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ABSTRACT

The displacement of non-aqueous phase liquid (NAPL) in permeable porous rock by water saturating
the surrounding fractures is studied. In many situations of practical interest, capillarity is the dominant
driving force. Using the global pressure concept, it is shown that the water saturation is driven
by a generic non-linear diffusion equation governing the matrix block counter-current spontaneous
imbibition. In addition, in most cases, the saturation-dependent diffusion coefficient vanishes at the
saturation end points, that renders the driving equation highly singular.

In this paper, two exact asymptotic solutions valid for short and long times are presented, under
the assumption that the conductivity vanishes as a power-law of both phase saturations at the extreme
values of the fluid saturation.

Focusing on the late-time domain, the asymptotic solution is derived using an Ansatz that is
written under the form of a power-law time decay of the NAPL saturation. In the spatial domain, this
solution is an eigenvector of the non-linear diffusion operator driving the saturation, for a problem
with Dirichlet boundary conditions. If the diffusion coefficient varies as a power law of the NAPL
saturation, the spatial variations of the solution are given analytically for a one-dimensional porous
medium corresponding to parallel fracture planes. The analytical solution is in very good agreement
with results of numerical simulations involving various realistic sets of input transport parameters.

Generalization to the case of two- or three-dimensional matrix blocks of arbitrary shape is pro-
posed using a similar Ansatz, solution of a non-linear eigenvalue problem. A fast converging algorithm
based on a fixed-point sequence starting from a suitable first guess was developed. Comparisons with
full-time simulations for several typical block geometries show an excellent agreement.

These results permit to set-up an analytical formulation generalizing linear single-phase represen-
tation of matrix-to-fracture exchange term. It accounts for the non-linearity of the local flow equations
using the power-law dependence of the conductivity for low NAPL saturation. The corresponding
exponent can be predicted from the input conductivity parameters. Similar findings are also presented
and validated numerically for two- or three-dimensional matrix blocks. That original approach paves
the way to research leading to a more faithful description of matrix-to-fracture exchanges when
considering a realistic fractured medium composed of a population of matrix blocks of various size
and shapes.

1. Introduction

water in aquifers or hydrocarbon recovery in rock matrix
[9, 22, 29, 39, 41, 21, 26]. In the context of soil mechanics,

In many situations, fluid transport processes in complex
porous systems may be described by the solution of a non-
linear diffusion equation with a diffusion coefficient that
depends on the local concentration or saturation of the
solute or phase of interest. In the geosciences context, that
can be the case when considering NAPL' displacement by
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one derives semi-analytical or numerical solutions of the
Richards equation describing unsaturated flows with such
non-linear forms [8, 34, 35, 5]. Other systems may receive
similar descriptions ranging from filtration to astrophysics,
including compressible gas flows in porous media, granular
media flows [18, 17], among others.

The non-linearity of the driving diffusion equation im-
plies that most of standard methods based on superposition
properties such as Green’s functions and Fourier decompo-
sition fail down. In addition, the popular assumption that
the diffusion coefficient vanishes at the limiting saturations,
sharing a power-law dependence with the saturation adds
a mathematical difficulty [2]. In particular, singular be-
haviours are to be expected close to the forcing boundaries
where the diffusion coefficient may vanish.
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In order to be more specific, in the geosciences context
such a generic problem arises when considering a counter-
current capillary imbibition process on a finite size matrix
block approximated by a layer of length L embedded in
a fracture network of high conductivity [22, 29, 41, 26].
The most standard approach to account for the presence of
fractures is to adopt a dual-porosity description that involves
two averaged equations for the macro-scale fracture and
matrix effective media, in which some exchange term needs
to be modeled [3, 16, 37, 25, 14]. In the single-phase case,
the simplest model is the pseudo-steady-state dual-porosity
model, that can be improved to account for additional inter-
nal matrix relaxation times using a time convolution with
some kernel that is the solution of a linear diffusion problem
on a representative matrix block [25, 30]. Such convolution
models are not practical in numerical modeling but retain the
multiple time-scales which are naturally observed.

Dual-porosity models involving a linear closure (local
inter-porosity flux proportional to pressure/saturation/con-
centration difference) imply an exponential relaxation of the
average quantity of interest, i.e. a single relaxation time. The
associated characteristic time corresponds to the diffusion
time over the matrix size 7, = L?/D,, defined using some
representative diffusion coefficient D and a representative
matrix block size L. At short times, a “boundary layer” be-
haviour is observed and can be estimated using the standard
Boltzmann transformation, leading to a matrix-to-fracture
flux varying as 1/\/; [17,26]. This regime may be observed
while the diffusion distance remains lower than the typical
size of the matrix blocks.

Fewer results are reported regarding the long time regime
description occurring when water has invaded most of the
pore volume of the rock. Using an overall dual-porosity
description with a linear closure leads to first-order differ-
ential equations for the description of the matrix-fracture
exchange, the solution of which implies an exponential
relaxation of the NAPL saturation at long times [39]. That
is reminiscent of the dual-porosity solutions obtained while
interpreting pumping tests in fractured formations. The asso-
ciated relaxation time still involves a characteristic diffusion
time 7 conveniently weighted by a dimensionless shape
factor that characterizes the overall matrix block geometrical
shape [25].

In order to account more accurately for non-linear ef-
fects, an alternative approach is to change the analytical form
of the exchange term by looking for a form involving a non-
linear function of the average matrix block saturation. Semi-
analytical developments in that direction were proposed by
[41, 26]: solving a weak form of the full problem at hand, the
authors introduce an approximation of the late-time solution
using a suitably chosen spatial Ansatz. The model predicts a
power-law time decay of the NAPL average saturation in the
blocks. The corresponding exponent may be related directly
to the exponent involved in the local diffusion coefficient
dependence with saturation. Both papers show a good agree-
ment between experimental data and simulation results. For
completeness, [26] proposed an explicit representation of the

exchanges using a non-linear term valid over the entire time
scale.

In the present paper, we develop an alternative approach
for the late-time asymptotics, looking for solutions having a
power-law time decay at every location of the matrix block.
Following this assumption, a complete determination of the
solution can be obtained. This solution, which compares
very well with numerical solutions, can be useful to propose
anon-linear formula relating the matrix to fracture exchange
flux to the remaining average NAPL saturation in the matrix.
Generalizations of our approach to more complex fractured
media are discussed.

The paper is organized as follows: first, the generic
problem to be solved is presented in Section 2.2, and the
notations and driving equations are introduced in Section
2.3. In particular, it is shown that the emergence of a non-
linear diffusion equation driving the time-evolution of wa-
ter saturation is not limited to specific fracture network
geometries. A straightforward derivation is provided using
the concept of global pressure that allows to show that the
mean fluid velocity vanishes under various geometrical and
physical conditions.

Restricting ourselves to one-dimensional counter-current
displacements, results of semi-analytical short-time anal-
ysis using Boltzmann transformation are reviewed shortly
in Section 3. Then the long-time asymptotic solution is
presented in Section 4, the spatial dependence of which
can be fully determined analytically, still in the case of a
one-dimensional matrix geometry. In both sections, these
solutions are compared with numerical simulations carried
out at both short and long times.

In Section 5, the time variation of the overall flux at
the matrix boundary is studied. That allows to set-up a
formulation of the exchange term accounting for the non
linearity.

