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A B S T R A C T
The displacement of non-aqueous phase liquid (NAPL) in permeable porous rock by water saturating
the surrounding fractures is studied. In many situations of practical interest, capillarity is the dominant
driving force. Using the global pressure concept, it is shown that the water saturation is driven
by a generic non-linear diffusion equation governing the matrix block counter-current spontaneous
imbibition. In addition, in most cases, the saturation-dependent diffusion coefficient vanishes at the
saturation end points, that renders the driving equation highly singular.

In this paper, two exact asymptotic solutions valid for short and long times are presented, under
the assumption that the conductivity vanishes as a power-law of both phase saturations at the extreme
values of the fluid saturation.

Focusing on the late-time domain, the asymptotic solution is derived using an Ansatz that is
written under the form of a power-law time decay of the NAPL saturation. In the spatial domain, this
solution is an eigenvector of the non-linear diffusion operator driving the saturation, for a problem
with Dirichlet boundary conditions. If the diffusion coefficient varies as a power law of the NAPL
saturation, the spatial variations of the solution are given analytically for a one-dimensional porous
medium corresponding to parallel fracture planes. The analytical solution is in very good agreement
with results of numerical simulations involving various realistic sets of input transport parameters.

Generalization to the case of two- or three-dimensional matrix blocks of arbitrary shape is pro-
posed using a similar Ansatz, solution of a non-linear eigenvalue problem. A fast converging algorithm
based on a fixed-point sequence starting from a suitable first guess was developed. Comparisons with
full-time simulations for several typical block geometries show an excellent agreement.

These results permit to set-up an analytical formulation generalizing linear single-phase represen-
tation of matrix-to-fracture exchange term. It accounts for the non-linearity of the local flow equations
using the power-law dependence of the conductivity for low NAPL saturation. The corresponding
exponent can be predicted from the input conductivity parameters. Similar findings are also presented
and validated numerically for two- or three-dimensional matrix blocks. That original approach paves
the way to research leading to a more faithful description of matrix-to-fracture exchanges when
considering a realistic fractured medium composed of a population of matrix blocks of various size
and shapes.

1. Introduction10

In many situations, fluid transport processes in complex11

porous systems may be described by the solution of a non-12

linear diffusion equation with a diffusion coefficient that13

depends on the local concentration or saturation of the14

solute or phase of interest. In the geosciences context, that15

can be the case when considering NAPL1 displacement by16
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1Hydrocarbons in liquid or gaseous state, pollutants, organic com-
pounds, air. . .

water in aquifers or hydrocarbon recovery in rock matrix 17

[9, 22, 29, 39, 41, 21, 26]. In the context of soil mechanics, 18

one derives semi-analytical or numerical solutions of the 19

Richards equation describing unsaturated flows with such 20

non-linear forms [8, 34, 35, 5]. Other systems may receive 21

similar descriptions ranging from filtration to astrophysics, 22

including compressible gas flows in porous media, granular 23

media flows [18, 17], among others. 24

The non-linearity of the driving diffusion equation im- 25

plies that most of standard methods based on superposition 26

properties such as Green’s functions and Fourier decompo- 27

sition fail down. In addition, the popular assumption that 28

the diffusion coefficient vanishes at the limiting saturations, 29

sharing a power-law dependence with the saturation adds 30

a mathematical difficulty [2]. In particular, singular be- 31

haviours are to be expected close to the forcing boundaries 32

where the diffusion coefficient may vanish. 33
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In order to be more specific, in the geosciences context34

such a generic problem arises when considering a counter-35

current capillary imbibition process on a finite size matrix36

block approximated by a layer of length 𝐿 embedded in37

a fracture network of high conductivity [22, 29, 41, 26].38

The most standard approach to account for the presence of39

fractures is to adopt a dual-porosity description that involves40

two averaged equations for the macro-scale fracture and41

matrix effective media, in which some exchange term needs42

to be modeled [3, 16, 37, 25, 14]. In the single-phase case,43

the simplest model is the pseudo-steady-state dual-porosity44

model, that can be improved to account for additional inter-45

nal matrix relaxation times using a time convolution with46

some kernel that is the solution of a linear diffusion problem47

on a representative matrix block [25, 30]. Such convolution48

models are not practical in numerical modeling but retain the49

multiple time-scales which are naturally observed.50

Dual-porosity models involving a linear closure (local51

inter-porosity flux proportional to pressure/saturation/con-52

centration difference) imply an exponential relaxation of the53

average quantity of interest, i.e. a single relaxation time. The54

associated characteristic time corresponds to the diffusion55

time over the matrix size 𝜏0 = 𝐿2∕𝐷0, defined using some56

representative diffusion coefficient 𝐷0 and a representative57

matrix block size 𝐿. At short times, a “boundary layer” be-58

haviour is observed and can be estimated using the standard59

Boltzmann transformation, leading to a matrix-to-fracture60

flux varying as 1∕√𝑡 [17, 26]. This regime may be observed61

while the diffusion distance remains lower than the typical62

size of the matrix blocks.63

Fewer results are reported regarding the long time regime64

description occurring when water has invaded most of the65

pore volume of the rock. Using an overall dual-porosity66

description with a linear closure leads to first-order differ-67

ential equations for the description of the matrix-fracture68

exchange, the solution of which implies an exponential69

relaxation of the NAPL saturation at long times [39]. That70

is reminiscent of the dual-porosity solutions obtained while71

interpreting pumping tests in fractured formations. The asso-72

ciated relaxation time still involves a characteristic diffusion73

time 𝜏0 conveniently weighted by a dimensionless shape74

factor that characterizes the overall matrix block geometrical75

shape [25].76

In order to account more accurately for non-linear ef-77

fects, an alternative approach is to change the analytical form78

of the exchange term by looking for a form involving a non-79

linear function of the average matrix block saturation. Semi-80

analytical developments in that direction were proposed by81

[41, 26]: solving a weak form of the full problem at hand, the82

authors introduce an approximation of the late-time solution83

using a suitably chosen spatial Ansatz. The model predicts a84

power-law time decay of the NAPL average saturation in the85

blocks. The corresponding exponent may be related directly86

to the exponent involved in the local diffusion coefficient87

dependence with saturation. Both papers show a good agree-88

ment between experimental data and simulation results. For89

completeness, [26] proposed an explicit representation of the90

exchanges using a non-linear term valid over the entire time 91

scale. 92

In the present paper, we develop an alternative approach 93

for the late-time asymptotics, looking for solutions having a 94

power-law time decay at every location of the matrix block. 95

Following this assumption, a complete determination of the 96

solution can be obtained. This solution, which compares 97

very well with numerical solutions, can be useful to propose 98

a non-linear formula relating the matrix to fracture exchange 99

flux to the remaining average NAPL saturation in the matrix. 100

Generalizations of our approach to more complex fractured 101

media are discussed. 102

The paper is organized as follows: first, the generic 103

problem to be solved is presented in Section 2.2, and the 104

notations and driving equations are introduced in Section 105

2.3. In particular, it is shown that the emergence of a non- 106

linear diffusion equation driving the time-evolution of wa- 107

ter saturation is not limited to specific fracture network 108

geometries. A straightforward derivation is provided using 109

the concept of global pressure that allows to show that the 110

mean fluid velocity vanishes under various geometrical and 111

physical conditions. 112

Restricting ourselves to one-dimensional counter-current 113

displacements, results of semi-analytical short-time anal- 114

ysis using Boltzmann transformation are reviewed shortly 115

in Section 3. Then the long-time asymptotic solution is 116

presented in Section 4, the spatial dependence of which 117

can be fully determined analytically, still in the case of a 118

one-dimensional matrix geometry. In both sections, these 119

solutions are compared with numerical simulations carried 120

out at both short and long times. 121

In Section 5, the time variation of the overall flux at 122

the matrix boundary is studied. That allows to set-up a 123

formulation of the exchange term accounting for the non 124

linearity. 125

Coming back to 2D or 3D cases, the approach is general- 126

ized for arbitrary matrix block shapes in Section 6. The cor- 127

responding Ansatz that describes the space dependency of 128

the asymptotic behaviour is solution of a non-linear steady- 129

state eigenvalue problem. That solution can be evaluated 130

numerically using a fast converging original fixed-point al- 131

gorithm presented in Section 6.3. That solution plays the role 132

of the analytical solution developed in the one-dimensional 133

case. Comparisons to full simulations showing an excellent 134

agreement are presented in Section 6.4 for various matrix 135

block geometries, including the one-dimensional previous 136

solution. 137

Section 7 concludes and an appendix detailing the nu- 138

merical scheme used to solve the counter-current equation 139

closes the article. 140

2. Analytical and numerical models 141

In this section, we present the mathematical model and 142

the numerical solution that will be used as a reference. 143
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 144 2.1. Driving forces involved in matrix-fracture transfers and considered flow regime

145

In a network of diffuse f ractures w here fl ow is  tak-146

ing place, the exchange interaction with the matrix blocks147

delineated by the fracture network, as sketched in Fig. 1,148

involves four forces: gravity, viscous forces, capillarity and149

molecular diffusion. In the following we will assume on the150

one hand that the molecular diffusion forces, which are by far151

the weakest, are negligible. On the other hand we consider152

such a high permeability contrast between the fractures and153

the matrix that the overall pressure gradient acting on one154

matrix block through the fracture is negligible. This leaves155

capillarity and gravity as dominant forces.156

The capillary length 𝑙cap is defined as the length beyond157

which gravity becomes important [15]. In porous media,158

it can be estimated by comparing the Laplace pressure159

(2𝛾 cos 𝜃)∕𝑅, where 𝛾 is the interfacial tension between wa-160

ter and NAPL, 𝜃 is the contact angle and 𝑅 is the character-161

istic capillary tube radius of the equivalent porous medium162

represented as a bundle of capillary tubes, to the gravity-163

driven hydrostatic pressureΔ𝜌𝑔ℎ, where Δ𝜌 = 𝜌𝑤−𝜌𝑜 is the164

density difference between water and NAPL, ℎ denotes the165

matrix block height and 𝑔 the gravity acceleration. Equating166

these two pressures, setting 𝑅 =
√

8𝑘∕𝜙 where 𝑘 and 𝜙167

denote the matrix block average permeability and porosity,168

defines the capillary length169

𝑙cap =
2𝛾 cos 𝜃
Δ𝜌𝑔𝑅

=
𝛾 cos 𝜃

√

𝜙

Δ𝜌𝑔
√

2𝑘
. (1)

