 
set the spark advance as close as possible to this optimum 
value. However, excessive temperatures generate the knock-
ing phenomena. It is commonly accepted that the knocking 
mechanisms rely on the uncontrolled autoignition of the air/gas 
mixture. Knocking generates undesirable shock waves within 
the combustion chamber and damages the materials constitut-
ing its inner surface. The spark advance has to be set to its 
optimum value to maximize fuel efficiency. However, it should 
also occur late enough in order to prevent knocking regimes. 
The knocking limit of the spark advance depends on engine 
operating conditions and could result in efficiency losses; this 
is an engineering compromise. An online controller answering 
this tradeoff has to be designed to ensure the optimal run of the 
engine. For given operating parameters, the random occurrence 
of the knocking phenomena [2] leads to adopt a probabilistic 
description. Knock intensities would be considered as stochas-
tic quantities. Accordingly, a knocking engine state (operated 
at steady state) would exhibit both knocking and nonknocking 
cycles. An operating point is deemed knocking based on the 
fraction of knocking cycles.

Considering the stochastic nature of the knocking phe-
nomena, feedback loop controllers built on a probabilistic
approach have already been developed [3]–[12]. Instead of
acting immediately to a punctual high knock intensity mea-
surement, actions can be taken only if their relevance is
supported by accumulated measurements stored in a buffer
memory. If computed over few samples required to follow the
engine dynamics, the inaccuracy and noise of the estimation
of the knocking probability lead to irrelevant corrections of the
spark-ignition timing. The consequences of these fluctuations
are a suboptimal spark advance and engine torque fluctuations.
A solution is to moderate the corrective actions undertaken by
the controller with the level of confidence in the estimation of
the knocking probability.

This article adopts a Bayesian framework. A decision crite-
rion is assessed based on past measurements. If conditions
are met with high probability, the controller undertakes a
corrective action. Two estimators are derived from the standard
Bernoulli and log-normal models. The Bayesian inference
based on a log-normal model has been used in [13]. However,
the proposed approach derives the posterior probability that
the engine is in a knocking state without approximations,
offering a simple design. If the knock intensities conform
to a log-normal model, it is also shown that using this
model improves the precision of the estimation. The controller
developed in [14], maintaining the probabilities of different
theories, is insensitive to departures from parametric mod-
els, but potentially misses valuable information in return.
An implementation based on filters is proposed. Promising
properties of the proposed controller were presented in [15],
without mathematical derivations. The developed method may
give sufficient precision for feedback control and may be
suited for the engine transient regimes. An improvement of the
algorithm is also proposed to undermine older measurements
and strengthen newer measurements. The simplicity of the
computations allows its online implementation.

This article is organized as follows. In Section II, physical
modeling of the knock intensities is described. Section III
describes the two Bayesian estimators relying on different sets
of assumptions and selects the most appropriate. Section IV
describes the weighting of the observations. Section V presents
a simple controller based on the proposed Bayesian estimator.
Section VI describes its performance.

II. KNOCKING PHENOMENA

A. Knock Intensity Measurement
The shock waves generated by the autoignition excite

the vibrational modes of the system. The measurements
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from an accelerometer attached to the cylinder block contain
the signatures of the corresponding natural frequencies. The
accelerometer signal, sent through an adapted time and fre-
quency window function filter, evaluates the magnitude of the
excitation. Different methods exist to get a single scalar per
cycle. The maximum amplitude pressure oscillation (MAPO)
is adopted here. The knock intensity measurement in itself
is not in the scope of this article and it is admitted that
the MAPO constitutes a sufficient measurement of the knock
intensity [16]. In this article, the MAPO experimental data
refer to the maximum peak value of the filtered signal of
the sensor. The MAPO provides an intensity quantification
of the vibrations caused by two combined sources: knock
and engine noise. Therefore, no static knock intensity thresh-
old above which a cycle would be deemed as a knocking
cycle can be defined over the operating range of the engine.
A standard solution is to map this threshold on the engine
speed and torque. In this study, such a map is assumed to
be known.

In practice, rather than reacting to every single knocking
occurrence, a small fraction of knocking cycles is tolerated.
It is generally set at 5% [17], but other percentages could
also be selected. An operating point exhibiting less than 5%
of knocking cycles is seen as energetically suboptimal if its
efficiency can be increased at the cost of having more frequent
knocking occurrences. More than 5% of knocking cycles is
unacceptable.

Other promising knock intensity measurements based on
different physical properties exist (e.g., ion current detec-
tors [18], [19], cylinder pressure sensors [16], and micro-
phones [20]). If they provide a better quantification of the
intensity of the knocking phenomena, the proposed algorithm
may be adapted to use the feedback measurements of these
sensors.