Coming back to 2D or 3D cases, the approach is general-
ized for arbitrary matrix block shapes in Section 6. The cor-
responding Ansatz that describes the space dependency of
the asymptotic behaviour is solution of a non-linear steady-
state eigenvalue problem. That solution can be evaluated
numerically using a fast converging original fixed-point al-
gorithm presented in Section 6.3. That solution plays the role
of the analytical solution developed in the one-dimensional
case. Comparisons to full simulations showing an excellent
agreement are presented in Section 6.4 for various matrix
block geometries, including the one-dimensional previous
solution.

Section 7 concludes and an appendix detailing the nu-
merical scheme used to solve the counter-current equation
closes the article.

2. Analytical and numerical models

In this section, we present the mathematical model and
the numerical solution that will be used as a reference.
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2.1. Driving forces involved in matrix-fracture transfers and considered flow regime

In a network of diffuse f ractures w here fl ow is tak-
ing place, the exchange interaction with the matrix blocks
delineated by the fracture network, as sketched in Fig. 1,
involves four forces: gravity, viscous forces, capillarity and
molecular diffusion. In the following we will assume on the
one hand that the molecular diffusion forces, which are by far
the weakest, are negligible. On the other hand we consider
such a high permeability contrast between the fractures and
the matrix that the overall pressure gradient acting on one
matrix block through the fracture is negligible. This leaves
capillarity and gravity as dominant forces.

The capillary length /., is defined as the length beyond
which gravity becomes important [15]. In porous media,
it can be estimated by comparing the Laplace pressure
(2y cos 8)/ R, where y is the interfacial tension between wa-
ter and NAPL, @ is the contact angle and R is the character-
istic capillary tube radius of the equivalent porous medium
represented as a bundle of capillary tubes, to the gravity-
driven hydrostatic pressure Apgh, where Ap = p,,—p, is the
density difference between water and NAPL, & denotes the
matrix block height and g the gravity acceleration. Equating
these two pressures, setting R = 4/8k/¢ where k and ¢
denote the matrix block average permeability and porosity,
defines the capillary length

_2}/0050_70059\/5 )
“ ApgR Apg\/2k

This capillary length, which corresponds to a block height
such that gravity and capillary forces are balanced, i.e. a unit
Bond number

0= ApghR  ApghV2k  h
27/ cos § Y COS 9\/5 lcap’

defines two regimes depending on whether /,, S h or
Bo Z 1. Gravity is negligible for block height 7 < [,
(Bo < 1). When this condition is met, it is as sought the
fluid is in a zero-gravity environment and capillary effects
dominate. The opposite case, when h > [, is referred to
as the gravity regime (Bo > 1).

In what follows we consider only the capillary regime,
that is rock-fluid configurations such that the block height is
much lower than the capillary length, h < [,,. ?? gives a
few examples. For instance, assuming NAPL is a light oil,
¢ = 0.1 and 0 = x/3, one gets a capillary length of about
leqp ~4—9 mfor k = 10 mD, depending on temperature and
pressure conditions. Basically, we are considering blocks of
small height of the order of a few tens of centimeters to one
meter.

@

2.2. Counter-current imbibition in the
three-dimensional incompressible two-phase
flow case without gravity

We start with general considerations about three-dimen-
sional spontaneous counter-current capillary imbibition,

Figure 1: Examples of discrete fracture networks with two
near-vertical fracture families (of mean spacing about 3 and
5 m). These fractured geometries delineate matrix blocks
(not shown) of various shapes with two typical quadrangular
contours shown in white that are the focus of this work
(adapted from [21]).

then detail in Section 2.3 the corresponding one-dimensional
problem under the same assumptions. We consider two-
phase flow of incompressible fluids without gravity. Fol-
lowing the generalized multiphase Darcy’s laws, the driving
equations read [4]:

Js,,

P2~V - (k2 VP,) =0, 3)
as,

0} Frale V. (ki,VP,) =0, “)

Sy+S, =1, )

Po_Pw:Pc(Sw)v (6)

where ¢ and k denote the porosity and the permeabil-
ity of the porous medium under consideration (here and
in the following we assume that the permeability tensor
is isotropic), S, (x,1) € [Sy,,1 — S, 1s the aqueous
phase saturation, S,(X,?) € [S,.,1 — Sy;] is the non-
aqueous phase saturation, .S,,; is the connate (immobile)
aqueous phase saturation, S,,,, is the residual (immobile)
non-aqueous phase saturation, 4,(S,,) = k.,(S,)/H, is
the phase ¢ mobility where ¢ = w, o denotes the aqueous
and the non-aqueous phase respectively, k,,, is the relative
permeability to phase @, u,, is phase ¢ viscosity, P, the
intrinsic average pressure in phase @, and P,(S) = P,— P, is
the capillary pressure between the non-aqueous and aqueous
phases.

It is useful to introduce the concept of global pressure P,
that depends implicitly on position x and time ¢ introduced
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by [11, 12, 13, 20]:

=P +/S%dﬂdy ™
T s, AdsT T

where 4, = 1, + 4, is the total mobility and S € [0, 1] the
normalized mobile aqueous phase saturation defined as
S, x, )=
S(x,1) = M (8)
1= orw N wi
where the mobile saturation range 1-S,,,,—S,,; is non-zero.
Global pressure is defined up to an arbitrary constant which
is accounted for by choosing .S; that is an arbitrary satura-
tion value in [0, 1]. With some algebraic manipulations, the
original set of equations (3)-(6) can thus be transformed as

V-u =0, ©)
u, =—kA,VP, (10)
oS A Ay A
¢—“’+V-<—wu +kﬂvp>=o, (11)
ot i AR

where u, = u,, + u, denotes the total Darcy velocity, with
u, = —ki,V P, and ¢ = w, 0. Equation (10) can be derived
from equations (3)-(6) and using equation (7) defining global
pressure. It can be noticed that A, VP, = 4, VP, + A, VP,
Global pressure may be interpreted as a pressure which
would give, for a fictitious fluid with mobility 4, equal to the
sum of the mobilities of aqueous and non-aqueous phases,
a flux equal to the sum of the flux of the aqueous and non-
aqueous phases.

Combining Eqs (9) and (10), one is led to solve a quasi-
Laplace equation that reads V - (k4,VP,) = 0 to be solved on
the matrix domain with given boundary conditions. Impos-
ing the rather general boundary conditions at the boundaries
of the block, i.e. uniform pressure and saturation, we obtain
that the global pressure (7) P, is uniform at the block bound-
aries. Thus it can be shown that the unique solution of the
quasi-Laplace equation fulfilling these boundary conditions
is a constant: P, does not depend on position. Therefore,
the total velocity vanishes: u; = 0. This result requires
the absence of gravity effects, incompressible fluids, and
the matrix permeability kK may be heterogeneous. Setting
u, = 0in Eq. (11) shows that the saturation is driven by
the following non-linear diffusion equation:

% =V . [D(S)VS], (12)
D(S) = k A ($)2,(S) dP,(S) @3

T H(0=Sp0—Sw))  A(S) ds

That result shows that counter-current imbibition is not
restricted to one-dimensional cases. Up to our knowledge,
that result as well as its direct derivation introducing the
global pressure for 2D or 3D situations under quite general
conditions appear to be original and shows this non-linear
diffusion equation is likely to describe the water saturation
evolution in many situations of interest.

2This result can be derived using a variational formulation of Laplace
equation.