This capillary length, which corresponds to a block height170

such that gravity and capillary forces are balanced, i.e. a unit171

Bond number172

Bo =
Δ𝜌𝑔ℎ𝑅
2𝛾 cos 𝜃

=
Δ𝜌𝑔ℎ

√

2𝑘

𝛾 cos 𝜃
√

𝜙
= ℎ

𝑙cap
, (2)

defines two regimes depending on whether 𝑙cap ≶ ℎ or173

Bo ≷ 1. Gravity is negligible for block height ℎ ≪ 𝑙cap174

(Bo ≪ 1). When this condition is met, it is as sought the175

fluid is in a zero-gravity environment and capillary effects176

dominate. The opposite case, when ℎ ≫ 𝑙cap is referred to177

as the gravity regime (Bo ≫ 1).178

In what follows we consider only the capillary regime,179

that is rock-fluid configurations such that the block height is180

much lower than the capillary length, ℎ ≪ 𝑙cap. ?? gives a181

few examples. For instance, assuming NAPL is a light oil,182

𝜙 = 0.1 and 𝜃 = 𝜋∕3, one gets a capillary length of about183

𝑙cap ∼ 4−9 m for 𝑘 = 10 mD, depending on temperature and184

pressure conditions. Basically, we are considering blocks of185

small height of the order of a few tens of centimeters to one186

meter.187

2.2. Counter-current imbibition in the188

three-dimensional incompressible two-phase189

flow case without gravity190

We start with general considerations about three-dimen-191

sional spontaneous counter-current capillary imbibition,192

Figure 1: Examples of discrete fracture networks with two
near-vertical fracture families (of mean spacing about 3 and
5 m). These fractured geometries delineate matrix blocks
(not shown) of various shapes with two typical quadrangular
contours shown in white that are the focus of this work
(adapted from [21]).

then detail in Section 2.3 the corresponding one-dimensional 193

problem under the same assumptions. We consider two- 194

phase flow of incompressible fluids without gravity. Fol- 195

lowing the generalized multiphase Darcy’s laws, the driving 196

equations read [4]: 197

𝜙
𝜕𝑆𝑤
𝜕𝑡

− ∇ ⋅ (𝑘𝜆𝑤∇𝑃𝑤) = 0, (3)

𝜙
𝜕𝑆𝑜
𝜕𝑡

− ∇ ⋅ (𝑘𝜆𝑜∇𝑃𝑜) = 0, (4)
𝑆𝑤 + 𝑆𝑜 = 1, (5)
𝑃𝑜 − 𝑃𝑤 = 𝑃𝑐(𝑆𝑤), (6)

where 𝜙 and 𝑘 denote the porosity and the permeabil- 198

ity of the porous medium under consideration (here and 199

in the following we assume that the permeability tensor 200

is isotropic), 𝑆𝑤(𝐱, 𝑡) ∈ [𝑆𝑤𝑖, 1 − 𝑆𝑜𝑟𝑤] is the aqueous 201

phase saturation, 𝑆𝑜(𝐱, 𝑡) ∈ [𝑆𝑜𝑟𝑤, 1 − 𝑆𝑤𝑖] is the non- 202

aqueous phase saturation, 𝑆𝑤𝑖 is the connate (immobile) 203

aqueous phase saturation, 𝑆𝑜𝑟𝑤 is the residual (immobile) 204

non-aqueous phase saturation, 𝜆𝜑(𝑆𝑤) = 𝑘𝑟𝜑(𝑆𝑤)∕𝜇𝜑 is 205

the phase 𝜑 mobility where 𝜑 = 𝑤, 𝑜 denotes the aqueous 206

and the non-aqueous phase respectively, 𝑘𝑟𝜑 is the relative 207

permeability to phase 𝜑, 𝜇𝜑 is phase 𝜑 viscosity, 𝑃𝜑 the 208

intrinsic average pressure in phase𝜑, and 𝑃𝑐(𝑆) = 𝑃𝑜−𝑃𝑤 is 209

the capillary pressure between the non-aqueous and aqueous 210

phases. 211

It is useful to introduce the concept of global pressure 𝑃𝑡 212

that depends implicitly on position 𝐱 and time 𝑡 introduced 213
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by [11, 12, 13, 20]:214

𝑃𝑡 = 𝑃𝑤 + ∫

𝑆

𝑆𝑖

𝜆𝑜
𝜆𝑡

d𝑃𝑐
d𝑆′ d𝑆

′, (7)

where 𝜆𝑡 = 𝜆𝑤 + 𝜆𝑜 is the total mobility and 𝑆 ∈ [0, 1] the215

normalized mobile aqueous phase saturation defined as216

𝑆(𝐱, 𝑡) =
𝑆𝑤(𝐱, 𝑡) − 𝑆𝑤𝑖
1 − 𝑆𝑜𝑟𝑤 − 𝑆𝑤𝑖

(8)

where the mobile saturation range 1−𝑆𝑜𝑟𝑤−𝑆𝑤𝑖 is non-zero.217

Global pressure is defined up to an arbitrary constant which218

is accounted for by choosing 𝑆𝑖 that is an arbitrary satura-219

tion value in [0, 1]. With some algebraic manipulations, the220

original set of equations (3)-(6) can thus be transformed as221

∇ ⋅ 𝐮𝑡 = 0, (9)
𝐮𝑡 = −𝑘𝜆𝑡∇𝑃𝑡, (10)

𝜙
𝜕𝑆𝑤
𝜕𝑡

+ ∇ ⋅
(

𝜆𝑤
𝜆𝑡

𝐮𝑡 + 𝑘
𝜆𝑤𝜆𝑜
𝜆𝑡

∇𝑃𝑐

)

= 0, (11)

where 𝐮𝑡 = 𝐮𝑤 + 𝐮𝑜 denotes the total Darcy velocity, with222

𝐮𝜑 = −𝑘𝜆𝜑∇𝑃𝜑 and 𝜑 = 𝑤, 𝑜. Equation (10) can be derived223

from equations (3)-(6) and using equation (7) defining global224

pressure. It can be noticed that 𝜆𝑡∇𝑃𝑡 = 𝜆𝑤∇𝑃𝑤 + 𝜆𝑜∇𝑃𝑜.225

Global pressure may be interpreted as a pressure which226

would give, for a fictitious fluid with mobility 𝜆𝑡 equal to the227

sum of the mobilities of aqueous and non-aqueous phases,228

a flux equal to the sum of the flux of the aqueous and non-229

aqueous phases.230

Combining Eqs (9) and (10), one is led to solve a quasi-231

Laplace equation that reads ∇ ⋅ (𝑘𝜆𝑡∇𝑃𝑡) = 0 to be solved on232

the matrix domain with given boundary conditions. Impos-233

ing the rather general boundary conditions at the boundaries234

of the block, i.e. uniform pressure and saturation, we obtain235

that the global pressure (7) 𝑃𝑡 is uniform at the block bound-236

aries. Thus it can be shown that the unique solution of the237

quasi-Laplace equation fulfilling these boundary conditions238

is a constant: 𝑃𝑡 does not depend on position. Therefore,2239

the total velocity vanishes: 𝐮𝑡 = 𝟎. This result requires240

the absence of gravity effects, incompressible fluids, and241

the matrix permeability 𝑘 may be heterogeneous. Setting242

𝐮𝑡 = 𝟎 in Eq. (11) shows that the saturation is driven by243

the following non-linear diffusion equation:244

𝜕𝑆
𝜕𝑡

= ∇ ⋅ [𝐷(𝑆)∇𝑆] , (12)
𝐷(𝑆) = − 𝑘

𝜙(1−𝑆𝑜𝑟𝑤−𝑆𝑤𝑖)
𝜆𝑤(𝑆)𝜆𝑜(𝑆)

𝜆𝑡(𝑆)
d𝑃𝑐 (𝑆)
d𝑆 . (13)

That result shows that counter-current imbibition is not245

restricted to one-dimensional cases. Up to our knowledge,246

that result as well as its direct derivation introducing the247

global pressure for 2D or 3D situations under quite general248

conditions appear to be original and shows this non-linear249

diffusion equation is likely to describe the water saturation250

evolution in many situations of interest.251

2This result can be derived using a variational formulation of Laplace
equation.

2.3. Driving equations in the one-dimensional case 252

Spontaneous counter-current capillary imbibition of a 253

one-dimensional matricial porous medium block of size 𝐿 254

initially saturated with a non-aqueous phase that is drowned 255

in water can be described, neglecting gravity and assuming 256

the two phases are incompressible, as the non-linear diffu- 257

sion equation (12) for the normalized mobile aqueous phase 258

saturation (8) with initial condition 𝑆 = 0 for all 𝑥 ∈ [0, 𝐿] 259

and 𝑡 = 0 and boundary conditions 𝑆 = 1 for 𝑥 = 0 and 260

𝑥 = 𝐿 for all 𝑡 > 0. 261

In order to analyze the early- and late-time behaviours, 262

we express 𝐷(𝑆) as a function of the mobile aqueous phase 263

saturation 𝑆 (mobile non-aqueous phase saturation being 264

1 − 𝑆) setting the relative permeabilities to the aqueous and 265

non-aqueous phases and the capillary pressure as Brooks- 266

Corey saturation power laws [7]: 267

𝑘𝑟𝑤(𝑆) = 𝜅𝑤 𝑆𝑝, (14)
𝑘𝑟𝑜(𝑆) = 𝜅𝑜 (1 − 𝑆)𝑞 , (15)
𝑃𝑐(𝑆) = 𝑃𝑒∕𝑆1∕𝑚, (16)

where 𝑝, 𝑞 and 𝑚 are positive exponents, 𝜅𝜑 is the maximum 268

relative permeability to phase 𝜑, and 𝑃𝑒 is the entry pressure 269

of the porous medium under consideration. While specify- 270

ing relative permeabilities and capillary pressure saturation 271

dependence is certainly a restriction, it should be noted that 272

Brooks and Corey relationships are widely used for many 273

rock types. In addition, it does not matter what the choice is 274

as long as a power-law behavior is obtained at long times 275

for 𝑆 → 1 (this last statement is less true regarding the 276

early-time regime, which is not the major contribution of this 277

paper, as it is discussed later). We highlight this by making 278

a more versatile choice, later at the end of this section. The 279

diffusion coefficient 𝐷(𝑆) given in Eq. (12) then writes 280

𝐷(𝑆) = 𝐷0
𝑆𝑟(1−𝑆)𝑞

𝑀𝑆𝑝+(1−𝑆)𝑞 = 𝐷1
𝑆𝑟(1−𝑆)𝑞

𝑆𝑝+ 1
𝑀 (1−𝑆)𝑞

, (17)

with 281

𝐷0 =
𝑘𝜅𝑤𝑃𝑒

𝑚𝜙𝜇𝑤(1−𝑆𝑜𝑟𝑤−𝑆𝑤𝑖)
= 𝑀𝐷1, (18)

𝑀 = 𝜇𝑜𝜅𝑤
𝜇𝑤𝜅𝑜

= 𝜆𝑤(𝑆=1)
𝜆𝑜(𝑆=0)