B. Engine Knock: A Stochastic Process

Deterministic prediction models of knock occurrences are
unreachable due to the stochastic nature of knocking phe-
nomena [21]. Moreover, considering the complexity of the
underlying physicochemical processes, it is arguable that
knock has an intrinsic probabilistic nature [22]. A statistical
description has emerged as relevant to describe experimental
observations. This suggests to adopt a probabilistic theoretical
framework and to consider the knock intensity measurements
as realizations of random variables [3]–[5], [14], [23], [24].
A knock intensity measurement campaign has been per-
formed on engine test bench. The engine under consideration
is a 1.2-L three-cylinder turbocharged spark-ignition engine
using a direct injection technology. Operating points are
defined by the engine speed and load, measured as indicated
mean effective pressure (IMEP). For several operating points,
the engine actuators are adjusted to achieve optimal efficiency.
For each of these operating points, a spark advance sweep is
conducted while maintaining the other actuators to their opti-
mal set point. In particular, it affects the IMEP. On each step of
spark advance, the knock intensity values of 300 consecutive
cycles have been acquired. Measurements of the operating

Fig. 1. Knock intensity and mean IMEP for different spark advance timing.

point 1750 rpm and 18 bar of IMEP are shown in Fig. 1.
It depicts the increase of standard deviation of the knock inten-
sities with the spark advance. It also shows the compromise
between fuel efficiency and knocking occurrences. The spark
advance is expressed in degrees of Crankshaft angle (◦CA)
before the top dead center (TDC).

Rephrasing the condition described in Section II-A into a
probabilistic perspective is to ensure that the knock intensity
of the next cycle, seen as a random variable, has a probability
of 5% to exceed the mapped threshold.

1) Independently and Identically Distributed: The distribu-
tion of these random variables depends on the engine operating
point (speed and load) and state (spark advance, tempera-
ture, and other unmeasured exogenous parameters). When
the engine is working on steady states over relatively short
time scales, the abovementioned parameters stay constant and
the knock intensities are identically distributed. Furthermore,
autocorrelation functions analyzed in [2], [13], [20], [21],
[25], [26] clearly show the cycle-to-cycle independence of the
knock intensities. Those two considerations fully support the
design of a stochastic controller. Even though this hypothesis
is legitimate, it does not hold anymore for transient regimes.

2) Log-Normally Distributed: In addition, the knock inten-
sities, given a constant engine state, are sometimes assumed to
be log-normally distributed. A random variable is log-normally
distributed if its logarithm is normally distributed. This
hypothesis is presented and challenged in [27]. This assump-
tion has been again highlighted by the measurement campaign
previously mentioned. For instance, the empirical probability
density functions, obtained with a kernel estimation [28], and
corresponding to Fig. 1, are shown in Fig. 2. Their cumulative
distribution functions and their theoretical log-normal fits are
shown in Fig. 3.

The log-normal distribution is well suited to describe the
distribution of the value of interest. However, this is just
a convenient model, not relying on any physical explana-
tion. It might not describe correctly the knock intensities
for all operating points. Other models are available in the

 



Fig. 2. Experimental probability density functions of the knock intensity
measurements for different spark advances.

Fig. 3. Cumulative distribution functions (experimental and theoretical) of
the knock intensity measurements for different spark advances.

literature [27], but the log-normal model has been chosen for
its simplicity and because its good description of the knock
intensities is relatively consensual.

C. Spark Advance: A Knock Intensity Control Parameter

The spark advance S A is the single degree of freedom of
the proposed controller. The knock intensities decrease when
S A decreases and moves further from its optimal value [29].
In general, the spark advance timing is adjusted based on a
comparison between the knock intensities and the threshold.
If necessary, the spark advance is decreased to reduce the
knock intensity; however, there is an associated efficiency loss.

Nonmonotonous spark adjustments at every step should be
avoided. They needlessly increase the coefficient of variance of
the IMEP (common combustion stability indicator), impacting
the driving comfort. Also, they make probabilistic estimations
less precise in comparison with constant spark advances.

III. BAYESIAN ESTIMATION

A. Mathematical Modeling

For each engine cycle i ∈ N, the notation K Ii stands for
the random variable of the knock intensity measurement, only
depending on the engine state. Its realization, once it has
been observed, is written kii . The mapped knocking threshold

(generally on the engine speed and load) is θi . In order to
limit the number of notations, the target value of the fraction
of knocking cycles (5%) is directly used in this article. The
algorithm would not be changed if another value was selected.
It leads to the definition of the decision criterion Hi at
cycle i

Hi : Pr(K Ii > θi) > 0.05. (1)

Also, its contrary is

Hi : Pr(K Ii > θi) ≤ 0.05. (2)

B. Decision Criteria

The state of Hi ∈ {true, false} determines which correction
the controller has to apply. However, the intrinsic random
nature of K Ii makes the estimation of Hi necessarily uncer-
tain. Thus, instead of estimating only the single Boolean Hi ,
the proposed algorithm estimates the probability, given the past
measurements, that Hi is true. If this probability exceeds a
specific threshold b (99% in the following sections), then the
spark advance should be decreased. The other way around
is that if Pr (Hi) = 1 − Pr (Hi) exceeds b, then an opposite
corrective action has to be taken.

According to Section II-B1, if the engine is running in
a steady state, (K Ii )i∈N is a sequence of random variables,
independent and identically distributed.

In particular, if the engine state is constant during [ j, i ],
j < i , then kii and ki j can be seen as two independent
realizations of the same random variable.

Otherwise, the identical property might not hold any more.
However, for n much smaller than the characteristic time
of variation of the engine state, one can assume that the
n random variables K Ii−k, k ∈ [[1, n]] are equal in law
(or identically distributed). Then, the measurements kii−k are
independent realizations of random variables equal in law to
K Ii . It allows to derive Bayesian estimators inferring Hi from
the n last knock intensity measurements, stored in a buffer
memory. n ∈ N needs to be experimentally adjusted. This
assumption obviously does not hold during rapid transients.
n should then be kept as small as possible. Bayesian, over
frequentist, approaches provide better estimation since limit
theorems cannot be used.