2.3. Driving equations in the one-dimensional case

Spontaneous counter-current capillary imbibition of a
one-dimensional matricial porous medium block of size L
initially saturated with a non-aqueous phase that is drowned
in water can be described, neglecting gravity and assuming
the two phases are incompressible, as the non-linear diffu-
sion equation (12) for the normalized mobile aqueous phase
saturation (8) with initial condition .S = O for all x € [0, L]
and ¢+ = 0 and boundary conditions .S = 1 for x = 0 and
x = Lforall > 0.

In order to analyze the early- and late-time behaviours,
we express D(.5) as a function of the mobile aqueous phase
saturation .S (mobile non-aqueous phase saturation being
1 —.S) setting the relative permeabilities to the aqueous and
non-aqueous phases and the capillary pressure as Brooks-
Corey saturation power laws [7]:

k. (S) = K, S?, (14
k,,(S) =Kk, (1= 8), (15)
P(S)=P,/S'/™, (16)

where p, g and m are positive exponents, k, is the maximum
relative permeability to phase @, and P, is the entry pressure
of the porous medium under consideration. While specify-
ing relative permeabilities and capillary pressure saturation
dependence is certainly a restriction, it should be noted that
Brooks and Corey relationships are widely used for many
rock types. In addition, it does not matter what the choice is
as long as a power-law behavior is obtained at long times
for § — 1 (this last statement is less true regarding the
early-time regime, which is not the major contribution of this
paper, as it is discussed later). We highlight this by making
a more versatile choice, later at the end of this section. The
diffusion coefficient D(.S) given in Eq. (12) then writes

S(1-8)1 ST(1-5)1

D(S) = Do 3r5o5=sy = D1 s Lamsy” an

with
Do = gmniiys = MDr (4
M=l =t 1
Y 0)

where M denotes the end-point mobility ratio between the
aqueous and the non-aqueous phases, defined as the maxi-
mum aqueous phase mobility k,,,/u,,, taken at S = 1, over
the maximum non-aqueous phase mobility k,,/u,, taken at
S =0/[6].

It is worth noting that Eq. (12) is of singular type for
r > 0or g > 0because D(S) cancels with either the aqueous
phase mobility for .§' = 0 or the non-aqueous phase mobility
for § = 1. It means that mathematical singularities can be
expected near the boundary where D — 0 for .S — 0, as well
as in the long-time limit inside the rock for which D — 0 for
S — 1. A singular regime can be expected at very short
times too, due to the sharp jump of the water saturation from
1 to 0 near the boundary.
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Clearly, the balance of forces at play that lies in a capil-
lary pressure difference between the fracture (where P, = 0)
and the matrix (where P, # 0) media commands that a flow
is established and terminates when the equilibrium condition
P.(S) = O is reached, ie. S(x,1) = 1 or S,(x,1) =
1-.S,,,- Noteworthy, a non-zero solution of Eq. (12) should
satisfy the boundary condition (0.5/0x),_y = —oco and
therefore present a vertical asymptote at the front face of the
porous medium. Indeed, this is a necessary condition to get a
non-zero fracture-to-matrix flux (D(S) 0.5 /0x),—y while D
cancels at the boundary.

Thereafter, two limiting cases are particularly useful to
consider: on the one hand, the case where .S — 0, which
corresponds to the early-time counter-current spontaneous
imbibition of the non-aqueous-phase-saturated block by an
aqueous phase, and, on the other hand, the case where
S — 1, which corresponds to the late-time imbibition of the
same type. For early- and late-time regimes, D(S) behaves
asymptotically as

D(S) ~ {DOS“O

with ¢y = r for § — 0, 21
Dy (1 -8y @D

with ¢y = gforS — 1.
Thus each of these two limiting cases reduces to a non-linear
diffusion equation of the singular type with a power-law
D(S). Specifically, one gets for .S — 0

9s _ 9o a 98
at  ox (DOS 0x)’ 22)
and for S - 1
01-S5) 9 a(l —-.S)
—_— = — D1 -85 —|, 23
or ax[ =8 = ] (23)

where Dy, D, a and a; are given in Eqs (18, (19), (20) and
(21). Typical D(S) curves are reported in Fig. 2.

Coming back to the general case, considering a matrix
block Q of boundary d€2 with initial boundary value problem
Sx,1)=0inQfort =0and S(x,7) = 1 on dQ forall t > 0,
Eqgs (22) and (23) read respectively

%:V-(DOS%VS)’ (24)
L= - v [, -9V - 9] @5

Given the initial boundary value problem under investi-
gation, the late-time regime has an expected limit S — 1
when t — oo, the early-time regime has a more subtle
behavior since the initial condition corresponds to a jump
at x = 0 because of the boundary condition .S = 1 and
the initial condition S = 0. As a consequence, any series
solution will feature a full spectrum of saturation functions.
We come back to this point in Section 3.

To finish with, it is worth noting that relationships (21)-
(23) still hold when considering more versatile relative per-
meabilities such as [28, 27]

K, (S) = Ky ——n (26)

W S-Sy’

(1-5)1

k,o(S) =K, Tosyia,s°" (27)
In this case one gets
p-mtL q
D(S) = Dy MSP[(l—S)MSySv]m+((11—_;zi[SP+/3(1—S)“]’ (28)

hence D(S) ~ DOSp_mTH/ﬂ for § — 0 and D(S) ~
Dy (1 —8)? /(My) for S — 1, which is precisely Eq. (21)
up to the dimensionless constants f and y. Although this
type of correlation has no physical basis, unlike power-law
relative permeabilities (14)-(15) which can be derived by
analogy with a bundle of capillary tubes [36, 10, 45, 46, 43,
44, 40, 38], it can nevertheless be useful when considering
natural porous media for which power laws are not good
enough to match measurements.

Our starting point is thus relatively general and is valid
as long as an asymptotic power-law behaviour is obtained
at the extreme saturations, independently of any detail at in-
termediate saturation values and regardless of any empirical
correlation used.

3. Early-time solution

The goal of present work is to set-up a description of the
fluid transfer valid for the whole time range. The literature
is very abundant on the short time scale regime that can
be assimilated to flow in a semi-infinite medium. We recall
some outstanding works of [18, 34] that are relatively little
cited nowadays, whereas they give very accurate fudge-
factor-free solutions.

In the early-time regime, following [8, 18, 34] and ref-
erences therein, the idea is to consider that the overall size
of the block may be ignored, leading to considering a semi-
infinite medium. That suggests to seek a solution using the
Boltzmann variable & = x/4/4D,t, with boundary condi-
tions S(0) = 1, S(o0) = 0 and D(S(0)) (dS/dé)(0) = 0.
That yields thus the following equation

d (D(S)ds s
@( D, a‘g)”éa—o

A remarkable fact observed by many authors [18, 9, 34,
22,41, 17, 26] is that the solution of this equation has a finite
toe located at a distance &, from the boundary that depends
on the input parameters of the equation.

In order to go farther, the saturation dependence of
D(S) suggests to express & as a function of S. A further
transformation allows to treat the case of a D(.S) function
given by Eq. (17). Following [8, 34], Eq. (29) can be recast
under the equivalent form

(29)

D(S)=-2D 9 /S £dS (30)
T '

This form assumes the existence of a finite front &, for which

the saturation and the flux, proportional to D(S)dS/d¢,

cancel out.
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An iterative sequence of approximations [34] can be built
by approximating the right-hand-side integral of Eq. (30)
which yields, at the lowest order approximation

1[5 DS
2D, Jo S

ds’ = &(& — &), €2V

and, at the higher order approximation

1 5 D)
2D, Jo S

dS" = Ey(Ey — &) — 3@0 — &2, (32)

where A is a constant equal to 1/(ay + 1) for a power-law
D(S), which is approximately the case for a D(.S) function
given by Eq. (17) if a is large enough. The determination of
&, follows directly from the boundary condition S(£ = 0) =
1. These approximations provide an excellent accuracy not
only in the neighborhood of &, for low saturation values.