, (19)
𝑟 = 𝑝 − 𝑚+1

𝑚 , (20)
where 𝑀 denotes the end-point mobility ratio between the 282

aqueous and the non-aqueous phases, defined as the maxi- 283

mum aqueous phase mobility 𝑘𝑟𝑤∕𝜇𝑤, taken at 𝑆 = 1, over 284

the maximum non-aqueous phase mobility 𝑘𝑟𝑜∕𝜇𝑜, taken at 285

𝑆 = 0 [6]. 286

It is worth noting that Eq. (12) is of singular type for 287

𝑟 > 0 or 𝑞 > 0 because 𝐷(𝑆) cancels with either the aqueous 288

phase mobility for 𝑆 = 0 or the non-aqueous phase mobility 289

for 𝑆 = 1. It means that mathematical singularities can be 290

expected near the boundary where𝐷 → 0 for 𝑆 → 0, as well 291

as in the long-time limit inside the rock for which 𝐷 → 0 for 292

𝑆 → 1. A singular regime can be expected at very short 293

times too, due to the sharp jump of the water saturation from 294

1 to 0 near the boundary. 295
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Clearly, the balance of forces at play that lies in a capil-296

lary pressure difference between the fracture (where 𝑃𝑐 = 0)297

and the matrix (where 𝑃𝑐 ≠ 0) media commands that a flow298

is established and terminates when the equilibrium condition299

𝑃𝑐(𝑆) = 0 is reached, i.e. 𝑆(𝑥, 𝑡) = 1 or 𝑆𝑤(𝑥, 𝑡) =300

1−𝑆𝑜𝑟𝑤. Noteworthy, a non-zero solution of Eq. (12) should301

satisfy the boundary condition (𝜕𝑆∕𝜕𝑥)𝑥=0 = −∞ and302

therefore present a vertical asymptote at the front face of the303

porous medium. Indeed, this is a necessary condition to get a304

non-zero fracture-to-matrix flux (𝐷(𝑆) 𝜕𝑆∕𝜕𝑥)𝑥=0 while 𝐷305

cancels at the boundary.306

Thereafter, two limiting cases are particularly useful to307

consider: on the one hand, the case where 𝑆 → 0, which308

corresponds to the early-time counter-current spontaneous309

imbibition of the non-aqueous-phase-saturated block by an310

aqueous phase, and, on the other hand, the case where311

𝑆 → 1, which corresponds to the late-time imbibition of the312

same type. For early- and late-time regimes, 𝐷(𝑆) behaves313

asymptotically as314

𝐷(𝑆) ∼

{

𝐷0 𝑆𝛼0 with 𝛼0 = 𝑟 for 𝑆 → 0,
𝐷1 (1 − 𝑆)𝛼1 with 𝛼1 = 𝑞 for 𝑆 → 1.

(21)

Thus each of these two limiting cases reduces to a non-linear315

diffusion equation of the singular type with a power-law316

𝐷(𝑆). Specifically, one gets for 𝑆 → 0317

𝜕𝑆
𝜕𝑡

= 𝜕
𝜕𝑥

(

𝐷0𝑆
𝛼0 𝜕𝑆
𝜕𝑥

)

, (22)
and for 𝑆 → 1318

𝜕(1 − 𝑆)
𝜕𝑡

= 𝜕
𝜕𝑥

[

𝐷1(1 − 𝑆)𝛼1
𝜕(1 − 𝑆)

𝜕𝑥

]

, (23)

where 𝐷0, 𝐷1, 𝛼0 and 𝛼1 are given in Eqs (18, (19), (20) and319

(21). Typical 𝐷(𝑆) curves are reported in Fig. 2.320

Coming back to the general case, considering a matrix321

blockΩ of boundary 𝜕Ωwith initial boundary value problem322

𝑆(𝐱, 𝑡) = 0 in Ω for 𝑡 = 0 and 𝑆(𝐱, 𝑡) = 1 on 𝜕Ω for all 𝑡 ≥ 0,323

Eqs (22) and (23) read respectively324

𝜕𝑆
𝜕𝑡

= ∇ ⋅
(

𝐷0𝑆
𝛼0∇𝑆

)

, (24)
𝜕(1 − 𝑆)

𝜕𝑡
= ∇ ⋅

[

𝐷1(1 − 𝑆)𝛼1∇(1 − 𝑆)
]

. (25)
Given the initial boundary value problem under investi-325

gation, the late-time regime has an expected limit 𝑆 → 1326

when 𝑡 → ∞, the early-time regime has a more subtle327

behavior since the initial condition corresponds to a jump328

at 𝑥 = 0 because of the boundary condition 𝑆 = 1 and329

the initial condition 𝑆 = 0. As a consequence, any series330

solution will feature a full spectrum of saturation functions.331

We come back to this point in Section 3.332

To finish with, it is worth noting that relationships (21)-333

(23) still hold when considering more versatile relative per-334

meabilities such as [28, 27]335

𝑘𝑟𝑤(𝑆) = 𝜅𝑤
𝑆𝑝

𝑆𝑝+𝛽(1−𝑆)𝑢 , (26)

𝑘𝑟𝑜(𝑆) = 𝜅𝑜
(1−𝑆)𝑞

(1−𝑆)𝑞+𝛾𝑆𝑣 . (27)
In this case one gets 336

𝐷(𝑆) = 𝐷0
𝑆𝑝−𝑚+1

𝑚 (1−𝑆)𝑞

𝑀𝑆𝑝[(1−𝑆)𝑞+𝛾𝑆𝑣]+(1−𝑆)𝑞[𝑆𝑝+𝛽(1−𝑆)𝑢] , (28)

hence 𝐷(𝑆) ∼ 𝐷0𝑆
𝑝−𝑚+1

𝑚 ∕𝛽 for 𝑆 → 0 and 𝐷(𝑆) ∼ 337

𝐷0 (1 − 𝑆)𝑞 ∕(𝑀𝛾) for 𝑆 → 1, which is precisely Eq. (21) 338

up to the dimensionless constants 𝛽 and 𝛾 . Although this 339

type of correlation has no physical basis, unlike power-law 340

relative permeabilities (14)-(15) which can be derived by 341

analogy with a bundle of capillary tubes [36, 10, 45, 46, 43, 342

44, 40, 38], it can nevertheless be useful when considering 343

natural porous media for which power laws are not good 344

enough to match measurements. 345

Our starting point is thus relatively general and is valid 346

as long as an asymptotic power-law behaviour is obtained 347

at the extreme saturations, independently of any detail at in- 348

termediate saturation values and regardless of any empirical 349

correlation used. 350

3. Early-time solution 351

The goal of present work is to set-up a description of the 352

fluid transfer valid for the whole time range. The literature 353

is very abundant on the short time scale regime that can 354

be assimilated to flow in a semi-infinite medium. We recall 355

some outstanding works of [18, 34] that are relatively little 356

cited nowadays, whereas they give very accurate fudge- 357

factor-free solutions. 358

In the early-time regime, following [8, 18, 34] and ref- 359

erences therein, the idea is to consider that the overall size 360

of the block may be ignored, leading to considering a semi- 361

infinite medium. That suggests to seek a solution using the 362

Boltzmann variable 𝜉 = 𝑥∕
√

4𝐷0𝑡, with boundary condi- 363

tions 𝑆(0) = 1, 𝑆(∞) = 0 and 𝐷(𝑆(∞)) (d𝑆∕d𝜉)(∞) = 0. 364

That yields thus the following equation 365

d
d𝜉

(

𝐷(𝑆)
𝐷0

d𝑆
d𝜉

)

+ 2𝜉 d𝑆
d𝜉

= 0. (29)

A remarkable fact observed by many authors [18, 9, 34, 366

22, 41, 17, 26] is that the solution of this equation has a finite 367

toe located at a distance 𝜉0 from the boundary that depends 368

on the input parameters of the equation. 369

In order to go farther, the saturation dependence of 370

𝐷(𝑆) suggests to express 𝜉 as a function of 𝑆. A further 371

transformation allows to treat the case of a 𝐷(𝑆) function 372

given by Eq. (17). Following [8, 34], Eq. (29) can be recast 373

under the equivalent form 374

𝐷(𝑆) = −2𝐷0
d𝜉
d𝑆 ∫

𝑆

0
𝜉 d𝑆. (30)

This form assumes the existence of a finite front 𝜉0 for which 375

the saturation and the flux, proportional to 𝐷(𝑆) d𝑆∕d𝜉, 376

cancel out. 377
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Figure 2: Several 𝐷(𝑆) given by Eq. (17) for 𝑝 = 3, 5 and 𝑀 = 6, 0.06 with 𝑞 = 2, 𝑚 = 2, 𝑘 = 10 mD, 𝑃𝑒 = 5 bar, 𝜙 = 0.25,
𝑆𝑤𝑖 = 𝑆𝑜𝑟𝑤 = 0. Asymptotic power laws for the extreme saturations given by Eq. (21) are reported as dashed lines.

An iterative sequence of approximations [34] can be built378

by approximating the right-hand-side integral of Eq. (30)379

which yields, at the lowest order approximation380

1
2𝐷0 ∫

𝑆

0

𝐷(𝑆′)
𝑆′ d𝑆′ ≈ 𝜉0(𝜉0 − 𝜉), (31)

and, at the higher order approximation381

1
2𝐷0 ∫

𝑆

0

𝐷(𝑆′)
𝑆′ d𝑆′ ≈ 𝜉0(𝜉0 − 𝜉) − 𝐴

2
(𝜉0 − 𝜉)2, (32)

where 𝐴 is a constant equal to 1∕(𝛼0 + 1) for a power-law382

𝐷(𝑆), which is approximately the case for a 𝐷(𝑆) function383

given by Eq. (17) if 𝛼0 is large enough. The determination of384

𝜉0 follows directly from the boundary condition 𝑆(𝜉 = 0) =385

1. These approximations provide an excellent accuracy not386

only in the neighborhood of 𝜉0 for low saturation values.387

In the power-law case, the solution proposed by [34] is388

consistent with the findings of [18] whose solution, later389

extended by [35], reads390

𝑆(𝜉) =

{

[2𝛼0𝜉0(𝜉0 − 𝜉)]1∕𝛼0𝑓
( 𝜉
𝜉0

) if 𝜉 ∈ [0, 𝜉0],

0 if 𝜉 > 𝜉0.
(33)

Here, the function 𝑓 (𝜉∕𝜉0) is a regular function that may be391

expressed as a power series of 𝜉∕𝜉0 involving the exponent392

𝛼0 as a parameter [18].393

The complete early-time saturation profile thus may be394

estimated analytically with an excellent accuracy, as re-395

ported in Fig. 3 which compares, for a few configurations,396

[34] solution (32) obtained by setting 𝐴 = 1∕(𝛼0 + 1)397

with the numerical solution obtained with the numerical398

scheme described in Appendix A. Saturation presents a399

vertical asymptote at the front face of the porous medium400

for 𝑥 = 𝜉 = 0 because a non-zero fracture-to-matrix flux401

𝐷(𝑆) 𝜕𝑆∕𝜕𝑥 = (𝐷(𝑆)∕
√

4𝐷0𝑡) d𝑆∕d𝜉 while 𝐷(𝑆) = 0402

for 𝑆 = 1 at the boundary is only possible if 𝜕𝑆∕𝜕𝑥 =403

d𝑆∕d𝜉 = −∞. Flux vanishes as well at the toe position404

𝜉 = 𝜉0 where d𝑆∕d𝜉 = −2𝜉0[2𝛼0𝜉0(𝜉0 − 𝜉)](1−𝛼0)∕𝛼0 ∼ 405

1∕(𝜉0−𝜉)(𝛼0−1)∕𝛼0 [18], therefore the larger 𝛼0 the sharper the 406

front as shown in Fig. 3. To finish with, dimensional analysis 407

suggests to normalize the timescale by the diffusion time 408

𝜏0 = 𝐿2∕(4𝐷0). Following our work objective, expressions 409

for the matrix-to-fracture exchange term are investigated in 410

Section 5. 411

4. Late-time asymptotic solution 412

Now, we focus on the late-time regime solution, for 413

which the medium can no longer be assumed to be semi- 414

infinite, and for which the authors have not found, to their 415

best knowledge, any published exact solution. 416

An asymptotic solution for large 𝑡 is sought using the 417

Ansatz 1 − 𝑆(𝑥, 𝑡) = 𝑦(𝑥)∕𝑡𝛽 . Inserting this solution into 418

Eq. (23) shows that this may be possible if the following 419

condition is satisfied: 420

𝛽 = 1
𝛼1

. (34)