C. Bernoulli Distribution Model

1) Model: In this method, no further assumptions are made
on the distribution of K Ii . It is a common framework estab-
lished in the literature in order to derive the probability of Hi

or at least its likelihood. The method relies on the statistics
Yi := {1 if K Ii > θi , 0 else}. Its realization is written as yi .
In this formalism, there exists a probability pi ∈ [0, 1] such
that Yi follows a Bernoulli distribution law written as

Yi | pi ∼ Be(pi). (3)

Note in particular that

Hi is true ⇔ Pr(K Ii > θi) > 0.05

⇔ Pr(Yi = 1) > 0.05

⇔ pi > 0.05. (4)

 



2) Bayesian Inference: For all i , the probability that Hi is
true should be inferred from the n last measurements of knock
intensities.

Property 1: The posterior distribution of pi derived with a
noninformative reference prior, given the n last measurements,
is

π(pi | Yi−1 = yi−1, . . . , Yi−n = yi−n)

∝ pzi−(1/2)
i (1− pi)

n−zi−(1/2) (5)

with π( · ) the probability density function. Or equivalently

pi | yi−1, . . . , yi−n ∼ Beta

�
zi + 1

2
, n − zi + 1

2

�
(6)

with zi =�n
k=1 yi−k .

It derives from the Bayes formula applied to the independent
and identically distributed random variables Yi−k , k ∈ [[1, n]].
It is a common result and can be found in [30]. The selection of
the noninformative prior distribution of pi demands, however,
some justification. It is chosen such that it has a minimal
impact on the posterior distribution. It would then ensure that
the Bayesian inference derived from the n last observations
is not biased by potentially irrelevant prior information. The
reference prior introduced by José-Miguel Bernardo [31], [32]
has been selected. It maximizes in some particular way the
information entropy of the posterior distribution. A rigorous
proof of its derivation is given in [33]. It provides the following
improper form of the prior distribution:

π(pi) ∝ p−(1/2)
i (1− pi)

−(1/2). (7)

Property 2: The posterior confidence interval [pmin
i , pmax

i ]
of pi , such that Pr(pi > pmin

i ) = Pr(pi < pmax
i ) = b, is simply

written as �
F−1

pi
(1− b)� �� 	
pmin

i

, F−1
pi

(b)� �� 	
pmax

i



(8)

with Fpi the cumulative distribution function of pi .
3) Decision Criterion: The confidence interval is shown

in Fig. 4 for n = 10 and zi ∈ [[1, n]]. This leads to the
expression of the following decision criterion:

Pr(Hi is true) > b ⇔ Pr(pi > 0.05) > b

⇔ 1− Fpi (0.05) > 1− Fpi (pmin
i )

⇔ pmin
i > 0.05. (9)

In a similar way, Pr(Hi) > b ⇔ pmax
i < 0.05. In fact,

[pmin
i , pmax

i ] is the centered 98% confidence interval of pi .
If the target 0.05 lies outside of the confidence interval, one
can be 99% sure that pi is lower or higher (depending on its
relative position to the confidence interval) than the target.

For example, Fig. 4 shows that if zi ≥ 3 (out of ten samples,
three or more exceed the threshold), then one can be 99%
sure that Hi is true and that a corrective action should be
taken. The other way around is that even if zi = 0 (none of
the measurements exceed the threshold), one cannot be sure
at 99% that Hi is true. In fact, with only ten samples, pmax

i
always exceeds 0.05.

Fig. 4. pmin
i (dots) and pmax

i (squares) as a function of zi for n = 10.
Probability of 98% for pi to be in the white area.

4) Robustness and Performance: This method does not rely
on specific assumptions about the knock intensities, besides
the cycle-to-cycle independence and identical distribution.
It offers a robust model. However, because Yi provides a partial
description of K Ii , the method has a slow convergence. If the
engine was always successfully controlled, a prior stating that
pi lies in the vicinity of 0.05 could have been used. However,
in sharp transients, it is unreachable and would undesirably
bias the estimation. Such prior was then not selected. In
Section III-D, a second method is proposed.

D. Log-Normal Distribution Model

This section introduces the derivation of the posterior prob-
ability that the engine is in a knocking state.

1) Model: The condition Hi can be rephrased in terms of
distribution quantile. Introducing the 95% quantile qi of the
distribution of K Ii , one has by definition

Pr(K Ii > qi) = 0.05. (10)

Then

Hi is true ⇔ Pr(K Ii > θi) > 0.05

⇔ Pr(K Ii > θi) > Pr(K Ii > qi)

⇔ θi < qi . (11)

The assumption of log normality of K Ii states that

∀i ∈ N, ∃(μi , σi ) ∈ R× R
+, log(K Ii ) ∼ N (μi , σ

2
i ). (12)

For example, the three log-normal probability density
functions shown in Fig. 5 share the same quantile 95%. This
quantity has to be estimated. Once again, K Ii being inde-
pendent and identically distributed during stationary regimes,
μi and σi are constant. In the following sections, the nota-
tions Xi = log(K Ii ) and xi = log(kii), its realization,
are used. The observation of the buffer memory is the
event Bi = (Xi−1 = xi−1, . . . , Xi−n = xi−n). Its sample mean
is x i = (1/n)

�n
k=1 xi−k and its sum of squared deviations is

Si =�n
k=1(xi−k − xi )

2.

 



Fig. 5. Log-normal distributions with the same quantile 95%.