In the power-law case, the solution proposed by [34] is
consistent with the findings of [18] whose solution, later
extended by [35], reads

S - {[2%50(:0 —olmr(g) it el0.g),
0 if2> &

(33)

Here, the function f(&/&,) is a regular function that may be
expressed as a power series of £/&, involving the exponent
ay as a parameter [18].

The complete early-time saturation profile thus may be
estimated analytically with an excellent accuracy, as re-
ported in Fig. 3 which compares, for a few configurations,
[34] solution (32) obtained by setting A = 1/(ay + 1)
with the numerical solution obtained with the numerical
scheme described in Appendix A. Saturation presents a
vertical asymptote at the front face of the porous medium
for x = & = 0 because a non-zero fracture-to-matrix flux
D(S)dS/ox = (D(S)/+/4Dyt)dS /dé while D(S) = 0
for S = 1 at the boundary is only possible if d5/0x =
dS/dé = —oo. Flux vanishes as well at the toe position

= 0. Asymptotic power laws for the extreme saturations given by Eq. (21) are reported as dashed lines.

& = & where dS/dé = —2&[2agéy(& — &)1~/ ~
1/(&y—&)@0~D/% [18], therefore the larger a the sharper the
front as shown in Fig. 3. To finish with, dimensional analysis
suggests to normalize the timescale by the diffusion time
7y = L?/(4D,). Following our work objective, expressions
for the matrix-to-fracture exchange term are investigated in
Section 5.

4. Late-time asymptotic solution

Now, we focus on the late-time regime solution, for
which the medium can no longer be assumed to be semi-
infinite, and for which the authors have not found, to their
best knowledge, any published exact solution.

An asymptotic solution for large ¢ is sought using the
Ansatz 1 — S(x,1) = y(x)/t?. Inserting this solution into
Eq. (23) shows that this may be possible if the following
condition is satisfied:

p=—. (34)
@
The asymptotic solution of Eq. (23) thus writes
_ y(x)
1-8(x,1)= e 33)

where y(x) is a solution of the ordinary differential equation

4o dyy - 1 i i

- ( 1 dx) =—opV which we shall rewrite
d2 a1 +1 a;+1
— gyt o _ar 36
dx? Y a1 Dy Y 6)

Further transformations g = y**! and h = Ag with 1 a
constant yield

2 a 1
d=h = _ o a+1 hatl

dx2 D (37)
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Figure 3: Comparison of early-time analytical solution given in Eq. (32) (solid lines) with the simulated one (dotted lines) for
a4 =15,35(p=3,5) and M =6, 0.06 with g =2, m=2, k=10 mD, P, =5 bar, ¢ =025, S,, = S,., = 0.

o)
Choosing A = (%) @ Eq. (37) may be written under
1
the following form:
2 1
o (38)
Likal
h= Ag — Ayal+l — (%) ] ya1+1_ (39)

For x € [0, L], boundary conditions 1 —.§ = 0 for all
t>0atx = 0and x = L yield y(0) = y(L) = 0, that is
h(0) = h(L) = 0. The solution being symmetric around
x = L/2, one must have dy/dx > 0 for x € [0,L/2]
and dy/dx < O for x € [L/2, L]. Therefore the condition
(dy/dx)(L/2) = 0 must hold.

Before going further it is worth noting that Eq. (38)
simplifies into d?4/dx?> = —1 when exponent a; is very
large, whose solution is the parabola h(x) = %x(L — x) such
that h(L/2) = L?/8.

Coming back to the general case, it can be remarked that
multiplying each member of Eq. (38) by % , the equation can
be integrated once to yield

2 a1_+2 ap+2
L&Y o m (W (L) -ai ) o)
y+?
where the right hand side Zl—: heat! (%) is an integration
1

constant that is determined by the condition %(%) = 0. For

x € [0, L/2], this last form integrates into

h
ay+2 dh
X = 1= [ e —
Ao+ fy a 42 a+2

+1 L +1
h“l (5)-h a1

(41)
= L aﬁf +1
aj+1 a+ a
eIy (I S
e =, o

ay+2

setting t = [h / h(%)] «+This relationship set with x = %
yields h(%) in implicit form:

ap+1

]
@+Dh 2Ly (1 asT

2(a;+2)

(42)

Using Euler incomplete beta and gamma® functions, the
solution rewrites as

| ap+2
1/(o:1+1)h"’1+1<§> B lasr g4l 1
= a8 [h(é)] Cq2’2 ) 43)

with h(%) given by

o 2ay+1)

n(%) = = 4 M@ !
2 2v27 Ve +D(@42) (4L
a1
Noteworthy, this solution converges for &; — oo to the

parabola that was previously obtained by direct calculation
in the specific case of a very large a; exponent, which writes

implicitly x = L/2 — \/(L/2)? — 2h with h(L/2) = L?/8.

Going back to the main unknown y, related to 4 by Eq.
(38), the following implicit expression that fulfills all the
boundary conditions may be obtained:

[ ar L
Y= alDlyl(E)B +]d]+2
2(a1+2) y(i)

with y(é) given by

2

lll _

(L) = (& |

N7)=1\ 2 2a(m+2)D; peatl :
a1+2

(44)

Lo+l 1

(46)

3Incomplete beta, beta and gamma function are respectively defined
p g P y
as [1] BGe;a,b) = [ 1971 (1 = 0P~ dr, B(x,y) = fy 71—Vt =

rore) — [zt
Toty) and ['(z) = [~ e dr.
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Figure 4: (a)-(b) Late-time analytical solution y(x) given in Eqs (45)-(46) for several a, values. (c)-(d) Comparison of the late-time
analytical solution 1 — S(x,1) = y(x)/t"/% and rescaled y(x) = [1 — S(x,1)]#'/9 (solid lines) given in Eqs (35), (45) and (46) with
the simulated one (symbols) for ¢y =2, p=3, M =6, m=2, k=10 mD, P, =5 bar, ¢ =025, S, =S, = 0. Timescale is
normalized by the diffusion time 7, = L?/(4D,). Red crosses for the fixed-point solution indicated in (d) correspond to a direct
numerical solution of the asymptotic Ansatz detailed in Section 6.

The solution for y(£) and y(x)/ y(%) are reported in Figs
4(a) and (b). Unlike solutions (32) and (33) obtained for the
early-time regime by assuming the porous block to be semi-
infinite, the late-time asymptotic solution (45) derived on a
finite-size domain involves a characteristic length which is
the block length L. Contrary to the early-time solution, in
the late-time regime the water saturation is close to unity
at every location in the matrix, therefore the power-law
assumption given in Eq. (23) is automatically satisfied. A
good agreement can be expected for the long time asymp-
totic behaviour independently of the details of D(S) over
the whole range of saturations, as reported in Figs 4(c)-
(d) where the timescale is normalized by the diffusion time
79 = L*/(4Dy).