The asymptotic solution of Eq. (23) thus writes 421

1 − 𝑆(𝑥, 𝑡) =
𝑦(𝑥)
𝑡1∕𝛼1

, (35)

where 𝑦(𝑥) is a solution of the ordinary differential equation 422
d
d𝑥

(

𝑦𝛼1 d𝑦d𝑥
)

= − 1
𝛼1𝐷1

𝑦, which we shall rewrite 423

d2

d𝑥2
𝑦𝛼1+1 = − 𝛼1+1

𝛼1𝐷1
𝑦. (36)

Further transformations 𝑔 = 𝑦𝛼1+1 and ℎ = 𝜆𝑔 with 𝜆 a 424

constant yield 425

d2ℎ
d𝑥2

= −𝜆
𝛼1

𝛼1+1
𝛼1+1
𝛼1𝐷1

ℎ
1

𝛼1+1 . (37)
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Figure 3: Comparison of early-time analytical solution given in Eq. (32) (solid lines) with the simulated one (dotted lines) for
𝛼0 = 1.5, 3.5 (𝑝 = 3, 5) and 𝑀 = 6, 0.06 with 𝑞 = 2, 𝑚 = 2, 𝑘 = 10 mD, 𝑃𝑒 = 5 bar, 𝜙 = 0.25, 𝑆𝑤𝑖 = 𝑆𝑜𝑟𝑤 = 0.

Choosing 𝜆 =
( 𝛼1𝐷1
𝛼1+1

)

𝛼1+1
𝛼1 , Eq. (37) may be written under426

the following form:427

d2ℎ
d𝑥2

= −ℎ
1

𝛼1+1 , (38)

ℎ = 𝜆𝑔 = 𝜆𝑦𝛼1+1 =
(

𝛼1𝐷1
𝛼1+1

)

𝛼1+1
𝛼1 𝑦𝛼1+1. (39)

For 𝑥 ∈ [0, 𝐿], boundary conditions 1 − 𝑆 = 0 for all428

𝑡 > 0 at 𝑥 = 0 and 𝑥 = 𝐿 yield 𝑦(0) = 𝑦(𝐿) = 0, that is429

ℎ(0) = ℎ(𝐿) = 0. The solution being symmetric around430

𝑥 = 𝐿∕2, one must have d𝑦∕d𝑥 > 0 for 𝑥 ∈ [0, 𝐿∕2]431

and d𝑦∕d𝑥 < 0 for 𝑥 ∈ [𝐿∕2, 𝐿]. Therefore the condition432

(d𝑦∕d𝑥)(𝐿∕2) = 0 must hold.433

Before going further it is worth noting that Eq. (38)434

simplifies into d2ℎ∕d𝑥2 = −1 when exponent 𝛼1 is very435

large, whose solution is the parabola ℎ(𝑥) = 1
2𝑥(𝐿−𝑥) such436

that ℎ(𝐿∕2) = 𝐿2∕8.437

Coming back to the general case, it can be remarked that438

multiplying each member of Eq. (38) by dℎ
d𝑥 , the equation can439

be integrated once to yield440

1
2

(dℎ
d𝑥

)2
= 𝛼1+1

𝛼1+2

(

ℎ
𝛼1+2
𝛼1+1

(

𝐿
2

)

− ℎ
𝛼1+2
𝛼1+1

)

, (40)

where the right hand side 𝛼1+1
𝛼1+2

ℎ
𝛼1+2
𝛼1+1 (𝐿2 ) is an integration441

constant that is determined by the condition dℎ
d𝑥 (

𝐿
2 ) = 0. For442

𝑥 ∈ [0, 𝐿∕2], this last form integrates into443

𝑥 =
√

𝛼1+2
2(𝛼1+1) ∫

ℎ

0

dℎ
√

ℎ
𝛼1+2
𝛼1+1 (𝐿2 )−ℎ

𝛼1+2
𝛼1+1

=

√

(𝛼1+1)ℎ
𝛼1

𝛼1+1 (𝐿2 )
2(𝛼1+2) ∫

[ℎ∕ℎ(𝐿2 )]
𝛼1+2
𝛼1+1

0

𝑡
𝛼1+1
𝛼1+2

−1

√

1−𝑡
d𝑡,

(41)

setting 𝑡 =
[

ℎ∕ℎ(𝐿2 )
]

𝛼1+2
𝛼1+1 . This relationship set with 𝑥 = 𝐿

2 444

yields ℎ(𝐿2 ) in implicit form: 445

𝐿
2 =

√

(𝛼1+1)ℎ
𝛼1

𝛼1+2 (𝐿2 )
2(𝛼1+2) ∫

1

0

𝑡
𝛼1+1
𝛼1+2

−1

√

1−𝑡
d𝑡. (42)

446

Using Euler incomplete beta and gamma3 functions, the 447

solution rewrites as 448

𝑥 =

√

(𝛼1+1)ℎ
𝛼1

𝛼1+1 (𝐿2 )
2(𝛼1+2)

𝐵
(

[

ℎ
ℎ(𝐿2 )

]

𝛼1+2
𝛼1+1 ; 𝛼1+1𝛼1+2

, 12

)

, (43)

with ℎ(𝐿2 ) given by 449

ℎ
(𝐿
2

)

=
(

𝐿
2
√

2𝜋
𝛼1

√

(𝛼1+1)(𝛼1+2)

Γ( 𝛼1
2(𝛼1+2)

)

Γ( 𝛼1+1𝛼1+2
)

)

2(𝛼1+1)
𝛼1 . (44)

Noteworthy, this solution converges for 𝛼1 → ∞ to the 450

parabola that was previously obtained by direct calculation 451

in the specific case of a very large 𝛼1 exponent, which writes 452

implicitly 𝑥 = 𝐿∕2 −
√

(𝐿∕2)2 − 2ℎ with ℎ(𝐿∕2) = 𝐿2∕8. 453

Going back to the main unknown 𝑦, related to ℎ by Eq. 454

(38), the following implicit expression that fulfills all the 455

boundary conditions may be obtained: 456

𝑥 =

√

𝛼1𝐷1 𝑦𝛼1 (
𝐿
2 )

2(𝛼1+2)
𝐵
(

[

𝑦
𝑦(𝐿2 )

]𝛼1+2
; 𝛼1+1𝛼1+2

, 12

)

, (45)

with 𝑦(𝐿2 ) given by 457

𝑦
(𝐿
2

)

=
(

𝐿
2

√

𝛼1
2𝜋(𝛼1+2)𝐷1

Γ( 𝛼1
2(𝛼1+2)

)

Γ( 𝛼1+1𝛼1+2
)

)
2
𝛼1 . (46)

3Incomplete beta, beta and gamma function are respectively defined
as [1] 𝐵(𝑥; 𝑎, 𝑏) = ∫ 𝑥

0 𝑡𝑎−1(1 − 𝑡)𝑏−1 d𝑡, 𝐵(𝑥, 𝑦) = ∫ 1
0 𝑡𝑥−1(1 − 𝑡)𝑦−1 d𝑡 =

Γ(𝑥)Γ(𝑦)
Γ(𝑥+𝑦) and Γ(𝑧) = ∫ ∞

0 𝑡𝑧−1𝑒−𝑡 d𝑡.
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Figure 4: (a)-(b) Late-time analytical solution 𝑦(𝑥) given in Eqs (45)-(46) for several 𝛼1 values. (c)-(d) Comparison of the late-time
analytical solution 1 − 𝑆(𝑥, 𝑡) = 𝑦(𝑥)∕𝑡1∕𝛼1 and rescaled 𝑦(𝑥) = [1 − 𝑆(𝑥, 𝑡)] 𝑡1∕𝛼1 (solid lines) given in Eqs (35), (45) and (46) with
the simulated one (symbols) for 𝛼1 = 2, 𝑝 = 3, 𝑀 = 6, 𝑚 = 2, 𝑘 = 10 mD, 𝑃𝑒 = 5 bar, 𝜙 = 0.25, 𝑆𝑤𝑖 = 𝑆𝑜𝑟𝑤 = 0. Timescale is
normalized by the diffusion time 𝜏0 = 𝐿2∕(4𝐷0). Red crosses for the fixed-point solution indicated in (d) correspond to a direct
numerical solution of the asymptotic Ansatz detailed in Section 6.

The solution for 𝑦(𝐿2 ) and 𝑦(𝑥)∕𝑦(𝐿2 ) are reported in Figs458

4(a) and (b). Unlike solutions (32) and (33) obtained for the459

early-time regime by assuming the porous block to be semi-460

infinite, the late-time asymptotic solution (45) derived on a461

finite-size domain involves a characteristic length which is462

the block length 𝐿. Contrary to the early-time solution, in463

the late-time regime the water saturation is close to unity464

at every location in the matrix, therefore the power-law465

assumption given in Eq. (23) is automatically satisfied. A466

good agreement can be expected for the long time asymp-467

totic behaviour independently of the details of 𝐷(𝑆) over468

the whole range of saturations, as reported in Figs 4(c)-469

(d) where the timescale is normalized by the diffusion time470

𝜏0 = 𝐿2∕(4𝐷0).471

In the displayed example, the time convergence of the472

numerical solution to the asymptotic one given in Eqs (35),473

(45) and (46) is pretty slow. That can be accurately quantified 474

by comparing the time evolution of the numerical solution 475

1 − 𝑆 or (1 − 𝑆) 𝑡1∕𝛼1 with the asymptotic one for fixed 476

𝑥∕𝐿 values. Specifically, the numerical solution time con- 477

vergence to the asymptotic one is slower than the asymptotic 478

solution 1∕
√

𝑡 trend for 𝛼1 = 2 and intermediate 𝑡∕𝜏0 479

values. The reader may wish to consult Fig. 5 given later in 480

Section 5, which reports the time evolution of the matrix- 481

to-fracture flux, to spot the transition between the early- 482

and the late-time regimes that occurs around 𝑡∕𝜏0 = 40- 483

50 in the example displayed in Figs 4(c)-(d). Ultimately, 484

the numerical solution time evolution matches the asymp- 485

totic solution one as Figs 4(c)-(d) indicate about 7 and 486

2% relative difference between numerical and asymptotic 487

solutions, |𝑆∞ −𝑆num|∕(1 −𝑆∞), for 𝑡∕𝜏0 = 512 and 5120, 488

respectively. The larger the exponent 𝛼1, the slower this 489
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convergence. This is consistent with the typical behaviour of490

