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Introduction 
The dual-porosity model has been widely adopted in fractured reservoirs. This kind of model 

is useful to describe the flow behavior in fractured system, where the fracture supplies the fluid 

flow while the matrix provides most of the pore volume for storage. Barenblatt et al. (1960) and 

Warren and Root (1963) introduced the dual-porosity model which treats a naturally fractured 

reservoir with irregular matrix and fractures as an equivalent, homogeneous model. The dual-

porosity model is greatly used in petroleum fractured reservoirs with success (see, for example, 

Lemonnier and Bourbiaux 2010). One of the key issues discussed in the dual-porosity model is 

the determination of a suitable factor for the matrix to fracture transfer term. Among other 

authors, Kazemi et al. (1976), Thomas et al. (1983), Coats (1989), Zimmerman et al. (1993), 

Lim and Aziz (1995), Bourbiaux et al. (1999) proposed expressions of the shape factor that 

differ from one another by the value of the involved multiplying factor applied to the sum of 

the inverse of squared block dimensions. Whereas Kazemi et al.’s shape factor is approximated 

by an equivalent flow transmissibility between matrix block centre and limits. Different authors 

(see, for example, Zimmerman et al. 1993, Lim and Aziz 1995) successively proposed a more 

rigorous expression of the shape factor, that is valid under pseudo-steady-state assumption. 

Discussions of the evolution of a constant shape-factor definition adopted in dual-porosity 

simulators for simulating diffusive transfers can be found in Landereau et al. (2001), Van Heel 

et al. (2008), Bourbiaux and Ding (2016). 

 

The dual-porosity approach is also widely used in fractured geothermal reservoirs. Austria and 

Sullivan (2015) performed a sensitivity study to determine when to employ a dual-porosity 

model instead of a single-porosity approach in geothermal system. The application to Mt. Apo 

geothermal reservoir showed that a dual-porosity model is preferred. The dual-porosity model 

was also applied to Leyte geothermal production field (Omagbon et al. 2016). Aliyu et al. 

(2017) applied the dual-porosity model together with faults modeling to the Soultz geothermal 

reservoir. Fujii et al. (2018) performed simulations with dual-porosity and MINC approach. 

They observed that the recharge water sometimes reached producing wells much earlier than 

predicted by simulation models. They believed one of the reasons for this mis-prediction is 

related to the non-equilibrium effects and proposed a technique for non-equilibrium modeling. 

The dual-porosity model is particularly useful for tracer test simulation in geothermal reservoirs 

(Ratouis et al. 2019).  

 

The concept of dual-porosity model is particularly suitable for convective flow, where the 

convective flow is much faster in fractures than in the porous matrix. But it does not always 

adapt to geothermal reservoirs, because the thermal conduction plays an important role and the 

temperature variation is a major concern in geothermal simulations. In a dual-porosity 
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approach, two media are considered, one matrix medium and one fracture medium. The 

convective transfer between these two media is proportional to the pressure difference in these 

media, and the conductive transfer is proportional to the temperature difference. As the fracture 

permeability is very high, the pressure diffusion in the fractures is very fast. So the pressure is 

almost locally a constant in the connected fractures, while it is not the case for the temperature 

because the thermal conductivity in fractures is as low as that in the matrix. In particular, the 

fracture pressure around a matrix block can be considered as a constant, but the fracture 

temperature is not. In other words, we can define a correct fracture pressure to compute the 

matrix-fracture exchange, but we don’t have a suitable fracture temperature for this exchange 

calculation. So we cannot always correctly simulate the conductive heat matrix-fracture 

transfer, while the thermal conduction is an important transfer mechanism in geothermal 

reservoirs.   

 

The MINC (Multiple INteracting Continua) method is usually considered to improve the 

matrix-fracture transfer computation in geothermal reservoir (Pruess and Narasimhan 1985; Wu 

and Pruess 2000; Fujii et al. 2018), in order to take into account the slow temperature diffusion 

inside the matrix medium due to low thermal conductivity. However, this concept can only 

improve the description for the pressures and temperatures gradients inside the matrix by further 

subdividing individual matrix blocks, the temperature modeling inside the fractures cannot be 

improved by MINC approach.  