In the displayed example, the time convergence of the
numerical solution to the asymptotic one given in Egs (35),

(45) and (46) is pretty slow. That can be accurately quantified
by comparing the time evolution of the numerical solution
1 — S or (1 -S8)t'/ with the asymptotic one for fixed
x/ L values. Specifically, the numerical solution time con-
vergence to the asymptotic one is slower than the asymptotic
solution 1/ \/; trend for @, = 2 and intermediate 7/
values. The reader may wish to consult Fig. 5 given later in
Section 5, which reports the time evolution of the matrix-
to-fracture flux, to spot the transition between the early-
and the late-time regimes that occurs around /7, = 40-
50 in the example displayed in Figs 4(c)-(d). Ultimately,
the numerical solution time evolution matches the asymp-
totic solution one as Figs 4(c)-(d) indicate about 7 and
2% relative difference between numerical and asymptotic
solutions, |.Sy, — Spuml/(1 = Sy), for t /7y = 512 and 5120,
respectively. The larger the exponent «;, the slower this
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convergence. This is consistent with the typical behaviour of
a porous medium that is preferentially wettable to the non-
aqueous phase, for which the exponent g = a; of the relative
permeability to the non-aqueous phase, assuming a power-
law saturation dependency (14)-(16), is generally large, for
it imbibes more slowly than a water-wet porous medium.

To conclude this section, unlike the early-time regime,
in the late-time regime, the low NAPL assumption S(¢) ~
1 becomes more and more valid as time increases. The
asymptotic solution is likely to be independent on the details
of D(S) once D(S)~ D; (1 —S)* as S — L.

5. Towards a non-linear closure for
matrix-to-fracture flux

When large discrete fracture networks embedded in a
permeable porous matrix are considered, it is customary to
adopt a dual-porosity framework in which the coupling with
the matrix may be accounted for via a source term @, (¢)
[25, 14, 32, 30, 33]. This source term @ (¢) corresponds
to a volume average of the normal flux between matrix and
fractures. In the case of linear local flow equations, the
generic closure of @, () appears as being a time convo-
lution of the local variable S(x,f) with a time-dependent
kernel that may be evaluated solving a relaxation problem
on a representative matrix block [25, 30, 33]. In particular,
focusing on the long-time limit, when the relaxation of
the block reaches its exponential decay, it can be shown
that @ _¢(t) ~ ——S(x”);sf(x’t)

S} the surrounding fracture saturation. The relaxation time
7, may be related to the block typical dimensions via the
relation 7,, ~ oL?/D, where ¢ is the so-called shape-
factor of the matrix block. In the stratified case, o = 12.
In the more general case, it is a geometric quantity that is
known for several block shapes, and that is related to the
smallest eigenvalue of the Laplacian operator with Dirichlet
boundary conditions on the block [25].

Coming back to the non-linear case, at first sight, the
convolution approach is useless, so other closure must be
proposed, if any. In both short- and long-time regimes,
the time variation of the matrix to fracture flux @ (f) =
(D(S)0S/0x),—y can be estimated using the previously
presented solutions. In the short-time case, using the Boltz-
mann variable, @ .(f) may be estimated directly as @ ((t) =
(D(S)//4Dy1)([dS /&)y ~ 1/\/; up to a prefactor
Ag. In the long-time case, it is useful to introduce the

spatial average of the matrix saturation defined by (S)(?) =
1 L/2

L/270

and swapping the time partial derivative and the spatial aver-

with x the block centroid and

S(x,t)dx. Averaging the diffusion equation (12)

age, one gets £ X5 = L/2 i(D(S)g) dx = _(D(S)g)h

—Jo 0x
Ld(S)

2 dt
hence @ () = . In all the considered cases, sim-
ilar results were obtained using the time derivative of the
average saturation or the global flux at the boundary, so
the former definition was retained. Inserting the late-time
Ansatz in this expression, it may be shown that the matrix to
fracture flux varies asymptotically as @ (r) ~ 1/t@+D/@1,

The proportionality factor A, can be evaluated using the
analytical solution y(x) starting from equations (40) and
(44). The same algebraic decay was already discovered by
[41, 26]. In both papers, the authors selected Ansatz dealing
with the spatial variable valid close to the matrix/fracture
boundary. Although that approach leads to analogous long
time variations of the NAPL saturation, it does not provide
a complete solution in the space domain, and it appears less
general, especially in the multi-dimensional case.
Summarizing the results, we get:

Ao/t

ap+1

A/t

fort — 0,
D ()~ 47)

fort —» oo.

Both constants Ay and A encapsulate the spatial details of
the corresponding asymptotic solutions and may be obtained
manipulating the expressions (29) for A, and (39), (40), (43)
and (44) to obtain A, that gives the following expressions:

Ay=+/Dy [ &(S)dS, (48)
0
1

L (atl)er | [2+D

A°° - ay <a1Dl> a +2 =
a a|+2
r(_) a
x (= a )t (49)
2v27 Va+ (@ +2) r<a:+2>

If one plots ®_¢(f) using a log-log scale, two straight lines
can be observed. The transition time from one regime to the
other corresponds to a time ¢ such that &, = L/2.

This is illustrated in Fig. 5(a) which reports the time
evolution of the matrix-to-fracture flux for a few a; ; values.
Simulated early- and late-time slopes are in excellent agree-

ay+1

ment with the early- and late-time predictions % and P
1

respectively. The transition between the early- and late-time
regimes, which is observed for # /7, = 5-10 in Fig. 5(a) and
is very clear with a very tight and sharp cross-over, could
be rescaled to t /7, = 1 by considering not the characteristic
time 75 = L%/ (4D,) suggested by dimensional analysis but
79 = L?/(16& D) derived from & = x/4/4Dyt setting
¢ = &y and x = L/2. It is worth noting the low influence
of the early-time exponent (.

Fig. 5(b) reports the time evolution of the simulated
fracture-to-matrix flux @, multiplied by its asymptotic time
dependencies (47) and divided by its asymptotic prefactors
Apand A (48) and (49) for the same a) and @; exponents as
in Fig. 5(a). Except for the cross-over between the short and
long time regimes, the asymptotic solutions (47) are found
with excellent accuracy and dominate most of the exchange
dynamics over several orders of magnitude.

It can be observed that using the long-time asymptotics
(S) ~ t'/%  one can write the matrix to fracture flux under
the following form: @ ((r) ~ —(S)1*!. That non-linear
closure between the local matrix to fracture flux and the
average matrix saturation generalizes the usual linear closure
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Figure 5: (a) Time evolution of the matrix-to-fracture flux for a few a, and a, exponents ¢, = 1.5,3.5 (p=3,5, m=2)and a; =2,
4 with M =6, k =10 mD, P, =5 bar, ¢ =0.25 and S, = S,,, = 0. Simulated early- and late-time slopes —{0.48,0.46, 044}

and —{1 45 1.48,1 21} respectively, are in excellent agreement with the early- and late-time predictions (thin solid lines) —- and
“‘H =-2and-2 for a; =2 and 4, respectively. Timescale is normalized by the diffusion time 7, = L?/(4D,). (b) Time evolutlon
T2
of the matrix-to- fracture flux multiplied by its asymptotic time dependencies (47) and divided by its asymptotic prefactors A,
and A, (48) and (49) for the same @, and a, exponents.

relation that gives rise to most dual-porosity models. The
underlying proportionality factor may be obtained directly
from the fixed-point solution that will be presented in Sec-
tion 6, and could be related to usual shape factors of the
literature [25].
To finish with, it can be remarked that using the relation
D (1) = L di{{” if a; = 0 is inserted in that formula, it
provides an exponentlal relaxation of the matrix saturation.
That is consistent with the corresponding findings of the

constant diffusion case. In the non-linear case, a non-linear
closure is obtained. Estimations of that closure for a whole
range of time-scales accounting for both the short time and
long time scales were proposed by [26].