a porous medium that is preferentially wettable to the non-491

aqueous phase, for which the exponent 𝑞 = 𝛼1 of the relative492

permeability to the non-aqueous phase, assuming a power-493

law saturation dependency (14)-(16), is generally large, for494

it imbibes more slowly than a water-wet porous medium.495

To conclude this section, unlike the early-time regime,496

in the late-time regime, the low NAPL assumption 𝑆(𝑡) ≈497

1 becomes more and more valid as time increases. The498

asymptotic solution is likely to be independent on the details499

of 𝐷(𝑆) once 𝐷(𝑆) ≈ 𝐷1 (1 − 𝑆)𝛼1 as 𝑆 → 1.500

5. Towards a non-linear closure for501

matrix-to-fracture flux502

When large discrete fracture networks embedded in a503

permeable porous matrix are considered, it is customary to504

adopt a dual-porosity framework in which the coupling with505

the matrix may be accounted for via a source term Φmf(𝑡)506

[25, 14, 32, 30, 33]. This source term Φmf(𝑡) corresponds507

to a volume average of the normal flux between matrix and508

fractures. In the case of linear local flow equations, the509

generic closure of Φmf(𝑡) appears as being a time convo-510

lution of the local variable 𝑆(𝑥, 𝑡) with a time-dependent511

kernel that may be evaluated solving a relaxation problem512

on a representative matrix block [25, 30, 33]. In particular,513

focusing on the long-time limit, when the relaxation of514

the block reaches its exponential decay, it can be shown515

that Φmf(𝑡) ≈ −𝑆(𝑥,𝑡)−𝑆f(𝑥,𝑡)
𝜏m

with 𝑥 the block centroid and516

𝑆f the surrounding fracture saturation. The relaxation time517

𝜏m may be related to the block typical dimensions via the518

relation 𝜏m ≈ 𝜎𝐿2∕𝐷0 where 𝜎 is the so-called shape-519

factor of the matrix block. In the stratified case, 𝜎 = 12.520

In the more general case, it is a geometric quantity that is521

known for several block shapes, and that is related to the522

smallest eigenvalue of the Laplacian operator with Dirichlet523

boundary conditions on the block [25].524

Coming back to the non-linear case, at first sight, the525

convolution approach is useless, so other closure must be526

proposed, if any. In both short- and long-time regimes,527

the time variation of the matrix to fracture flux Φmf(𝑡) =528

(𝐷(𝑆) 𝜕𝑆∕𝜕𝑥)𝑥=0 can be estimated using the previously529

presented solutions. In the short-time case, using the Boltz-530

mann variable, Φmf(𝑡) may be estimated directly as Φmf(𝑡) =531

(𝐷(𝑆)∕
√

4𝐷0𝑡)(d𝑆∕d𝜉)𝜉=0 ∼ 1∕
√

𝑡 up to a prefactor532

𝐴0. In the long-time case, it is useful to introduce the533

spatial average of the matrix saturation defined by ⟨𝑆⟩(𝑡) =534

1
𝐿∕2 ∫

𝐿∕2
0 𝑆(𝑥, 𝑡) d𝑥. Averaging the diffusion equation (12)535

and swapping the time partial derivative and the spatial aver-536

age, one gets 𝐿
2
d⟨𝑆⟩
d𝑡 = ∫ 𝐿∕2

0
𝜕
𝜕𝑥

(

𝐷(𝑆) 𝜕𝑆𝜕𝑥
)

d𝑥 = −
(

𝐷(𝑆) 𝜕𝑆𝜕𝑥
)

𝑥=0537

hence Φmf(𝑡) = 𝐿
2
d⟨𝑆⟩
d𝑡 . In all the considered cases, sim-538

ilar results were obtained using the time derivative of the539

average saturation or the global flux at the boundary, so540

the former definition was retained. Inserting the late-time541

Ansatz in this expression, it may be shown that the matrix to542

fracture flux varies asymptotically as Φmf(𝑡) ∼ 1∕𝑡(𝛼1+1)∕𝛼1 .543

The proportionality factor 𝐴∞ can be evaluated using the 544

analytical solution 𝑦(𝑥) starting from equations (40) and 545

(44). The same algebraic decay was already discovered by 546

[41, 26]. In both papers, the authors selected Ansatz dealing 547

with the spatial variable valid close to the matrix/fracture 548

boundary. Although that approach leads to analogous long 549

time variations of the NAPL saturation, it does not provide 550

a complete solution in the space domain, and it appears less 551

general, especially in the multi-dimensional case. 552

Summarizing the results, we get: 553

Φmf(𝑡) ≈
⎧

⎪

⎨

⎪

⎩

𝐴0∕
√

𝑡 for 𝑡 → 0,

𝐴∞∕𝑡
𝛼1+1
𝛼1 for 𝑡 → ∞.

(47)

Both constants 𝐴0 and 𝐴∞ encapsulate the spatial details of 554

the corresponding asymptotic solutions and may be obtained 555

manipulating the expressions (29) for 𝐴0 and (39), (40), (43) 556

and (44) to obtain 𝐴∞, that gives the following expressions: 557

𝐴0 =
√

𝐷0 ∫

1

0
𝜉(𝑆) d𝑆, (48)

𝐴∞ = 1
𝛼1

(

𝛼1+1
𝛼1𝐷1

)
1
𝛼1

√

2(𝛼1+1)
𝛼1+2

×

×
(

𝐿
2
√

2𝜋
𝛼1

√

(𝛼1+1)(𝛼1+2)

Γ( 𝛼1
2(𝛼1+2)

)

Γ( 𝛼1+1𝛼1+2
)

)

𝛼1+2
𝛼1 . (49)

If one plots Φmf(𝑡) using a log-log scale, two straight lines 558

can be observed. The transition time from one regime to the 559

other corresponds to a time 𝑡 such that 𝜉0 = 𝐿∕2. 560

This is illustrated in Fig. 5(a) which reports the time 561

evolution of the matrix-to-fracture flux for a few 𝛼0,1 values. 562

Simulated early- and late-time slopes are in excellent agree- 563

ment with the early- and late-time predictions 1
2 and 𝛼1+1

𝛼1
, 564

respectively. The transition between the early- and late-time 565

regimes, which is observed for 𝑡∕𝜏0 = 5-10 in Fig. 5(a) and 566

is very clear with a very tight and sharp cross-over, could 567

be rescaled to 𝑡∕𝜏0 = 1 by considering not the characteristic 568

time 𝜏0 = 𝐿2∕(4𝐷0) suggested by dimensional analysis but 569

𝜏0 = 𝐿2∕(16𝜉20𝐷0) derived from 𝜉 = 𝑥∕
√

4𝐷0𝑡 setting 570

𝜉 = 𝜉0 and 𝑥 = 𝐿∕2. It is worth noting the low influence 571

of the early-time exponent 𝛼0. 572

Fig. 5(b) reports the time evolution of the simulated 573

fracture-to-matrix fluxΦmf multiplied by its asymptotic time 574

dependencies (47) and divided by its asymptotic prefactors 575

𝐴0 and𝐴∞ (48) and (49) for the same 𝛼0 and 𝛼1 exponents as 576

in Fig. 5(a). Except for the cross-over between the short and 577

long time regimes, the asymptotic solutions (47) are found 578

with excellent accuracy and dominate most of the exchange 579

dynamics over several orders of magnitude. 580

It can be observed that using the long-time asymptotics 581

⟨𝑆⟩ ∼ 𝑡1∕𝛼1 , one can write the matrix to fracture flux under 582

the following form: Φmf(𝑡) ∼ −⟨𝑆⟩𝛼1+1. That non-linear 583

closure between the local matrix to fracture flux and the 584

average matrix saturation generalizes the usual linear closure 585
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Figure 5: (a) Time evolution of the matrix-to-fracture flux for a few 𝛼0 and 𝛼1 exponents 𝛼0 = 1.5, 3.5 (𝑝 = 3, 5, 𝑚 = 2) and 𝛼1 = 2,
4 with 𝑀 = 6, 𝑘 = 10 mD, 𝑃𝑒 = 5 bar, 𝜙 = 0.25 and 𝑆𝑤𝑖 = 𝑆𝑜𝑟𝑤 = 0. Simulated early- and late-time slopes −{0.48, 0.46, 0.44}
and −{1.45, 1.48, 1.21}, respectively, are in excellent agreement with the early- and late-time predictions (thin solid lines) − 1

2
and

− 𝛼1+1
𝛼1

= − 3
2

and − 5
4

for 𝛼1 = 2 and 4, respectively. Timescale is normalized by the diffusion time 𝜏0 = 𝐿2∕(4𝐷0). (b) Time evolution
of the matrix-to-fracture flux multiplied by its asymptotic time dependencies (47) and divided by its asymptotic prefactors 𝐴0
and 𝐴∞ (48) and (49) for the same 𝛼0 and 𝛼1 exponents.

relation that gives rise to most dual-porosity models. The586

underlying proportionality factor may be obtained directly587

from the fixed-point solution that will be presented in Sec-588

tion 6, and could be related to usual shape factors of the589

literature [25].590

To finish with, it can be remarked that using the relation591

Φmf(𝑡) = 𝐿
2
d⟨𝑆⟩
d𝑡 , if 𝛼1 = 0 is inserted in that formula, it592

provides an exponential relaxation of the matrix saturation.593

That is consistent with the corresponding findings of the594

constant diffusion case. In the non-linear case, a non-linear 595

closure is obtained. Estimations of that closure for a whole 596

range of time-scales accounting for both the short time and 597

long time scales were proposed by [26]. 598

6. Generalization to 2D or 3D matrix blocks 599

We now generalize the results obtained in one dimen- 600

sion of space to any dimension of space for any matrix 601
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block geometry. Under the given boundary conditions, the602