 

The discrete fracture model is also used for geothermal reservoir simulations (see, for example, 

Mezon et al. 2018). This kind of models usually involves much more unknowns than a dual-

porosity one.  

 

In this work, we propose a dual-porosity and dual-fracture approach by using two sets of 

fractures, one set for the modeling of fracture flow in the x-direction, and the other set for the 

fracture flow modeling in the y-direction. These two sets of fractures are hydraulically 

connected without any barrier, while they are thermally poorly connected through low thermal 

conductivities. In other words, these two sets of fractures have locally the same pressure, but 

have different temperatures. This approach can improve the temperature modeling in the 

fractures, hence the matrix-fracture exchange simulation for both the convective and the 

conductive transfers.  

 

Governing Equations 

To simplify, we consider one phase water transport problem. The mass and energy balance 

equations are respectively given by: 
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where   is the porosity, w  is the water density, r  is the rock density, wv


 is the water 

velocity, Ur and Uw are the internal energies of rock and water respectively, Hw is the water 

enthalpy,  is the temperature, 𝛬̿ is the effective conductivity tensor of water and rock, qw is 

the source/sink term of water, and qE is the source/sink term of energy. The velocity wv


 is 

calculated by Darcy’s law: 
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where 𝐾̿ is the permeability tensor, w is the water viscosity, P is the pressure, g

 is the 

acceleration of gravity. 

In the above system, the primary unknowns are the pressure P and the temperature . Other 

variables, such as the density and enthalpy, are functions of the pressure and/or the temperature.  

 

Standard Dual-porosity Model 

In a standard dual-porosity approach, two media are considered. The fracture medium transports 

the fluid flow from one zone to another due to its high permeability, while the matrix medium 

supplies the storage volume to the fractures. The fractures are homogenized. The considered 

mass balance equations are written in both the fracture and the matrix media: 
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where the superscript f represents the fracture medium, the superscript m represents the matrix 

medium, mf
wQ  is the mass exchange term between the matrix and the fractures. The energy 

balance equations in these two media are: 
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where the matrix-fracture energy exchange is composed of two terms: 

 mf
D

mf
H

mf
E QQQ +=          (8) 

with mf
HQ  the convective exchange, and mf

DQ  the conductive or diffusive exchange.  

The above system (Eqs. (4)-(7)) is usually discretized in space using a control-volume method, 

and the time discretization is carried out using a backward, first order, finite difference scheme. 

The control-volume method is very flexible for handling the interactions between various kinds 

of media. For example, considering a 2D problem in the xy plane, the space discretization of 

the divergence term on a control volume i in the mass flow equation in the fracture medium is 

given by (Fig. 1 shows the space discretization for a Cartesian grid): 
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 =  is the water mobility in the fracture medium, i  is the set of direct neighbors 

of the cell i, Fij is the flux between the grid cell i and its neighbor j, 
ij

ij
ijij

d

S
KT =  (with Sij the 

interface area, dij the distance between the cell centers, and Kij the weighted harmonic average 

permeability in the direction between i and j) is the (convective) transmissibility between Cells 

i and j, an upstream scheme is used for the mobility term f
w  in the transport equation. The mass 

exchange term between a matrix cell i and the corresponding fracture cell is calculated by: 
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with Km the matrix permeability (for simplicity, we assume the permeability is isotropic in the 

matrix medium), VGi is the bulk volume of Cell i,  the shape factor. This exchange is 

proportional to the pressure difference between the matrix and the fracture cells. One of the key 

issues in the dual-porosity model is the determination of the shape factor for an accurate matrix-

fracture exchange modeling.  