6. Generalization to 2D or 3D matrix blocks

We now generalize the results obtained in one dimen-
sion of space to any dimension of space for any matrix

F. Douarche et al
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block geometry. Under the given boundary conditions, the
porous medium still undergoes counter-current imbibition as
demonstrated in Section 2.2 without the need for the matrix
block to exhibit symmetries.

We first indicate in Sections 6.1 and 6.2 which quan-
titative features are preserved with respect to the one-
dimensional early- and late-time asymptotic solutions and
corresponding fluxes, and which are not and require addi-
tional investigation.

We show in Section 6.3 how the late-time asymptotic
solution separate form (35) can be exploited to develop a
simple and efficient fixed-point numerical solution method,
which advantageously replaces the delicate solving of the
initial nonlinear singular diffusion equation.

Finally, we demonstrate in Section 6.4, by considering
some simple two-dimensional block geometries, that the full
dynamics of capillary imbibition can be accurately and effi-
ciently predicted. The matrix block imbibition still presents
two regimes whose saturation and fracture-to-matrix flux
can be computed: a diffusive early-time regime and an
anomalous late-time regime that cross-over tightly. Eventu-
ally, residual points to investigate are discussed.

6.1. Early-time regime

In the general case of matrix blocks having arbitrary
shapes, there is no simple approximation working yielding
a detailed description of the short time regime. A general-
ization of Parlange’s results might be worth investigating, al-
though nothing simple is apparent at first sight. At very short
time, keeping the Boltzmann assumption of a dependency on
x/ \/; is equivalent to set-up a boundary layer approximation
[23,24,42]. Physically it corresponds to consider that locally
the block boundary can be assumed to be planar, and then
to use the one-dimensional solution. Such an approximation
can be assumed to be valid if the diffusion length \/D_Ot
is much smaller than any characteristic lengthscale of the
block. The occurrence of such a regime is confirmed once
considering the matrix-to-fracture flux that is observed here-
after in Fig. 11 of Section 6.4 to vary as 1/ \/; at short times
for simple matrix block geometries. Then a transient regime
leading to the long time asymptotic solution can be observed.

6.2. Late-time regime

As detailed in the next section, the late-time asymptotic
solution in the separate form (35) remains valid for any
dimension of space and any block shape, except that the
function y(x), whose analytical expression (45) has been
derived in one dimension of space, and which we will
henceforth denote f(x), remains to be determined. Thus,
except for this detail which we will show hereafter how to
manage quickly and accurately numerically, the late-time
asymptotic solution 1 — S(x, #) preserves a time dependence
in 1/t'/% and the corresponding asymptotic flux (47) still
presents an algebraic anomalous decay that is proportional
to 1/¢(@1+D/ whose prefactor A, remains to be computed
and no longer writes as in (49) as it obviously depends on
the space solution f(x).

6.3. Fixed-point algorithm

The late-time asymptotic approach (35) remains valid for
any dimension of space and any block shape. The solution of
(25) writes

_J®

1- 1) =
S0 = 7

(50)

where f(x) satisfies V - (f*'Vf) = —f/(a;D;), which is
rewritten as already done in Eqgs (36)-(39)

1
V2h = —ha,

619}
@+l
ne(5) &

As already noted in Section 4, A satisfies V2h = —1 when the
exponent a; is very large, whose solution is a parabola in one
dimension. This will serve as an initial guess to implement
a fixed-point method to solve (51).

We are thus led to solve a Laplace equation in a domain
Q of boundary 0Q on which 4 = 0. Specifically, a sequence
of functions ()¢ such that

1
ap+1
hk—l

VZh,
hk = 0

in Q,
on 0Q,

(53)

for all k£ > 1 is looked for with the following initial guess

VZhy = -1
h0=0

in Q, 54
on dQ2. S
At each iteration of the algorithm, we solve the non-singular
elliptic problem (53) using a Newton-Raphson method em-
bedded in the finite element method framework provided
by the FreeFEM++ open-source PDE solver [19]. In 2D,
that code generates meshes with triangular elements and
Lagrangian P1 basis functions. The iterative algorithm is
performed until ||A, — h,_; ||, and ||~ — Ax_y ]|, are small
enough. Residuals less than 10712 have been imposed so that
a few iterations (about 20) are enough to converge which
makes the algorithm fast and allows the use of fine meshes
to obtain very accurate solutions. Also, as the initial guess
corresponds to the solution of Eq. (54) with a; — oo, a faster
convergence is expected for higher values of a; for a given
geometry.

6.4. Results

Running the algorithm in the one-dimensional case gives
an excellent agreement with the analytical solution as re-
ported in Fig. 4(d). A similar result has been obtained (but is
not shown here as it does not bring much) by considering not
the one-dimensional segment [0, L] but a two-dimensional
rectangle as shown in Fig. 6 with the same initial and
boundary conditions, i.e. one pair of faces facing each other
with imposed saturation and the other with zero flux.

Four two-dimensional geometries were considered in
order to validate the fixed-point algorithm, considering the
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saturation imposed on the whole boundary of the matrix
block, from the most to the least symmetrical, as shown in
Fig. 6:

Disk of radius R,

Square of side L,

Rectangle of sides L, and L »

Quadrangle of medians L, and L,,.

For the record, the spherical geometry has also been treated
but is not reported because except for some elementary alge-
bra details it does not differ significantly from the cylindrical
geometry shown hereafter (both are systems with one degree
of freedom).

In each case, the diffusion time is defined by 7, =
L2/(4D,) where L, is a characteristic length of the consid-
ered geometry, thatis L, = 2R, L or L, or L, depend-
ing on whether the medium is a disk, square, rectangle or
quadrangle. We will come back to this point later, which
at this stage is more of a dimensional analysis but requires
further analysis as we shall see when analyzing the fluxes.
The considered flow configuration is one of those previously
studied in Sections 4 and 5 such that ¢y = 2, p = 3,
M =6,m=2k=10mD, P, = 5 bar, ¢ = 0.25 and
S wi = Sorw =0.

Figs 7(a), 8(a), 9(a)-(b) and 10(a)-(b) report the satu-
ration profiles 1 — S(x,t) projected on the domain paths
indicated in Fig. 6 while Figs 7(b), 8(b), 9(c)-(d) and 10(c)-
(d) give the space dependence of the solution by plotting
[1-Sx,1)] t1/9 1n all cases, an excellent agreement be-
tween the numerical and the fixed-point solution is observed
for late times, specifically from ¢/7, = 511 for the disk,
t/7y = 511 for the square, t/7, = 5 for the rectangle, and
t/1o = 838 for the quadrangle.

Now let us look at the flux time evolution over the entire
dynamic range. As already explained in Section 5, flux can
be computed in two ways: either by the time derivative of
the block average saturation, or by the flux at the boundary.
Indeed, integrating Eq. (12) on the considered domain €,
defining the average saturation as (S)(¢) = ﬁ fg S(x,1)dx
and using Stokes theorem, one gets a NAPL flux (of opposite
sign to the water flux) of dimension LYT~!, where d is the
space dimension, that reads

O —|sz|@ = —/ag D(S)n-VSds (55)

with n the dQ outward normal unitary vector and |€2| the
measure of Q. In two (three) space dimensions |Q| is Q
area (volume), 0Q is its contour (surface) and do is an
infinitesimal contour (surface) element of Q.