2) Bayesian Inference: For a normal distribution, the 95%
quantile is directly given by the knowledge of μi and σi

through the relation

qi = μi + rσi (13)

with r = F−1
N (0.95) and FN the normal centered reduced

cumulative distribution function.
Property 3: The posterior distribution of (μi , σ

2
i ) derived

with a noninformative reference prior, given the n last mea-
surements, is

π
�
(μi , σ

2
i ) | Bi

�
∝ 1

σi
exp

�
−κi(μi − mi )

2

2σ 2
i

��
1

σ 2
i

�αi+1

exp

�
− βi

σ 2
i

�
(14)

with mi = xi , κi = n, αi = (n − 1/2), βi = (1/2)Si .
Or equivalently

(μi , σ
2
i ) | Bi ∼ NIG(mi , κi , αi , βi ). (15)

NIG standing for normal-inverse-gamma and defined by⎧⎪⎨
⎪⎩

μi | σ 2
i ∼ N

�
mi ,

σ 2
i

κi

�
σ 2

i ∼ G−1(αi , βi ).

(16)

Proof: The Bayes formula states

Posterior distribution� 	� �
π((μi , σi ) | Xi−1 = xi−1, . . . , Xi−n = xi−n)

=
Likelihood� 	� �

π(Xi−1 = xi−1, . . . , Xi−n = xi−n | (μi , σi ))

Prior
distribution� 	� �
π(μi , σi )

π(Xi−1 = xi−1, . . . , Xi−n = xi−n)� �� 	
Normalization factor

.

(17)

1) Normalization Factor: It does not depend on (μi , σ
2
i )

and can be seen as a multiplicative constant.
2) Likelihood: Because of the assumption of conditional

independence given the parameters (μi , σ
2
i ), the likeli-

hood factor can be written as

π(Xi−1 = xi−1, . . . , Xi−n = xi−n |
�
μi , σ

2
i

��
=

n�
k=1

π(Xi = xi−k)

=
�

1

σi

√
2π

�n

exp

�
− 1

2σ 2
i

n�
k=1

(xi−k − μi)
2

�

∝
�

1

σ 2
i

� n
2

exp

�
− Si

2σ 2
i

− n(μi − x i)
2

2σ 2
i

�
. (18)

Fig. 6. Joint probability density function of (μi , σi ) | Bi for the four sets
of observations.

3) Prior Distribution: The prior distribution of (μi , σ
2
i ) is

again selected to ensure a distribution as much nonin-
formative as it can be. It is [32]

π
�
μi , σ

2
i

� ∝ 1

σ 2
i

. (19)

4) Posterior Distribution of (μi , σ
2
i ): Combining (18)

and (19) gives (14).

The joint probability density function of (μi , σi ) is shown
in Fig. 6 for four different sets of ten observations. The center
dot represents the true pair (μi , σi ) from which the n random
realizations are drawn.

The computation of the posterior distribution of qi is analyt-
ically nontractable, but its confidence interval can be derived.

Property 4: The posterior confidence interval [qmin
i , qmax

i ]
of qi , such that Pr(qi > qmin

i ) = Pr(qi < qmax
i ) = b, is�

mi + ru
�

βi

�
+ [tmin, tmax] ·

�
βi (u2/κ + r2v2) (20)

with (tmin, tmax) ∈ R
2 two constants, � the Euler Gamma

function, and u = (�(αi − (1/2))/�(αi )) and v =
((1/αi − 1)− u2)1/2.
The omission of some indices i , explained in the following
proof, only concerns variables depending on the number
of observations n and not on the values taken by those
observations.

Proof: In order to find some invariant characteristics of the
joint distribution, new variables are introduced⎧⎪⎪⎨

⎪⎪⎩
Mi = μi − E(μi)

E(σi )/
√

κ i

	i = σi − E(σi )

std(σi )
.

(21)

Computations detailed in Appendix VII lead to⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E(μi) = mi

E(σi) = ui

�
βi

E(σ 2
i ) = βi

αi − 1

std(σi ) = vi

�
βi .

(22)

 



Note that E(σi )/(κ)i
1/2 is the conditional standard deviation 

of μi knowing that σi = E(σi ). The joint distribution of
(Mi ,	i | Bi) is as follows:

π(Mi ,	i | Bi) = π(μi , σ
2
i | Bi)

��(det J )−1(μi , σ
2
i )
�� (23)

with J (μi , σ
2
i ) being the Jacobian matrix of the transformation

(μi , σ
2
i ) �→ (Mi ,	i ) and det standing for the determinant of

a square matrix. The posterior probability density function of
(Mi ,	i ) can be derived as

π(Mi ,	i | Bi) =
2uivi exp

�
− 2+u2

i M2
i

2(ui+vi 	i )2

�
√

2π�(αi )(ui + vi	i)2αi+2
(24)

which does not depend on mi , κi , and βi , but only on αi . αi

is not a function of the observations, but only of the number
n of samples used in the inference. The joint distribution of
(Mi ,	i ) conditional to the observations is then invariant to
changes in the observations Bi and one has

π(Mi ,	i | Bi) = π(Mi ,	i | n). (25)

It is defined for 	 ≥ −(ui/vi ). For the sake of simplicity,
the conditional dependence ( · | n) will be omitted in the next
sections, along with the index i for the variables depending
only on the constant n, i.e., κ , α, u, v, M , and 	.