 

We have similar discretization for the mass balance equation in the matrix medium, as well 

as for the energy balance equations in both the fracture and the matrix media. In particular, the 

convective flux between two neighboring fracture cells i and j in the energy equation is 

calculated by: 
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and the conductive or diffusive flux between the fracture cells i and j is discretized by: 
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where 𝐺𝑖𝑗
𝑓
 is the conductive transmissibility, f

ij  is the effective thermal conductivity between 

Cells i and j. As the fracture aperture is usually small and the thermal conductivity in the fracture 

is of the same order as that in the matrix medium, the equivalent fracture thermal conductivity 

is much smaller than the conductivity of the matrix media and can be neglected in many cases.  

  

The energy exchange between matrix and fractures on a grid cell i due to convection is 

calculated by: 
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and the heat exchange due to conduction is given by 
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where 
m  is the effective matrix thermal conductivity (we assume it is isotropic), and  is the 

shape factor. The energy exchange due to conduction is proportional to the temperature 

difference between the matrix and the fracture cells. 

 

 

Problem of Dual-porosity Approach in Geothermal Simulations 
In a geothermal reservoir, the thermal conduction plays an important role for energy 

transport. The matrix-fracture heat exchange depends mainly on the conduction/diffusion 

instead of convection. It is therefore very important to handle accurately matrix-fracture energy 

exchange due to the conduction.  

 

In a dual-porosity model, the fracture network is homogenized. We assume that the main 

flow directions are oriented to the x and y directions with equivalent fracture permeabilities 
f
xK  and f

yK . We also assume the fracture pressure is almost a constant inside a simulation 

cell and around a matrix block. This assumption is reasonable, because the pressure diffusion 

is very fast among the connected fractures due to high fracture permeability. So the convective 

exchange between matrix and fractures can be computed with Eq.(11) and Eq.(16), using the 

cell fracture pressure Pf. However, it is not always suitable to consider that the temperature is a 

constant inside a fracture cell or around a matrix block. The temperature diffusion inside the 

fracture is very slow, because of the low fracture thermal conductivity. The high fracture 

permeability cannot help the temperature diffusion inside the connected fractures. If the fracture 

temperature varies a lot around a matrix block, it is not convenient to use an unique fracture 

temperature 
f  to compute the matrix-fracture energy exchange with Eq.(17). We may 

encounter this kind of problems in some geothermal reservoirs. 
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Take an example of a square matrix block as shown in Fig. 2. Considering the main flow is 

in the x-direction, that is f
y

f
x FF   (Fig. 2a), whatever the flow direction, the pressure around 

the matrix block is always almost a constant due to high fracture permeability (Fig. 2b) 
f

4
f

3
f

2
f

1 PPPP           (18) 

so the convective flux exchange is uniform around the matrix block for both the mass flux and 

the heat flux:   
mf

4w
mf

3w
mf

2w
mf

1w QQQQ           (19) 

and  
mf

4H
mf

3H
mf

2H
mf

1H QQQQ           (20). 

But it is not always the case for the temperature and the conductive exchange. When the injected 

cold water flows by, the temperature in the fractures parallel to the x-direction decreases first 

and the temperature in the fractures parallel to the y-direction does not change much (Fig. 2c): 
f

4
f

3
f

2
f

1           (21).  

The heat exchanges occur mainly between the matrix block and the fractures parallel to the x-

direction due to its lower fracture temperature, while the exchanges with the fractures parallel 

to the y-direction is limited by the higher fracture temperature. So, the matrix-fracture heat 

exchange is not uniform:   

 mf
4D

mf
3D

mf
2D

mf
1D QQQQ          (22). 

The temperature in a fracture depends on the volume of cold water flowing through the fracture 

as well as the matrix-fracture exchange. In a standard dual-porosity model, we don’t have a 

representative fracture temperature for the computation of matrix-fracture conductive thermal 

exchange with Eq.(17). So the simulations might be inaccurate. 

 

 

Dual-fracture Approach 

In this section, a dual-fracture approach is proposed to improve the conduction/diffusion 

matrix-fracture exchange modeling in a dual-porosity model. This approach can be considered 

as an improvement of the dual-porosity model for non-isothermal reservoir simulations.  