porous medium still undergoes counter-current imbibition as603

demonstrated in Section 2.2 without the need for the matrix604

block to exhibit symmetries.605

We first indicate in Sections 6.1 and 6.2 which quan-606

titative features are preserved with respect to the one-607

dimensional early- and late-time asymptotic solutions and608

corresponding fluxes, and which are not and require addi-609

tional investigation.610

We show in Section 6.3 how the late-time asymptotic611

solution separate form (35) can be exploited to develop a612

simple and efficient fixed-point numerical solution method,613

which advantageously replaces the delicate solving of the614

initial nonlinear singular diffusion equation.615

Finally, we demonstrate in Section 6.4, by considering616

some simple two-dimensional block geometries, that the full617

dynamics of capillary imbibition can be accurately and effi-618

ciently predicted. The matrix block imbibition still presents619

two regimes whose saturation and fracture-to-matrix flux620

can be computed: a diffusive early-time regime and an621

anomalous late-time regime that cross-over tightly. Eventu-622

ally, residual points to investigate are discussed.623

6.1. Early-time regime624

In the general case of matrix blocks having arbitrary625

shapes, there is no simple approximation working yielding626

a detailed description of the short time regime. A general-627

ization of Parlange’s results might be worth investigating, al-628

though nothing simple is apparent at first sight. At very short629

time, keeping the Boltzmann assumption of a dependency on630

𝐱∕
√

𝑡 is equivalent to set-up a boundary layer approximation631

[23, 24, 42]. Physically it corresponds to consider that locally632

the block boundary can be assumed to be planar, and then633

to use the one-dimensional solution. Such an approximation634

can be assumed to be valid if the diffusion length √

𝐷0𝑡635

is much smaller than any characteristic lengthscale of the636

block. The occurrence of such a regime is confirmed once637

considering the matrix-to-fracture flux that is observed here-638

after in Fig. 11 of Section 6.4 to vary as 1∕√𝑡 at short times639

for simple matrix block geometries. Then a transient regime640

leading to the long time asymptotic solution can be observed.641

6.2. Late-time regime642

As detailed in the next section, the late-time asymptotic643

solution in the separate form (35) remains valid for any644

dimension of space and any block shape, except that the645

function 𝑦(𝑥), whose analytical expression (45) has been646

derived in one dimension of space, and which we will647

henceforth denote 𝑓 (𝐱), remains to be determined. Thus,648

except for this detail which we will show hereafter how to649

manage quickly and accurately numerically, the late-time650

asymptotic solution 1−𝑆(𝐱, 𝑡) preserves a time dependence651

in 1∕𝑡1∕𝛼1 and the corresponding asymptotic flux (47) still652

presents an algebraic anomalous decay that is proportional653

to 1∕𝑡(𝛼1+1)∕𝛼1 , whose prefactor 𝐴∞ remains to be computed654

and no longer writes as in (49) as it obviously depends on655

the space solution 𝑓 (𝐱).656

6.3. Fixed-point algorithm 657

The late-time asymptotic approach (35) remains valid for 658

any dimension of space and any block shape. The solution of 659

(25) writes 660

1 − 𝑆(𝐱, 𝑡) = 𝑓 (𝐱)
𝑡1∕𝛼1

(50)

where 𝑓 (𝐱) satisfies ∇ ⋅ (𝑓 𝛼1∇𝑓 ) = −𝑓∕(𝛼1𝐷1), which is 661

rewritten as already done in Eqs (36)-(39) 662

∇2ℎ = −ℎ
1

𝛼1+1 , (51)

ℎ =
(

𝛼1𝐷1
𝛼1+1

)

𝛼1+1
𝛼1 𝑓 𝛼1+1. (52)

As already noted in Section 4, ℎ satisfies∇2ℎ = −1when the 663

exponent 𝛼1 is very large, whose solution is a parabola in one 664

dimension. This will serve as an initial guess to implement 665

a fixed-point method to solve (51). 666

We are thus led to solve a Laplace equation in a domain 667

Ω of boundary 𝜕Ω on which ℎ = 0. Specifically, a sequence 668

of functions (ℎ𝑘)𝑘≥0 such that 669

∇2ℎ𝑘 = −ℎ
1

𝛼1+1
𝑘−1 in Ω,

ℎ𝑘 = 0 on 𝜕Ω,
(53)

for all 𝑘 ≥ 1 is looked for with the following initial guess 670

∇2ℎ0 = −1 in Ω,
ℎ0 = 0 on 𝜕Ω.

(54)

At each iteration of the algorithm, we solve the non-singular 671

elliptic problem (53) using a Newton-Raphson method em- 672

bedded in the finite element method framework provided 673

by the FreeFEM++ open-source PDE solver [19]. In 2D, 674

that code generates meshes with triangular elements and 675

Lagrangian P1 basis functions. The iterative algorithm is 676

performed until ‖ℎ𝑘 − ℎ𝑘−1‖∞ and ‖ℎ𝑘 − ℎ𝑘−1‖2 are small 677

enough. Residuals less than 10−12 have been imposed so that 678

a few iterations (about 20) are enough to converge which 679

makes the algorithm fast and allows the use of fine meshes 680

to obtain very accurate solutions. Also, as the initial guess 681

corresponds to the solution of Eq. (54) with 𝛼1 → ∞, a faster 682

convergence is expected for higher values of 𝛼1 for a given 683

geometry. 684

6.4. Results 685

Running the algorithm in the one-dimensional case gives 686

an excellent agreement with the analytical solution as re- 687

ported in Fig. 4(d). A similar result has been obtained (but is 688

not shown here as it does not bring much) by considering not 689

the one-dimensional segment [0, 𝐿] but a two-dimensional 690

rectangle as shown in Fig. 6 with the same initial and 691

boundary conditions, i.e. one pair of faces facing each other 692

with imposed saturation and the other with zero flux. 693

Four two-dimensional geometries were considered in 694

order to validate the fixed-point algorithm, considering the 695
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saturation imposed on the whole boundary of the matrix696

block, from the most to the least symmetrical, as shown in697

Fig. 6:698

• Disk of radius 𝑅,699

• Square of side 𝐿,700

• Rectangle of sides 𝐿𝑥 and 𝐿𝑦,701

• Quadrangle of medians 𝐿𝑥 and 𝐿𝑦.702

For the record, the spherical geometry has also been treated703

but is not reported because except for some elementary alge-704

bra details it does not differ significantly from the cylindrical705

geometry shown hereafter (both are systems with one degree706

of freedom).707

In each case, the diffusion time is defined by 𝜏0 =708

𝐿2
𝑐∕(4𝐷0) where 𝐿𝑐 is a characteristic length of the consid-709

ered geometry, that is 𝐿𝑐 = 2𝑅, 𝐿 or 𝐿𝑥 or 𝐿𝑦 depend-710

ing on whether the medium is a disk, square, rectangle or711

quadrangle. We will come back to this point later, which712

at this stage is more of a dimensional analysis but requires713

further analysis as we shall see when analyzing the fluxes.714

The considered flow configuration is one of those previously715

studied in Sections 4 and 5 such that 𝛼1 = 2, 𝑝 = 3,716

𝑀 = 6, 𝑚 = 2, 𝑘 = 10 mD, 𝑃𝑒 = 5 bar, 𝜙 = 0.25 and717

𝑆𝑤𝑖 = 𝑆𝑜𝑟𝑤 = 0.718

Figs 7(a), 8(a), 9(a)-(b) and 10(a)-(b) report the satu-719

ration profiles 1 − 𝑆(𝐱, 𝑡) projected on the domain paths720

indicated in Fig. 6 while Figs 7(b), 8(b), 9(c)-(d) and 10(c)-721

(d) give the space dependence of the solution by plotting722

[1 − 𝑆(𝐱, 𝑡)] 𝑡1∕𝛼1 . In all cases, an excellent agreement be-723

tween the numerical and the fixed-point solution is observed724

for late times, specifically from 𝑡∕𝜏0 = 511 for the disk,725

𝑡∕𝜏0 = 511 for the square, 𝑡∕𝜏0 = 5 for the rectangle, and726

𝑡∕𝜏0 = 838 for the quadrangle.727

Now let us look at the flux time evolution over the entire728

dynamic range. As already explained in Section 5, flux can729

be computed in two ways: either by the time derivative of730

the block average saturation, or by the flux at the boundary.731

Indeed, integrating Eq. (12) on the considered domain Ω,732

defining the average saturation as ⟨𝑆⟩(𝑡) = 1
|Ω| ∫Ω 𝑆(𝐱, 𝑡) d𝐱733

and using Stokes theorem, one gets a NAPL flux (of opposite734

sign to the water flux) of dimension 𝐿𝑑𝑇 −1, where 𝑑 is the735

space dimension, that reads736

Φmf(𝑡) = −|Ω|
d⟨𝑆⟩(𝑡)

d𝑡
= −∫𝜕Ω

𝐷(𝑆)𝐧 ⋅∇𝑆 d𝜎 (55)

with 𝐧 the 𝜕Ω outward normal unitary vector and |Ω| the737

measure of Ω. In two (three) space dimensions |Ω| is Ω738

area (volume), 𝜕Ω is its contour (surface) and d𝜎 is an739

infinitesimal contour (surface) element of 𝜕Ω.740

Flux time evolution, that is more convenient to compute741

by the average saturation but which we made sure does not742

depend on the mode of calculation [using the left or right743

hand side of (55)], is reported in Fig. 11 for all the tested ge-744

ometries. Whatever the geometry considered, several points745

are worth noting:746

• We observe once again, as in one dimension, an early-747

time diffusive regime that is characterized by a flux748

which varies proportionally to 1∕
√

𝑡, and an anoma- 749

lous late-time regime that is driven by a flux propor- 750

tional to 1∕𝑡(𝛼1+1)∕𝛼1 . 751

• Flux prefactor 𝐴∞ is no longer known analytically 752

as in one dimension, following Eq. (49), but can 753

be quickly obtained numerically from the fixed-point 754

algorithm subject to having an accurate estimate of a 755

finite value of (𝑡∕𝜏0)∞ for which the numerical solu- 756

tion has almost converged to the asymptotic solution 757

for 𝑡 → ∞. 758

• The cross-over between the early- and late-time regimes 759

is very narrow. Therefore the early- and late-time 760

asymptotic solutions that dominate completely the 761

fracture-to-matrix dynamic exchange are sufficient to 762

determine the flux over the whole exchange dynam- 763

ics. In other words, if the asymptotic solutions are 764

determined, then the whole dynamic response of the 765

exchange is also determined to a very good approx- 766

imation. This remains of course to be demonstrated 767

in practice on more complex geometries than those 768

tested. 769

• Flux prefactor 𝐴∞ can be computed numerically by 770

a spatial integration of the fixed-point solution. This 771

being said, Fig. 11 clearly shows that fluxes are all 772

translated in time with respect to each other depending 773

on the geometry considered. Only the square and 774

the disk are very close. This means that the relevant 775

characteristic length 𝐿𝑐 involved in the diffusion time 776

𝜏0 = 𝐿2
𝑐∕(4𝐷0) remains to be found, instead of setting 777

as we did𝐿𝑐 = 2𝑅,𝐿,𝐿𝑥 or𝐿𝑦 depending on whether 778

the medium is a disk, square, rectangle or quadrangle. 779

Once this one is found, if it exists, whatever the ge- 780

ometry considered, all the corresponding fluxes would 781

be in phase and would superimpose if Φmf(𝑡)∕𝐴∞ is 782

considered for 𝑡 → ∞, following (47). This will be the 783

subject of another work. 784

To finish with, the constant flux that can be observed at 785

very short times in Fig. 11 for the square and the quadrangle 786

should be discarded because they are artifacts related to the 787

domain discretization, the exchange affecting the first row 788

of cells near the domain boundary only. This was verified by 789

further refining the mesh (the plateau shifts to even shorter 790

times). 791

7. Summary and discussion 792

The long-time relaxation of the NAPL saturation inside a 793

matrix block in contact with water was studied in the case of 794

counter-current imbibition for one- or two-dimensional ma- 795

trix blocks of arbitrary shape. Gravity effects were neglected, 796

so only the pure capillary regime was investigated. The 797

time variations of the matrix-to-fracture transfer flow rate 798

was also studied. The transition from a Boltzmann square- 799

root regime to an “anomalous” algebraic power-law decay 800

was confirmed qualitatively and quantitatively by numerical 801

simulations. In the short-time regime, the semi-infinite as- 802

sumption is quite robust, so the results may remain useful 803
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Figure 6: Two-dimensional geometries studied: disk, square,
rectangle and quadrangle (all surfaces are to scale except the
rectangle, magnified three times). The characteristic lengths
as well as the paths on which the saturation field 1 −𝑆(𝐱, 𝑡) is
projected in Figs 7, 8, 9 and 10 are indicated in blue and red
(direction of the path is given by an arrow, coordinate system
is shown in black).