In order to compute the bounds of the confidence interval
of qi , its cumulative distribution function Fi is introduced

Fi : R→ [0, 1] s �→ Pr(qi ≤ s | Bi). (26)

The bounds of the confidence interval of qi are defined such
that Fi (qmin

i ) = 1− b and Fi (qmax
i ) = b. The relation (13)

leads to the expression in the integral form

Fi (s) =
�
Di (s)

dμi dσi π(μi , σi | Bi) (27)

with Di(s) = {(μi , σi ) ∈ R × R
+|μi + rσi ≤ s}. Or equiva-

lently

Fi (s) =
�
Ei (s)

d Md	 π(M,	) (28)

with

Ei(s) =
�
(M,	) ∈ R×

�
−u

v
,∞
� ����

× u
√

βi√
κ

M + mi + r
�

βi(v	 + u) ≤ s

�
. (29)

Using φ = atan2(u/(κ)1/2, rv), atan2 being the
four-quadrant inverse tangent, the above inequality can also
be written as�

cos(φ)
sin(φ)

�T�
M
	

�
≤ 1�

u2/κ + r2v2

�
s − mi√

βi
− ru

�
.

Defining the variable change t as the RHS of the above
inequality, one gets

Fi (si (t)) =
�
F(t)

d Md	 π(M,	) (30)

with

F(t) =
�

(M,	) ∈ R×
�
−u

v
,∞
� �����
�

cos(φ)
sin(φ)

�T�
M
	

�
≤ t

�

Fig. 7. Joint probability density function of (M, 	). Areas of probability 1%,
98%, and 1% are delimited by the distances tmin and tmax.

and

si (t) = t
�

βi (u2/κ + r2v2)+
�

mi + ru
�

βi

�
. (31)

Notice that the index i is omitted in the definition of F
because it does not depend on the realizations. The same goes
for the entire RHS of (30), which will be named F(t). The
values tmin and tmax such that F(tmin) = 1−b and F(tmax) = b
can be numerically found by a dichotomy search. The situation
is shown in Fig. 7 and F is represented in Fig. 8. Finally, one
has

Fi (q
max
i ) = b = F(tmax) = Fi (si (t

max)). (32)

Since Fi is an injective function

qmax
i = si (t

max). (33)

Following the same logic, qmin
i = si (tmin). The values of

tmin and tmax are constant, while the number of observations
n is kept unchanged. This leads to the easily implementable
algorithm �

qmin
i , qmax

i


 = �si
�
tmin
�
, si (t

max)



(34)

with si defined in (31).
Note in particular that

mi + ru
�

βi = E(μi )+ rE(σi ) = E(qi). (35)

3) Decision Criteria: The confidence interval of qi indicates
whether the probabilities of Hi or Hi exceed b. In fact

Pr(Hi is true) > b ⇔ Pr(qi > θi) > Pr(qi > qmin
i )

⇔ θi < qmin
i (36)

and its symmetric inequality Pr(Hi) > b ⇔ θi > qmax
i . The

computation of the boundaries of the confidence interval is
intensive and does not suit the requirements for an online use.
In order to make its computation far less complex, a change
of variables was introduced in Section III-D2.

Once the values of tmin and tmax are stored in the embedded
control unit, the simple computation

�
qmin

i , qmax
i



can be per-

formed from mi and βi . If qmin
i > θi (the bottom configuration

in Fig. 9), then the probability Hi is true, which exceeds b.

 



Fig. 8. t �→ F(t).

Fig. 9. Three different configurations of the target θ and the confidence
interval of qi .

The other way around is that if qmax
i < θi (top configuration

in Fig. 9), then the probability Hi is true, which exceeds
b. It offers a decision criterion to take a corrective action.
If qmin

i < θi < qmin
i (middle configuration in Fig. 9), one

cannot conclude with certainty (more than 99% of probability
in the meaning of Bayesian statistics), and then, no action is
performed.

4) Robustness and Performance: Experimental measure-
ments tend to confirm the precision of the log-normal dis-
tribution model, but deviations could still occur. In such
cases, overestimation of the 95% quantile has generally been
observed. If confirmed, it would induce a slightly more protec-
tive behavior of the controller fed by this estimator. Moreover,
if the estimator is used to map the knocking threshold, this bias
would also be incorporated into the definition of the threshold
and would become transparent.

During sharp transients, the identical distribution model of
the buffered measurements can be violated. It is dealt with by
using only the most recent observations (no prior from past
knowledge and shortest possible buffer).

E. Out Performance of the Log-Normal Distribution Model

In order to facilitate the understanding of the prop-
erties of the two proposed estimators, a third, simple,
estimator is introduced. It simply makes the comparison
between the threshold θ and the quantile estimator given by
(sample mean + r × sample standard deviation). It does not
use the confidence interval.