Consider a 2-Dimensional matrix-fracture exchange problem. In a standard dual-porosity 

model, the fracture networks are idealized by two sets of fractures, one oriented in the x-

direction with fracture spacing Ly and the other oriented in the y-direction with fracture spacing 

Lx (Fig. 3). The fracture properties are homogenized, and in particular we get the equivalent 

fracture permeability f
xK  in the x-direction and f

yK  in the y-direction. These two sets of 

fractures intersect. In a standard dual-porosity model, both the pressure and the temperature are 

considered locally as constants in the connected fractures in a fracture cell. As discussed above, 

this assumption is suitable for isothermal flow simulation, but it can be inaccurate for non-

isothermal problems. To improve the accuracy for non-isothermal simulations, we propose a 

new approach based on the concept of the dual-fracture approach.    

 

In the dual-fracture approach, the fracture medium of a dual-porosity model is split into two 

homogenized fracture networks, one oriented in the x-direction and the other oriented in the y-

direction (Fig. 4). Therefore, we have two fracture media, a X-fracture medium and a Y-fracture 

medium. In the X-fracture medium, flow is only allowed in the x-direction and there is no flow 
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in the y-direction, while in the Y-fracture medium, the flow is only allowed in the y-direction 

and there is no flow in the x-direction. In this modeling, each grid cell in the mesh is composed 

of three superposed cells (Fig. 4): one matrix cell and two fracture cells (one X-fracture cell 

and one Y-fracture cell). These two fracture cells are hydraulically connected without barrier, 

while they are poorly thermally connected through low fracture thermal conductivity. The 

connections between different media are described in the following. 

We denote f
xT  and f

yT  the fracture (convective) transmissibility in the x- and y-directions 

respectively in a standard dual-porosity model, 𝐺𝑥
𝑓
 and 𝐺𝑦

𝑓
 the fracture conductive 

transmissibility in the x- and y-directions respectively, Vf the fracture cell porous volume in the 

standard dual-porosity model, and  the shape factor in the standard dual-porosity approach. 

 

X-fracture medium 

In the X-fracture medium, the convective and conductive transmissibilities between two 

neighboring cells i and j in the x-direction are given by 

 f
ij,x

fX
ij,x TT =           (23) 

 𝐺𝑥,𝑖𝑗
𝑓𝑋

= 𝐺𝑥,𝑖𝑗
𝑓

          (24) 

where f
ij,xT  and 𝐺𝑥,𝑖𝑗

𝑓
 are respectively the fracture convective and conductive transmissibilities 

between Cells i and j in a standard dual-porosity model. Two neighboring cells in the y-direction 

are disconnected: 

  0T
fX
ij,y =           (25) 

 𝐺𝑦,𝑖𝑗
𝑓𝑋

= 0          (26) 

In a standard dual-porosity model, the porous volume of a fracture cell i is the sum of the porous 

volumes of the fractures oriented in the x-direction and the fractures oriented in the y-direction. 

The porous volume of the X-fracture medium 
fX

V  corresponds to those oriented to the x-

direction. Let wfx and wfy be the apertures of the fractures in the x- and y-directions, the porous 

volume of Cell i in the X-fracture medium is given by: 

 𝑉𝑖
𝑓𝑋

=
𝑤𝑓𝑥/𝐿𝑦

𝑤𝑓𝑥/𝐿𝑦+𝑤𝑓𝑦/𝐿𝑥
𝑉𝑖
𝑓
        (27) 

 

Y-fracture medium 
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The connection in the Y-fracture medium is a complement to the connection in the X-fracture 

medium, with respect to a standard dual-porosity model. Two neighboring Cells i and j in the 

x-direction are disconnected in Y-fracture medium: 

 0T
fY
ij,x =           (28) 

 𝐺𝑥,𝑖𝑗
𝑓𝑌

= 0          (29) 

The convective and conductive transmissibilities between two neighboring cells in the y-

direction are given by 

 f
ij,y

fY
ij,y TT =           (30) 

 𝐺𝑦,𝑖𝑗
𝑓𝑌

= 𝐺𝑦,𝑖𝑗
𝑓

          (31) 

where f
ij,yT  and 𝐺𝑦,𝑖𝑗

𝑓
 are the fracture convective transmissibility and conductive transmissibility 

between i and j in a standard dual-porosity model.  