even considering general fractured media response in that804

regime. On the other hand, the long-time decay exponent is805

directly related to input data combining capillary pressure806

and relative permeabilities features. As in the long-time807

regime, the NAPL saturation is uniformly small inside the808

matrix block, the power-law assumption may be expected809

to be quite robust, controlled by the low NAPL saturation810

transport properties. The transition between both regimes811

is sharp, occurring as soon as the toe of the short-time812

Boltzmann solution reaches half the block size. The asso-813

ciated matrix-to-fracture flux term Φmf(𝑡) closure may be814

represented as being proportional to ⟨𝑆⟩𝛼1+1, the exponent815

𝛼1 describing the singularity of the diffusion coefficient with816

NAPL saturation.817

For general matrix blocks in 2 dimensions, a similar818

study was carried out under the same counter-current flow819

regime. The occurrence of such regime appears to be quite820

general thanks to a derivation involving the global pressure821

concept. A similar Ansatz driving the long-time regime was822

proposed. It predicts a power-law time dependency, and the823

spatial dependence can be determined numerically using a824

fast fixed-point algorithm. These findings were confirmed825

by several comparisons with direct simulations for various826

typical matrix block shapes. Similar results are obtained for827

the time evolution of the corresponding matrix-to-fracture828

flux. A quite sharp transition between a Boltzmann regime829

involving a 1∕√𝑡 diffusion time-dependence and the anoma-830

lous long-time regime driven by the exponent 1∕𝛼1 can831

be observed. That transition corresponds to the interplay832

between the diffusion lengthscale and the characteristic size833

of the matrix block.834

In summary, a promising very fast and accurate com-835

putational approach is emerging, which should eventually836

make it possible, after some additional efforts, to predict837

counter-current imbibition over a distribution of blocks of838

various shapes and sizes, which is more representative of839

naturally fractured porous media. To this end, the following840

points require further investigation:841
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Figure 7: Disk — comparison of the fixed-point solution (solid
lines, 1 654 elements) with the numerical solution (symbols,
500 nested rings). Timescale is normalized by the diffusion
time 𝜏0 = 𝐿2

𝑐∕(4𝐷0) with 𝐿𝑐 = 2𝑅 = 1 m (see Fig. 6).

• A generalization of Parlange’s asymptotic early-time 842

solution in any dimension of space might be worth 843

investigating, although nothing simple is apparent at 844

first sight. 845

• Late-time estimates of (𝑡∕𝜏0)∞, such that the fixed- 846

point asymptotic solution obtained for 𝑡 → ∞ is valid 847

and the flux prefactor 𝐴∞ is accurately computed, 848

should be consolidated. 849

• To that end, the relevant characteristic length involved 850

in the diffusion time 𝜏0 should be determined be- 851

forehand as previously discussed, to make (𝑡∕𝜏0)∞ 852

estimates generic (indeed, if the timescale differs from 853

one geometry to another, determining (𝑡∕𝜏0)∞ on a 854

case by case basis may be tedious). 855

These findings pave the way to research leading to a more 856

faithful description of matrix-to-fracture exchanges when 857

considering a realistic fractured medium composed of a 858

population of matrix block of various size and shapes. In 859

particular, the proportionality constant relating the late-time 860

flux Φmf(𝑡) to −⟨𝑆⟩𝛼1+1 appears to play a similar role than a 861

shape factor that may be evaluated using single-phase aver- 862

aging techniques [37, 31, 33]. Looking for simple geometric 863
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Figure 8: Square — comparison of the fixed-point solution
(solid lines, 4 050 elements) with the numerical solution (sym-
bols, 101 × 101 = 10 201 cells). Timescale is normalized by the
diffusion time 𝜏0 = 𝐿2

𝑐∕(4𝐷0) with 𝐿𝑐 = 𝐿 = 1 m (see Fig. 6).

descriptors quantifying the transition time between diffusion864

regimes will be of interest for such applications. In parallel,865

developing averaging methods lumping these various matrix866

blocks within one macro-scale single exchange flux descrip-867

tion will be another research avenue.868

A. Appendix: conservative numerical scheme869

In this Appendix, we detail the numerical scheme used to870

solve the singular elliptic partial differential equation (12) in871

the matrix block domain Ω. We consider neither the Boltz-872

mann variable form (29) for short times, nor the asymptotic873

form (23) for long times, but the generic PDE (12) that drives874

the solution 𝑆(𝐱, 𝑡) for all 𝐱 and 𝑡. The singular character of875

this equation comes from the diffusion coefficient 𝐷 given876

by Eq. (13) which vanishes and is not differentiable with877

respect to 𝑆, for 𝑆 = {0, 1}, except for particular values of878

the exponents 𝑟, 𝑝 and 𝑞. Because 𝐷 cancels at the boundary879

𝜕Ω of the porous medium, one must have (∇𝑆)𝜕Ω = −∞ in880

order to get a non-zero fracture-to-matrix flux (𝐷(𝑆)∇𝑆)𝜕Ω,881

as can be seen in Fig. 3. To prevent numerical instabilities882

or large rounding errors, we set-up a conservative scheme883

which does not require to compute the product 𝐷(𝑆)∇𝑆, 884

and is based on the following reformulation of Eq. (12) as 885

a conservation law: 886

𝜕𝑆
𝜕𝑡

= ∇2𝐺(𝑆) where 𝐺(𝑆) = ∫

𝑆

0
𝐷(𝑠) d𝑠, (A1)

with 𝑆 the normalized mobile aqueous phase saturation 887

(8). The physical domain considered is Ω with boundary 888

conditions 𝑆(𝐱, 𝑡) = 1 on the boundary 𝜕Ω for all 𝑡 ≥ 0. 889

To start with, the function 𝐺 defined in Eq. (A1) does 890

not admit a simple expression that can be easily handled, 891

except in the limiting cases 𝑀 ≪ 1 and 𝑀 ≫ 1 (𝐺 is then 892

a power-law or an incomplete beta function, respectively) 893

where 𝑀 is the mobility ratio defined in Eq. (19). To derive 894

a conservative numerical scheme, we resort to a discrete 895

integration of the diffusion function𝐷 denoted𝐺ℎ. To do so, 896

we discretize the normalized saturation interval [0, 1] with 897

the sequence (𝑆̃𝑘)𝑘∈{0,…,𝑁𝑆} = 𝑘Δ𝑆̃ composed of 𝑁𝑆 + 1 898

points and where Δ𝑆̃ = 1∕𝑁𝑆 . For convenience, let us 899

introduce the operator 𝐼ℎ𝐺 which defines the discrete integral 900

of 𝐺 over two increasing saturation values 𝑆𝛼 and 𝑆𝛽 . Using 901

the third order Simpson’s method, 𝐼ℎ𝐺 writes 902

𝐼ℎ𝐺(𝑆𝛼 , 𝑆𝛽) =
𝑆𝛽−𝑆𝛼

6

[

𝐷(𝑆𝛼) + 4𝐷
(𝑆𝛼+𝑆𝛽

2

)

+𝐷(𝑆𝛽)
]

.

(A2)
For any saturation value 𝑆 such that 𝑆 ∈ [𝑆̃𝑘, 𝑆̃𝑘+1], we 903

approximate the function 𝐺(𝑆) with 𝐺ℎ(𝑆) = 𝐼ℎ𝐺(𝑆̃𝑘, 𝑆) + 904
∑𝑘

𝑙=1 𝐼
ℎ
𝐺(𝑆̃𝑙−1, 𝑆̃𝑙). 905

Regarding the domain Ω discretization, let ℎ be an 906

admissible finite volume mesh of the domain Ω given by a 907

family of control volumes or cells noted 𝐾: for any 𝐾 of 908

ℎ, |𝐾| is its measure, 𝐾𝐿 = 𝜕𝐾 ∩ 𝜕𝐿 is the common 909

interface between 𝐾 and a neighbouring cell 𝐿. The set 910

of neighbors of cell 𝐾 is denoted  (𝐾), that is  (𝐾) = 911

{𝐿 ∈ ℎ; 𝜕𝐾 ∩ 𝜕𝐿 ≠ ∅}. Time is discretized with the non- 912

decreasing sequence {𝑡𝑛} such that 𝑡0 = 0 andΔ𝑡 = 𝑡𝑛+1−𝑡𝑛. 913

Let also 𝑆𝑛
𝑖 be the approximation of the saturation on the 914

interval 𝐶𝑖 × [𝑡𝑛, 𝑡𝑛 + Δ𝑡). Finally, it is useful to introduce 915

the vector 𝐒𝑛 such that (𝐒𝑛)𝑖 = 𝑆𝑛
𝑖 in order to formulate the 916

scheme vectorially. 917

Partial differential equation (A1) is recast in a discrete 918

manner with the following finite-volume implicit scheme. 919

Accounting for the boundary condition of an imposed sat- 920

uration, i.e. 𝑆(𝑥 = 0, 𝑡) = 1, ∀𝑥 ∈ 𝜕Ω, ∀𝑡 ≥ 0, the 921

numerical scheme can be written by introducing the function 922

𝐙𝑛 defined for all 𝐾 ∈ ℎ as 923

[

𝐙𝑛(𝐒)
]

𝐾 = 𝑆𝐾 − 𝑆𝑛−1
𝐾 −

∑

𝐿∈ (𝐾)
𝜆𝐾𝐿(𝐺𝐾 − 𝐺𝐿)

− 𝜆𝐾,𝜕Ω(𝐺𝐾 − 𝐺(1)),
(A3)

with 𝐺𝐾 = 𝐺(𝑆𝐾 ), 𝜆𝐾𝐿 = Δ𝑡|𝐾𝐿|∕(|𝐾|𝑑𝐾𝐿) where |𝐾𝐿| 924

is the face measure and 𝑑𝐾𝐿 the distance between the center 925

of cells 𝐾 and 𝐿. The term 𝜆𝐾,𝜕Ω(𝐺𝐾 −𝐺(1)) stands for the 926

boundary condition contributions, non null when the cell 𝐾 927
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Figure 9: Rectangle — comparison of the fixed-point solution (solid lines, 2 222 elements) with the numerical solution (symbols,
201 × 41 = 8 241 cells). Timescale is normalized by the diffusion time 𝜏0 = 𝐿2

𝑐∕(4𝐷0) with 𝐿𝑐 = 𝐿𝑥 = 10𝐿𝑦 = 1 m (see Fig. 6).