To benchmark the three estimators, Monte Carlo simulations
have been performed and are shown in Fig. 10. It represents
the proportion of positive tests, over 106 samples of buffers

Fig. 10. Monte Carlo simulations. Light color: proportion of estimations
of too many knocking cycles. Dark color: proportion of estimations of not
enough knocking cycles. Solid: log-normal model without confidence interval
estimator. Dashed: log-normal model with confidence interval estimator.
Dotted: Bernoulli model with confidence interval estimator.

of n measurements (n taking the values 10, 50, and 100), and
for a range of target threshold θ . The measurements are drawn
from a normal random generator of mean 5 and variance 1, this
setting having no influence on the results; 5% of the generated
numbers are above 6.7. Dashed lines are used for the test
too many knocking cycles and solid lines are used for the
test not enough knocking cycles. The top-left plot represents
the performance of an ideal estimator, in dotted lines those
of the estimator using the Bernoulli model, in dashed lines
those of the estimator using the log-normal model and the
confidence interval, and finally in solid lines those of the
estimator using the log-normal model without the confidence
interval. Notice that for the third model, each sample is either
in the category too many knocking cycles or in not enough
knocking cycles and the sum of the proportion of the two
tests is 1. Due to the construction of the Bayesian estimators,
if the target θ is set to 6.7, then exactly 98% of the samples
induce the estimation that Hi is neither true or false with
at least 99% of probability. On the contrary, the estimator
without confidence interval estimates erroneously ∼ 50% of
the time that Hi is true and ∼ 50% of the time Hi is
false. An integral controller based on this estimation would
systematically impose irrelevant changes of spark advance at
each engine cycle and generate an unnecessary increase in the
dispersion of the spark advance. This problem is alleviated by
the use of confidence intervals.

When θ is below 6.7, an ideal estimator (top-left plot, dark
line) would always estimate that Hi is true. Obviously, this
is not reachable, but the highest proportion of detection is
desired. The same goes with the estimation of Hi if θ is
above 6.7. The estimator using the log-normal model (dashed
lines) outperforms the one using the Bernoulli model (dotted
lines), as shown in Fig. 10. For example, if θ = 6, the first



one has a 28% detection probability that the true quantile (6.7)
exceeds θ , while the second one only has a 21% probability.

Consequently, Sections IV–VI focus only on the log-normal
distribution model and the Bernoulli model is left out for the
proposed controller.

IV. WEIGHTING OF THE OBSERVATIONS

The proposed algorithm is designed to be implemented in
engine control units (ECUs). They have stringent requirements
in terms of memory and computational power. The proposed
algorithm needs a buffer memory of size n. As exposed later
in Section VI, five samples may agree with the needs of the
engine. The parametric model and the Bayesian estimation
allow to estimate the 95% quantile with much less than
20 samples. However, n has been calibrated on simulations.
Discrepancies with actual engines might impose longer buffers
and exceed the available resources. A turnaround is proposed
in this section.

In Section III, it was assumed that each measurement
carries the same amount of information about the distribution
parameters. However, the Bayesian framework also offers the
possibility to weight the different observations. The same
posterior distribution function should be derived if one obser-
vation is replaced by two equal measurements with a halved
reliability. It is achieved by weighting the corresponding terms
of the log likelihood by 1/2. Similarly, it can be extended to
all sets of positive weights. The derivation of qi performed
in Section III-D holds with little changes. Computations, not
detailed in this section, indicate that the variables have to be
replaced as follows:

mi ← 1

Wi

n�
k=1

wi,k xi−k

κi ← Wi

αi ← Wi − 1

2

βi ← 1

2

n�
k=1

wi,k(xi−k − mi)
2

tmin ← tmin(Wi )

tmax ← tmax(Wi ) (37)

with
�
wi j
�
(i, j)∈N×[[1,n]], the weight, at time i , of the measure-

ment performed at time i − j , and Wi =�n
j=1 wi− j .

The two maps Wi �→ tmin(Wi ) and Wi �→ tmax(Wi ) have
to be numerically built, following the construction method
presented in Section III-D and shown in Fig. 11. The benefit
from this approach is that the buffer memory is no longer
required since mi , κi , αi , and βi can be implemented with
finite impulse response filters. The number of stored values is
given by the order of the selected filter (potentially first order
filter). Another benefit is the possibility to use a forgetting
factor, which is a function of the engine transient speed. In
particular, the Taylor expansion of (24) leads to the limit

π(Mi ,	i | Bi) −−−−→
Wi→∞

1

2π
exp

�
−M2

i +	2
i

2

�
. (38)

Fig. 11. Functions Wi �→ tmin(Wi ) (lower curve) and Wi �→ tmax(Wi ) (upper
curve).

Mi ,	i | Bi converges in law toward two independent
standardized normally distributed random variables. Then,
the limits of the boundaries of the confidence interval converge
as follows:

[tmin, tmax] −−−−→
Wi→∞

�
F−1
N (1− b), F−1

N (b)


. (39)

Note that F−1
N (1− b) = −F−1

N (b). One also has

u2 =−−−−→
Wi→∞

1

αi − 1

and the upper bound of the confidence interval of (34) con-
verges, as Wi →∞, toward

�
mi + ru

�
βi

�
� �� 	

E(qi)

+F−1
N (b)

�
βi

�
1

κi (αi − 1)
+ r2v2

� �� 	
std(qi )

. (40)

Details of the derivations of E(qi) and std(qi) are given in
Appendix VII. The same goes with the other lower bound
of the confidence interval and one gets, when Wi → ∞,
an interval of the form E(qi)± F−1

N (b) std(qi), as one would
expect from the asymptotic normal behavior of Bayesian
estimators stated by the Bernstein–von Mises theorem [34].