The porous volume of the Y-fracture medium 
fY

V  corresponds to the volume of the 

fractures oriented to the y-direction in a standard dual-porosity model: 

𝑉𝑖
𝑓𝑌

=
𝑤𝑓𝑦/𝐿𝑥

𝑤𝑓𝑥/𝐿𝑦+𝑤𝑓𝑦/𝐿𝑥
𝑉𝑖
𝑓
        (32) 

 

Connection between X-fracture and Y-fracture media 

The superposed cells between X-fracture and Y-fracture media are also connected. The 

convective flux between these two cells may be very large due to high permeability, but the 

conductive flux is small because of low thermal conductivity. The convective flux between 

these two media is modeled using a very high transmissibility: 

 )PP(TF
fY
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fX

i
ff

i
f

i,w
ff
i,w −=          (33) 

and 

 )PP(TF
fY
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fX

i
ff

i
f

i,H
ff
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where the convective transmissibility ff
iT  between these two fracture media has a large value. 

When this value is very large, we have 
fy

i
fX

i PP  . In the following simulations, we use a 

transmissibility value 1000 times larger than that in X- or Y-fracture medium.  

The conductive flux is calculated by: 
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 𝐹𝐷,𝑖
𝑓𝑓
= 𝛬𝑖

𝑓
𝐶𝑖
𝑓𝑓
(𝛩𝑖

𝑓𝑋
− 𝛩𝑖

𝑓𝑌
)        (35), 

where the coefficient 𝐶𝑖
𝑓𝑓

 is a geometric transmissibility coefficient between the X-fracture and 

Y-fracture media, 𝛬𝑖
𝑓
 is the fracture conductivity. We present here a simple approach to compute 

this geometric coefficient. Let Cbx and Cby be the half block geometric transmissibility 

coefficient along x- and y-directions around a matrix block, given by (Fig. 5): 

 𝐶𝑏𝑥 =
𝑤𝑓𝑥/2

𝐿𝑥/4
          (36) 

and 

 𝐶𝑏𝑦 =
𝑤𝑓𝑦/2

𝐿𝑦/4
          (37). 

Here, we consider half fracture aperture around a matrix block, and a quarter of the block size 

to get an effective distance towards each corner. The transmissibility coefficient Cb around a 

matrix block between the x- and y-fractures is calculated through the sum of the resistivity: 

 
4

𝐶𝑏
=

1

𝐶𝑏𝑥
+

1

𝐶𝑏𝑦
          (38) 

We have a factor of 4 in the above formula, because this exchange occurs through the 4 corners. 

So the final geometric coefficient for conductive exchange between the two fracture media is 

given by: 

 𝐶𝑖
𝑓𝑓
=

𝑉𝐺𝑖

𝑉𝑏
𝐶𝑏          (39) 

with Vb the matrix block volume.  

 

The above formula is just a simple approximation to compute the connections between the two 

fracture media. It is possible to improve it. As the conductive flow between the two fracture 

media is generally very low, compared to the possible convective flow between these two media 

and to the conductive flow between matrix and fractures, a small geometrical transmissibility 

coefficient allows us to distinguish the temperature between different fracture media.  

 

Connection between matrix and fracture media 

The shape factor in a standard dual-porosity model is also split into two parts, one for the 

exchange with the X-fracture medium and the other for the exchange with the Y-fracture 

medium.  