is a boundary cell. As we use polyhedral mesh cells, it is the928

sum of several contributions if cell 𝐾 has several boundary929

faces. For each boundary face (𝜕𝐾)𝑗 , that contribution is930

Δ𝑡|(𝜕𝐾)𝑗|∕[|𝐾|𝑑𝐾,(𝜕𝐾)𝑗 ] where |(𝜕𝐾)𝑗| is the measure of931

the face and 𝑑𝐾,(𝜕𝐾)𝑗 the distance between the cell center932

and the face.933

The updated numerical solution 𝐒𝑛 of this numerical934

scheme is the zero of the function 𝐙𝑛. As this function is935

non-linear because𝐺(𝑆) non-linearly depends on saturation,936

a Newton-Raphson algorithm is required. Specifically, for937

each time step we construct a sequence 𝐒𝑛,𝑘 such that 𝐙𝑛,𝑘 =938

𝐙𝑛(𝐒𝑛,𝑘)
𝑘→∞
←←←←←←←←←←←←←←←←←←←←←→ 0 and recursively defined by 𝐒𝑛,𝑘+1 = 𝐒𝑛,𝑘 +939

𝛿𝐒𝑛,𝑘 where 𝛿𝐒𝑛,𝑘 denotes the increment vector given by940

𝛿𝐒𝑛,𝑘 = −
[

∇𝐒𝐙𝑛,𝑘]−1 𝐙𝑛,𝑘, (A4)

where the matrix [

∇𝐒𝐙𝑛,𝑘]−1 is the inverse of the Jacobian941

matrix ∇𝐒𝐙𝑛,𝑘 = ∇𝐒𝐙𝑛(𝐒𝑛,𝑘). The increment vector 𝛿𝐒𝑛,𝑘942

is thus determined by solving a linear system. The Jacobian943

matrix is sparse and its non-null terms are given by, for all944

𝐾 ∈ ℎ: 945

(

∇𝐒𝐙𝑛,𝑘)
𝐾,𝐾 = 1 −

(

𝜆𝐾,𝜕Ω +
∑

𝐿∈ (𝐾)
𝜆𝐾𝐿

)

𝐷𝑛,𝑘
𝐾 ,

(

∇𝐒𝐙𝑛,𝑘)
𝐾,𝐿 = 𝜆𝐾𝐿𝐷

𝑛,𝑘
𝐿 .

(A5)

In addition, as the function 𝐺 is approximated numerically, 946

we used the function 𝐺ℎ instead of 𝐺 in relation (A3) to 947

compute the Newton residue 𝐙𝑛,𝑘. To end with, the Newton 948

algorithm is performed until the 𝐿2 norms of the residue 949

||𝐙𝑛,𝑘
||2 and of the increment ||𝛿𝐒𝑛,𝑘||2 are sufficiently 950

small. 951

A.1. Cylindrical geometry 952

For a cylindrical domain Ω = [0, 𝑅] × [0, 2𝜋] × [0,𝐻] 953

invariant by rotation and translation along the 𝑧-axis, the 954

solution depends only on the radius 𝑟 ∈ [0, 𝑅]. We therefore 955

consider a uniform mesh composed of 𝑁 + 1 embedded 956

cylinder of first cell 𝐾0 = [0,Δ𝑟∕2] × [0, 2𝜋] × [0,𝐻] and 957

the following embedded 𝐾𝑖 = [(𝑖 − 1∕2)Δ𝑟, (𝑖 + 1∕2)Δ𝑟] × 958

[0, 2𝜋]×[0,𝐻] for 1 ≤ 𝑖 ≤ 𝑁𝐾 , where Δ𝑟 = 𝑅∕(𝑁𝐾+1∕2). 959

After some straightforward calculations, the scheme writes 960
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Figure 10: Quadrangle — comparison of the fixed-point solution (solid lines, 4 272 elements) with the numerical solution (symbols,
101× 101 = 10 201 cells). Timescale is normalized by the diffusion time 𝜏0 = 𝐿2

𝑐∕(4𝐷0) with 𝐿𝑐 = 𝐿𝑥 = 𝐿𝑦 = 0.781 m (see Fig. 6).

in the form (A3) with961

𝜆𝐾0𝐾1
= 4Δ𝑡

(Δ𝑟)2 ,

𝜆𝐾𝑖𝐾𝑖+1
=
(

1 + 1
2𝑖

) Δ𝑡
(Δ𝑟)2 for 1 ≤ 𝑖 ≤ 𝑁𝐾 ,

𝜆𝐾𝑁 ,𝜕Ω = Δ𝑡
[

1−
(

1−Δ𝑟
𝑅

)2]
𝑅Δ𝑟

.
(A6)

A.2. Spherical geometry962

For a spherical domainΩ = [0, 𝑅]3 invariant by rotation,963

we consider a uniform mesh composed of 𝑁 + 1 embedded964

sphere of first cell 𝐾0 = [0,Δ𝑟∕2]3 and the following965

embedded 𝐾𝑖 = [(𝑖−1∕2)Δ𝑟, (𝑖+1∕2)Δ𝑟]3 for 1 ≤ 𝑖 ≤ 𝑁𝐾 ,966

with Δ𝑟 = 𝑅∕(𝑁𝐾 + 1∕2). In this case, the coefficients of967

the numerical scheme (A3) are968

𝜆𝐾0𝐾1
= 6Δ𝑡

(Δ𝑟)2 ,

𝜆𝐾𝑖𝐾𝑖+1
=

(

𝑖+ 1
2

)2

(

𝑖+ 1
2

)3
−
(

𝑖− 1
2

)3
3Δ𝑡
(Δ𝑟)2 for 1 ≤ 𝑖 ≤ 𝑁𝐾 ,

𝜆𝐾𝑁 ,𝜕Ω = 3Δ𝑡
[

1−
(

1−Δ𝑟
𝑅

)3]
𝑅Δ𝑟

.

(A7)
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Nomenclature1111

Dimensions of the quantities considered are given in paren-1112

thesis with 𝑀 = [mass], 𝐿 = [length], 𝑇 = [time],1113

where [#] stands for dimension(s) of #1114

Vectors are noted in bold1115

D, mD Darcy, milli-Darcy (unit of permeability, 𝐿2)1116

1D, 2D, 3D One-/two-/three-dimensional1117

NAPL Non-aqueous phase liquid1118

𝑡 Time (𝑇 )1119

𝜏0,m Characteristic time (𝑇 )1120

𝐱 Position in space (𝐿)1121

𝑥, 𝑦, 𝑧 Cartesian space coordinates (𝐿)1122

𝑟 Radial coordinate (cylindrical/spherical geometries, 1123

𝐿) 1124

𝜉 Boltzmann variable 𝑥∕
√

4𝐷0𝑡 (dimensionless) 1125

∇ Gradient operator (𝐿−1) 1126

∇2 Laplacian operator (𝐿−2) 1127

𝐿𝑐 Characteristic length (𝐿) 1128

𝐿,𝐿𝑥,𝑦 Lengths (𝐿) 1129

𝑅 Radius (𝐿) 1130

𝑙cap Capillary length (𝐿) 1131

𝜙 Porous medium porosity (dimensionless, fraction) 1132

𝑘 Porous medium permeability (𝐿2) 1133

𝜑 Subscript denoting either water (𝜑 = 𝑤) or NAPL 1134

(𝜑 = 𝑜) phase 1135

𝜌𝜑 Density of phase 𝜑 (𝑀𝐿−3) 1136

Δ𝜌 Density difference 𝜌𝑤−𝜌𝑜 between water and NAPL 1137

phases (𝑀𝐿−3) 1138

𝜇𝜑 Dynamic viscosity of phase 𝜑 (𝑀𝐿−1𝑇 −1) 1139

𝛾 Interfacial tension (𝑀𝑇 −2) 1140

𝜃 Contact angle between fluid and rock (dimension- 1141

less) 1142

𝑆𝜑 Saturation of phase 𝜑 (dimensionless, fraction) 1143

𝑆𝑤𝑖 Irreducible water saturation (dimensionless, frac- 1144

tion) 1145

𝑆𝑜𝑟𝑤 Residual NAPL saturation (dimensionless, fraction) 1146

𝑆 Normalized water saturation (𝑆𝑤−𝑆𝑤𝑖)∕(1−𝑆𝑜𝑟𝑤− 1147

𝑆𝑤𝑖) (dimensionless, fraction) 1148

𝑃𝜑 Pressure in phase 𝜑 (𝑀𝐿−1𝑇 −2) 1149

𝑃𝑐 Capillary pressure 𝑃𝑜 − 𝑃𝑤 between water and 1150

NAPL phases (𝑀𝐿−1𝑇 −2) 1151

𝑃𝑡 Global pressure (𝑀𝐿−1𝑇 −2) 1152

𝑘𝑟𝜑 Relative permeability to phase 𝜑 (dimensionless) 1153

𝜆𝜑 Mobility 𝑘𝑟𝜑∕𝜇𝜑 of phase 𝜑 (𝑀−1𝐿𝑇 ) 1154

𝜆𝑡 Total mobility (sum of all considered phases mobil- 1155

ities, 𝑀−1𝐿𝑇 ) 1156

𝐮𝑡 Total Darcy velocity (sum of all considered phases 1157

Darcy velocities, 𝐿𝑇 −1) 1158

𝜅𝜑 Maximum relative permeability to phase 𝜑 (dimen- 1159

sionless) 1160

𝑃𝑒 Entry capillary pressure (𝑀𝐿−1𝑇 −2) 1161

𝑝, 𝑞, 𝑟, 𝑚, 𝛼0,1, 𝑢, 𝑣 Exponents (dimensionless) 1162

𝐷(𝑆) Saturation 𝑆 dependent diffusion function (𝐿2𝑇 −1) 1163

𝐷0,1 Constants that are homogeneous to a diffusion coef- 1164

ficient (𝐿2𝑇 −1) 1165

𝛽, 𝛾 Constants (dimensionless) 1166

𝑀 End-point mobility ratio (𝜇𝑜𝜅𝑤)∕(𝜇𝑤𝜅𝑜) (dimen- 1167

sionless) 1168

⟨⋅⟩ Space averaging operator (dimensionless) 1169

Φmf Matrix-to-fracture flux (𝐿𝑇 −1) 1170

𝐴0,∞ Matrix-to-fracture flux prefactors (𝐿𝑇 −1∕2) 1171

𝐵(𝑥; 𝑎, 𝑏) Euler incomplete beta function 1172

𝐵(𝑥, 𝑦) Euler beta function 1173

Γ(𝑧) Euler gamma function 1174

𝜎 Shape factor (dimensionless) 1175

Ω, 𝜕Ω, 𝐧 Domain, domain boundary, domain boundary out- 1176

ward normal unitary vector 1177

|Ω| Measure of domain Ω (𝐿3, 𝐿2 or 𝐿 depending on 1178

whether Ω is a volume, a surface or a path) 1179

F. Douarche et al Page 18 of 19



‖ ⋅ ‖2,∞ 2,∞ norm1180
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