V. CONTROL STRATEGY

At each cycle, a correction �S A proportional to the error
between the expected value of the quantile and its target is
added to the spark-ignition timing of the preceding cycle,
forming a discrete-time integral controller. However, the cor-
rection is inactive if, according to the confidence interval, one
cannot be sure at 99% that a correction should be applied

�S A =
�

0, if θ ∈ �qmin, qmax

K (q − θ), otherwise

(41)

where q = E(q) (35) and K is a gain to be experimentally
adjusted. Indeed, if θ < qmin, one can be sure at 99% that
the spark ignition occurs too soon. Then, its set point needs
a correction to delay the spark-ignition timing. The other way
around is that if θ > qmax, one can be sure at 99% that the
spark ignition occurs too late. Then, it needs a correction
to advance the spark-ignition timing. The structure of the
controller is summarized in the block diagram in Fig. 12.

 



Fig. 12. Controller block diagram.

Fig. 13. Methodology. (a) Experimental database. The spark advance sweep
presented in the two bottom plots corresponds to the circled operating point
in the top plot. (b) Stochastic control.

VI. PERFORMANCE

A. Setup

1) Methodology: Even under identical conditions, each test
is unique. To allow for a more extensive validation and a better
performance assessment of the new stochastic controller, based
on reproducible results, the behavior of the engine regarding
knock is simulated.

In order to obtain knock intensities reflecting real dis-
tributions, experimental measurements have been acquired
on different operating points, as shown in Fig. 13(a) (top).
The sweep of spark advance, conducted for each operating
point, is shown in Fig. 13(a) (bottom left) for the operating
point highlighted by a circle (1750 rpm and 18 bar) and
the corresponding knock intensity measurements are shown
in Fig. 13(a) (bottom right). The measurements are performed

on different spark advance ranges, depending on the operating
points. Empirical cumulative density functions have been
estimated for each operating point and each spark advance
timing. Knock intensities are then simulated with a random
number generator whose probability density function changes
depending on engine speed, torque, and spark advance timing.
They are simulated with the inversion method [35] as follows:

K Ii = F−1
i (Ui) (42)

with (Ui )i∈N a generated series of random numbers indepen-
dent and identically distributed, following a uniform distribu-
tion between 0 and 1, and F−1

i the inverse of the cumulative
distribution function of the knock intensities at cycle i , com-
puted with a kernel density estimator. Log-normal hypothesis
is then not considered here. The performance of the controller
can then be assessed within a feedback loop design, as shown
in Fig. 13(b). Note that the proposed controller would be
suitable for any engine technologies (EGR, VVT, and so on),
as long as the knock intensities are approximately independent
and log-normally distributed.

2) Control Algorithm: To improve the spark advance control
during engine speed and load changes, conventional controllers
always adopt both feedforward and feedback designs. The
spark advance should be mapped beforehand as a function
of these two parameters and then corrected online by the
knock feedback algorithm presented in this article, potentially
combined with an online learning model. However, in order
to assess its adaptation abilities, no prepositioning maps were
used in the simulations of the following sections.

The controller must be able to cope with two extreme
situations: stationary states and the transient operation pre-
sented in Section VI-B2, deemed as representing the class of
realistic, fastest, and dangerous transients. It would indicate
that the controller is also suitable for all intermediate tran-
sients. A suitable calibration has a fast transient response in
the protective direction (less than five cycles) and should not
be much slower than conventional controllers (described in
Section VI-A3) in the opposite direction. The added value
of the controller, on top of being at rest during 98% of the
cycles during stationary states, will be seen in reduction of the
dispersion of the spark advance. The selected calibration n = 5
and K = 0.1 has the shortest n such that the controller fulfills
the previous criteria on simulation. The map of the knocking
threshold was also built from experimental measurements.

3) Reference Strategy: This new stochastic knock con-
troller is compared with a common reference strategy: a
sawtooth-shaped spark advance controller. The spark advance
is increased at each time step by a small δS A and suddenly
decreased by a large �S A if the knock intensity measurement
exceeds the threshold θ . This strategy ensures the shortest
reaction time to knock events while maintaining, on average,
an implicit knocking frequency of (δS A/(δS A+�S A)). With
the calibration δS A = 0.1◦ and �S A = 1.9◦, the knocking
frequency is set at 5%.

B. Simulation Results

1) Steady-State Operation: The proper functioning of both
algorithms is first confirmed on stationary operating points.

 



Fig. 14. Stationary regime. Bottom plot: Solid line—threshold. Bottom
plot: dots—knock intensity measurements. Bottom plot: filled area—quantile
confidence interval. (a) Sawtooth control. (b) Stochastic control (n = 5 and
K = 0.1).

The evolution of the confidence interval of q is shown
in Fig. 14(b). If the quantile target θ steps out of this interval,
since one is 99% sure that a change needs to be applied on the
spark advance, then a corrective action is taken (exactly at t =
7.1 s and t = 14.5 s). The behavior of the sawtooth knock
controller is shown in Fig. 14(a). The spark advance timing
is continuously increased until a knock intensity measurement
exceeds the threshold θ , in which case it is suddenly decreased.

Simulations during 105 consecutive cycles have been per-
formed on a Simulink platform to reliably estimate the dis-
persion of the controlled spark advance, as shown in Fig. 15.
The proposed controller has a smaller spark advance dispersion
than the sawtooth controller, reducing the engine IMEP unde-
sirable variations. The average values of the spark advance of
the proposed controller (−9.9◦) and the sawtooth controller
(−10.3◦) indicate an improved engine efficiency. While both
controllers maintain 5% of knocking cycles, those knocking
cycles are less intense for the proposed controller than for the
sawtooth controller, ensuring a better engine protection. The
three properties (smaller IMEP variations, improved efficiency,
and limited knock intensities) come from the ability of the
proposed controller to maintain the spark advance closer to its
ideal value, without constant exploration of its vicinity. Sweeps
of the threshold θ have been performed in [15] and show an
efficiency gain of 1% at constant knocking frequency.