Flux time evolution, that is more convenient to compute
by the average saturation but which we made sure does not
depend on the mode of calculation [using the left or right
hand side of (55)], is reported in Fig. 11 for all the tested ge-
ometries. Whatever the geometry considered, several points
are worth noting:

e We observe once again, as in one dimension, an early-
time diffusive regime that is characterized by a flux

which varies proportionally to 1/ \/;, and an anoma-
lous late-time regime that is driven by a flux propor-
tional to 1/f@+D/ar

e Flux prefactor A is no longer known analytically
as in one dimension, following Eq. (49), but can
be quickly obtained numerically from the fixed-point
algorithm subject to having an accurate estimate of a
finite value of (t/7;),, for which the numerical solu-
tion has almost converged to the asymptotic solution
fort - 0.

e The cross-over between the early- and late-time regimes
is very narrow. Therefore the early- and late-time
asymptotic solutions that dominate completely the
fracture-to-matrix dynamic exchange are sufficient to
determine the flux over the whole exchange dynam-
ics. In other words, if the asymptotic solutions are
determined, then the whole dynamic response of the
exchange is also determined to a very good approx-
imation. This remains of course to be demonstrated
in practice on more complex geometries than those
tested.

e Flux prefactor A, can be computed numerically by
a spatial integration of the fixed-point solution. This
being said, Fig. 11 clearly shows that fluxes are all
translated in time with respect to each other depending
on the geometry considered. Only the square and
the disk are very close. This means that the relevant
characteristic length L, involved in the diffusion time
Ty = L% /(4D,) remains to be found, instead of setting
aswedid L, =2R,L, L, orL y depending on whether
the medium is a disk, square, rectangle or quadrangle.
Once this one is found, if it exists, whatever the ge-
ometry considered, all the corresponding fluxes would
be in phase and would superimpose if ®(#)/ A, is
considered for t — oo, following (47). This will be the
subject of another work.

To finish with, the constant flux that can be observed at
very short times in Fig. 11 for the square and the quadrangle
should be discarded because they are artifacts related to the
domain discretization, the exchange affecting the first row
of cells near the domain boundary only. This was verified by
further refining the mesh (the plateau shifts to even shorter
times).

7. Summary and discussion

The long-time relaxation of the NAPL saturation inside a
matrix block in contact with water was studied in the case of
counter-current imbibition for one- or two-dimensional ma-
trix blocks of arbitrary shape. Gravity effects were neglected,
so only the pure capillary regime was investigated. The
time variations of the matrix-to-fracture transfer flow rate
was also studied. The transition from a Boltzmann square-
root regime to an “anomalous” algebraic power-law decay
was confirmed qualitatively and quantitatively by numerical
simulations. In the short-time regime, the semi-infinite as-
sumption is quite robust, so the results may remain useful
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Figure 6: Two-dimensional geometries studied: disk, square,
rectangle and quadrangle (all surfaces are to scale except the
rectangle, magnified three times). The characteristic lengths
as well as the paths on which the saturation field 1 — S(x,7) is
projected in Figs 7, 8, 9 and 10 are indicated in blue and red
(direction of the path is given by an arrow, coordinate system
is shown in black).

even considering general fractured media response in that
regime. On the other hand, the long-time decay exponent is
directly related to input data combining capillary pressure
and relative permeabilities features. As in the long-time
regime, the NAPL saturation is uniformly small inside the
matrix block, the power-law assumption may be expected
to be quite robust, controlled by the low NAPL saturation
transport properties. The transition between both regimes
is sharp, occurring as soon as the toe of the short-time
Boltzmann solution reaches half the block size. The asso-
ciated matrix-to-fracture flux term ® _.(f) closure may be
represented as being proportional to (S)**!, the exponent
a; describing the singularity of the diffusion coefficient with
NAPL saturation.

For general matrix blocks in 2 dimensions, a similar
study was carried out under the same counter-current flow
regime. The occurrence of such regime appears to be quite
general thanks to a derivation involving the global pressure
concept. A similar Ansatz driving the long-time regime was
proposed. It predicts a power-law time dependency, and the
spatial dependence can be determined numerically using a
fast fixed-point algorithm. These findings were confirmed
by several comparisons with direct simulations for various
typical matrix block shapes. Similar results are obtained for
the time evolution of the corresponding matrix-to-fracture
flux. A quite sharp transition between a Boltzmann regime
involvinga 1/ \/; diffusion time-dependence and the anoma-
lous long-time regime driven by the exponent 1/a; can
be observed. That transition corresponds to the interplay
between the diffusion lengthscale and the characteristic size
of the matrix block.

In summary, a promising very fast and accurate com-
putational approach is emerging, which should eventually
make it possible, after some additional efforts, to predict
counter-current imbibition over a distribution of blocks of
various shapes and sizes, which is more representative of
naturally fractured porous media. To this end, the following
points require further investigation:

—t/m =512 —t/m = 102.32
—t/m = 10.23 —t /7y = 511.62
t/m = 51.16

t/7y = 1023.24

L2 :
! os0f Ctjm =512 - t/m = 102.32 ]
= t/70=10.23 - t/70 = 511.62
. < t/7 = 5116 - t/m = 1023.24
0 0.1 0.2 0.3 0.4 0.5
(R—r)/(2R)
(b)

Figure 7: Disk — comparison of the fixed-point solution (solid
lines, 1654 elements) with the numerical solution (symbols,
500 nested rings). Timescale is normalized by the diffusion
time 7, = L?/(4D,) with L, =2R =1 m (see Fig. 6).

e A generalization of Parlange’s asymptotic early-time
solution in any dimension of space might be worth
investigating, although nothing simple is apparent at
first sight.

o Late-time estimates of (¢/7;),,, such that the fixed-
point asymptotic solution obtained for t — oo is valid
and the flux prefactor A, is accurately computed,
should be consolidated.

e To that end, the relevant characteristic length involved
in the diffusion time 7 should be determined be-
forehand as previously discussed, to make (#/7()q,
estimates generic (indeed, if the timescale differs from
one geometry to another, determining (¢/7y),, on a
case by case basis may be tedious).

These findings pave the way to research leading to a more
faithful description of matrix-to-fracture exchanges when
considering a realistic fractured medium composed of a
population of matrix block of various size and shapes. In
particular, the proportionality constant relating the late-time
flux @ 4(¢) to —(S)™ + appears to play a similar role than a
shape factor that may be evaluated using single-phase aver-
aging techniques [37, 31, 33]. Looking for simple geometric

F. Douarche et al

Page 13 of 19

842

843

844

845

857

858

859

860

861

862



1 ‘ : , :
_t/TO =5.12 —t/TO =102.32
<08 ¢ t/mo = 51.16 —t/7, = 1023.24 |

>
=
& 50 S tjmy =512 - t/7 = 102.32 1
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0 0.1 0.2 0.3 0.4 0.5
z/L
(b)
Figure 8: Square — comparison of the fixed-point solution

(solid lines, 4050 elements) with the numerical solution (sym-
bols, 101 x 101 = 10201 cells). Timescale is normalized by the
diffusion time 7, = L2/(4D,) with L, = L =1 m (see Fig. 6).

descriptors quantifying the transition time between diffusion
regimes will be of interest for such applications. In parallel,
developing averaging methods lumping these various matrix
blocks within one macro-scale single exchange flux descrip-
tion will be another research avenue.