Fig. 15. Spark advance probability density function during stationary
operations. Dashed: sawtooth controller. Solid: proposed controller.

Fig. 16. Transient operation from 19 bar to 25 bar of IMEP. Bottom
plot: solid line—threshold. Bottom plot: dots—knock intensity measurements.
Bottom plot: filled area—quantile confidence interval.

2) Transient Regime: The behavior of the controller was
simulated on a transient state shown in Fig. 16, i.e., a step
of charge from 19 bar to 25 bar of IMEP at the constant
speed of 1750 rpm. Since the knock intensities are randomly
generated, different results might be observed if the simulation
was repeated. It should be seen as an indicative test of the
controller response. No spark advance prepositioning is used,
artificially generating a 6◦ error in spark advance during
the transient. The controller immediately starts to decrease
the spark advance and reaches its final value within 0.2 s.
Response time is consistent with the number of cycles used
for the knock estimation, i.e., n = 5. Note that the controller
is satisfyingly reactive in the protection direction.

The response to transients in both directions (19 bar to
25 bar and then 25 bar to 19 bar of IMEP) of the reference
controller and the proposed controller, with different calibra-
tions, are shown in Fig. 17. The variations of the threshold
θ indicate the transient timings. The response time depends
on the calibrations of K and n. It can be seen that the
controller is more sensitive in the protective direction than in
the opposite direction, potentially leading to efficiency losses,
but far less problematic than failures to protect the engine. It is
slower in the opposite direction than the reference controller
calibrated in Section VI-A3. It can be seen that a shorter
buffer makes the controller to jump from time to time and
that a longer buffer tends to smooth its response. Like integral
controllers, excessive gain combined with a long buffer makes
the controller to oscillate (for example n = 10 and K = 0.45
at time 6 s).

 



Fig. 17. Transient operations between 25 bar and 19 bar of IMEP proposed
controller spark advance with different calibrations. First plot: solid line—
(n = 5 and K = 0.1) and dashed line—(n = 5 and K = 0.7). Second plot:
solid line—(n = 10 and K = 0.1) and dashed line—(n = 10 and K = 0.45).
Third plot: sawtooth controller spark advance. Fourth plot: knock intensity
threshold θ indicating transient timings.

VII. CONCLUSION

The stochastic controller proposed in this article estimates
the confidence interval of the 95% quantile of the knock inten-
sity distribution. Based on the position of the mapped 95%
quantile target and the quantile confidence interval, an adapted
spark advance correction is undertaken. This controller is
compared with a standard sawtooth-shaped spark advance
controller in simulations. The engine knock intensities are
simulated based on a random number generator following
experimental distributions. The stochastic controller reduces
the dispersion of the spark advance timing during station-
ary operations, leading to smaller engine torque fluctuations.
It allows to maintain, on average, the spark advance timing
closer to the knock limit while preventing knocking cycles.
It is expected to improve the engine efficiency. In addition,
the rapidity of the controller and the requirement of only
few calibration parameters makes it suited for engine transient
operations. Experimental validations, calibration, tuning of the
weighting method, and assessment of the impact of departures
from probabilistic assumptions on a real engine test bench over
the full operating range are planned in the future works.

APPENDIX

EVALUATION OF EXPECTED VALUES AND VARIANCES

A. Evaluation of the Expected Value and Variance of μi

Since μi | σi ∼ N �mi , (σi/
√

κi )
�

E(μi ) = E(E(μi | σi )) = E(mi) = mi .

Also, std(μi | σi = E(σi )) = (E(σi )/
√

κi ).

B. Evaluation of the Expected Value and Variance of σi

Since σ 2 ∼ G−1(αi , βi), E(σ 2
i ) = (βi/αi − 1)

E(σi ) =
�

σi∈R+
σiπ(σi )dσi

with the variable change σi �→ σ 2
i = u

E(σi ) =
�

u∈R+

√
uπ(u)du

=
�

u∈R+

√
u

βαi
i

�(αi )
u−αi−1 exp

�−βi

u

�
du

= βαi
i

�(αi )

�
u∈R+

u−αi− 1
2 exp

�−βi

u

�
du

with the variable change α�i = αi − (1/2)

E(σi ) = βαi
i

�(αi )

�(α�i )

β
α�i
i

�
u∈R+

β
α�i
i

�(α�i )
u−α�i−1 exp

�−βi

u

�
du.

The integral is the integral of the inverse gamma probability
density function with parameters (α�i , βi ). It is equal to 1

E(σi ) = βαi
i

�(αi )

�(α�i )

β
α�i
i

= βαi
i

�(αi )

�
�
αi − 1

2

�
β

αi− 1
2

i

= �
�
αi − 1

2

�
�(αi )

�
βi .

Finally

Var(σi ) = E(σ 2
i )− (E(σi ))

2

and

std(σi) =
�

βi

 !!" 1

αi − 1
−
�

�
�
αi − 1

2

�
�(αi )

�2

� �� 	
vi

.

C. Evaluation of the Variance of qi

Var(qi) = Varσi (Eμi |σi (qi))+ Eσi (Varμi |σi (qi))

= Varσi (μi + rσi )+ Eσi

�
σ 2

i

κi

�
= r 2 v2

i βi + 1

κi

βi

αi − 1
.
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