A. Appendix: conservative numerical scheme

In this Appendix, we detail the numerical scheme used to
solve the singular elliptic partial differential equation (12) in
the matrix block domain Q. We consider neither the Boltz-
mann variable form (29) for short times, nor the asymptotic
form (23) for long times, but the generic PDE (12) that drives
the solution S(x, #) for all x and 7. The singular character of
this equation comes from the diffusion coefficient D given
by Eq. (13) which vanishes and is not differentiable with
respect to .S, for §' = {0, 1}, except for particular values of
the exponents r, p and g. Because D cancels at the boundary
0Q of the porous medium, one must have (V.§);q = —o0 in
order to get a non-zero fracture-to-matrix flux (D(S)V.S);q,
as can be seen in Fig. 3. To prevent numerical instabilities
or large rounding errors, we set-up a conservative scheme

which does not require to compute the product D(S)V.S,
and is based on the following reformulation of Eq. (12) as
a conservation law:

0S s o
o V<G(S) where G(S)= /0 D(s)ds, (Al)
with S the normalized mobile aqueous phase saturation
(8). The physical domain considered is € with boundary
conditions S(x, ) = 1 on the boundary 0Q2 for all # > 0.

To start with, the function G defined in Eq. (A1) does
not admit a simple expression that can be easily handled,
except in the limiting cases M < 1 and M > 1 (G is then
a power-law or an incomplete beta function, respectively)
where M is the mobility ratio defined in Eq. (19). To derive
a conservative numerical scheme, we resort to a discrete
integration of the diffusion function D denoted G". To do so,
we discretize the normalized saturation interval [0, 1] with
the sequence (Si)iefo.....ng} = kAS composed of N + 1
points and where AS = 1/Ng. For convenience, let us
introduce the operator I g which defines the discrete integral
of G over two increasing saturation values .S, and S;. Using

the third order Simpson’s method, I g writes

220) + pesy)|

(A2)

Sy=S,
I1(S,. Sp) = 2% [D(Sa) +4D (

For any saturation value .S such that S € [Sy, S ], we
approximate the function G(S) with G*(S) = I 3(5' 0 S) +
T TS 8.

Regarding the domain € discretization, let M, be an
admissible finite volume mesh of the domain Q given by a
family of control volumes or cells noted K: for any K of
M, |K| is its measure, KL = 0K N dL is the common
interface between K and a neighbouring cell L. The set
of neighbors of cell K is denoted N'(K), that is N'(K) =
{L € M,;;0KNndL # @}. Time is discretized with the non-
decreasing sequence {¢"} such that 1 = O and At = "1 —¢".
Let also S} be the approximation of the saturation on the
interval C; X [t",t" 4+ At). Finally, it is useful to introduce
the vector S” such that (S"); = S}" in order to formulate the
scheme vectorially.

Partial differential equation (A1) is recast in a discrete
manner with the following finite-volume implicit scheme.
Accounting for the boundary condition of an imposed sat-
uration, i.e. S(x = 0,7) = 1, Vx € 0Q, Vi > 0, the
numerical scheme can be written by introducing the function
7" defined for all K € M, as

[Z"(S)]K =S8k — S;l(_l - Z Ak (Gg = Gp)
LeN(K)

— Ak.00(Gg — G(1)),

with Gg = G(Sk), Axr = At|KL|/(|K|dg ) where |KL|
is the face measure and dg; the distance between the center
of cells K and L. The term Ag 4o(Gg — G(1)) stands for the
boundary condition contributions, non null when the cell K

(A3)
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Figure 9: Rectangle — comparison of the fixed-point solution (solid lines, 2222 elements) with the numerical solution (symbols,
201 x 41 = 8241 cells). Timescale is normalized by the diffusion time 7, = L2/(4D) with L, = L, = 10 L, = 1 m (see Fig. 6).

is a boundary cell. As we use polyhedral mesh cells, it is the
sum of several contributions if cell K has several boundary
faces. For each boundary face (0K);, that contribution is
Atl(dK)jl/[lKldK’(aK)j] where [(0K);| is the measure of
the face and dg , K), the distance between the cell center
and the face.

The updated numerical solution S” of this numerical
scheme is the zero of the function Z”. As this function is
non-linear because G(.S) non-linearly depends on saturation,
a Newton-Raphson algorithm is required. Specifically, for
each time step we construct a sequence S™* such that Z"* =

k—o0 .
Z"(S™*)—— 0 and recursively defined by S"*+! = §7k 4
8S™* where 68™F denotes the increment vector given by

58"k = — [vgzk] ™t znk, (A4)
where the matrix [VSZ””‘] ' is the inverse of the Jacobian
matrix VSZ”’k = VSZ”(S"”‘). The increment vector 8™

is thus determined by solving a linear system. The Jacobian
matrix is sparse and its non-null terms are given by, for all

KEMh:

(VsZ™) g 1 = AL D}

In addition, as the function G is approximated numerically,
we used the function G" instead of G in relation (A3) to
compute the Newton residue Z"K. To end with, the Newton
algorithm is performed until the L? norms of the residue
[|Z™k||, and of the increment ||6S™¥||, are sufficiently
small.

A.l. Cylindrical geometry

For a cylindrical domain Q = [0, R] X [0,2z] X [0, H]
invariant by rotation and translation along the z-axis, the
solution depends only on the radius r € [0, R]. We therefore
consider a uniform mesh composed of N + 1 embedded
cylinder of first cell K, = [0, Ar/2] x [0,2x] X [0, H] and
the following embedded K; = [(i — 1/2)Ar, (i + 1/2)Ar] X
[0,27]%[0, H]for1 <i < Ng,where Ar = R/(Ng+1/2).
After some straightforward calculations, the scheme writes
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Figure 10: Quadrangle — comparison of the fixed-point solution (solid lines, 4 272 elements) with the numerical solution (symbols,
101 x 101 = 10201 cells). Timescale is normalized by the diffusion time 7, = L?/(4D,) with L, = L, = L, = 0.781 m (see Fig. 6).
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1110 350403, Dy,  Constants that are homogeneous to a diffusion coef- 1164
ficient (LzT_l) 1165
By Constants (dimensionless) 1166
»u Nomenclature M End-point mobility ratio (u,x,,)/(k,) (dimen- 117
112 Dimensions of the quantities considered are given in paren- sionless) 1168
1113 thesis with M = [mass], L = [length], T = [time], () Space averaging operator (dimensionless) 1160
1114 where [#] stands for dimension(s) of # D Matrix-to-fracture flux (LT 1) 1170
115 Vectors are noted in bold Ay  Matrix-to-fracture flux prefactors (LT~1/2) 171
e D, mD Darcy, milli-Darcy (unit of permeability, L?) B(x; a, b) Euler incomplete beta function 1172
a1z 1D, 2D, 3D One-/two-/three-dimensional B(x,y) Euler beta function 1173
ius NAPL Non-aqueous phase liquid I'(z)  Euler gamma function 1174
1110 1 Time (T) o Shape factor (dimensionless) 1175
120 Ty, Characteristic time (7) Q, 0Q, n Domain, domain boundary, domain boundary out- 1176
121 X Position in space (L) ward normal unitary vector 1177
122 X, ),z Cartesian space coordinates (L) 9] Measure of domain Q (L3, L? or L depending on 117
whether Q is a volume, a surface or a path) 1179
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