Several shape factors are available in the literature for the matrix-fracture exchange 

computation in a dual-porosity model. In general, the shape factor of a cell i can be written in 

the following form (for a 2-Dimentional matrix-fracture exchange): 
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where the coefficient  depends on the hypothesis used by the authors. For example,  = 4 

corresponds to the shape factor of Kazemi et al. (1976), and 
2 =  corresponds to that of Lim 

& Aziz (1995). The first term of Eq.(40) corresponds to the exchange with fractures parallel to 

the y-direction, and the second term corresponds to the transfer with fractures parallel to the x-

direction. This form implies that the exchange between a matrix block and a fracture is 

proportional to the square of the contact areas. It is not our objective to discuss the shape factor 

computation in this work. We will only show how to split the shape factor for matrix-fracture 

exchange computation in a dual-fracture model. 

For the X-fracture medium, the matrix-fracture interaction occurs only on the matrix block 

boundary parallel to the x-direction (Fig. 6). Similarly, for the Y-fracture medium, the exchange 

occurs only on the matrix block boundary parallel to the y-direction. Assuming the matrix-

fracture exchange is proportional to the squared exchange area in a block, the shape factor 

associated to the X-fracture medium is therefore given by: 

 
2
y

2
x

2
x

X
LL

L

+
=          (41) 

and the shape factor associated to the Y-fracture medium is: 
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So, the convective exchanges between matrix and X-fracture medium are computed by:  
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and the conductive exchange is:         

)(VQ
fX

i
m
iXGi

m
i

mfX
i,D  −=        (45).  

Similarly, the exchanges between the matrix and the Y-fracture medium are given by:  

)PP(VKQ
fY

i
m

iYGi
m

i,w
mfY

i,w −=         (46), 

)PP(VKQ
fY

i
m

iYGi
m

i,H
mfY

i,H −=         (47), 

and 

)(VQ
fY

i
m
iYGi

m
i

mfY
i,D  −=        (48). 
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In summary, the discretization coefficients between the dual-fracture approach and the standard 

dual-porosity model have the following relationships: 

- For flux in x-direction: 

  f
ij,x

fY
ij,x

fX
ij,x TTT =+  ( 0T

fY
ij,x = )      (49) 

  𝐺𝑥,𝑖𝑗
𝑓𝑋

+ 𝐺𝑥,𝑖𝑗
𝑓𝑌

= 𝐺𝑥,𝑖𝑗
𝑓

 (𝐺𝑥,𝑖𝑗
𝑓𝑌

= 0)      (50) 

- For flux in y-direction: 

  f
ij,y

fY
ij,y

fX
ij,y TTT =+  ( 0T

fX
ij,y = )      (51) 

  𝐺𝑦,𝑖𝑗
𝑓𝑋

+ 𝐺𝑦,𝑖𝑗
𝑓𝑌

= 𝐺𝑦,𝑖𝑗
𝑓

 (𝐺𝑦,𝑖𝑗
𝑓𝑋

= 0)      (52) 

- Porous volume: 

f
i

fY
i

fX
i VVV =+         (53) 

- Shape factor: 

 =+ YX          (54). 

As we take a high transmissibility 
ff

T  for convective flow simulation between the two 

fractured media, the fracture pressures on these media are very close (
fY

i
fX

i PP  ). In case of 

isothermal simulations (
fYfXm  == ), the proposed dual-fracture approach is equivalent 

to the standard dual-porosity model.  

 

Examples 

Considering a geothermal domain of 500x500x10 m. This reservoir is fractured, and the matrix 

block size is 100 m in the x-direction, and 25 m in the y-direction as shown in Fig. 7. The 

hydraulic conductivity for fractures in the x-direction is mmD 40  , and the hydraulic 

conductivity for fractures in the y-direction is mmD 60  . The fracture aperture is 1 cm and the 

fracture permeability is 4 D. The matrix permeability is 0.0001 mD. The initial reservoir 

temperature is 200 °C, and the initial reservoir pressure is 255 bar. Two configurations are 

considered: one with a pair of horizontal wells and the other with a pair of vertical wells.  

Before performing the flow simulation, we first need to find a convenient shape factor for the 

matrix-fracture exchange calculation for a matrix block size of 100x25 m. Determining a 

suitable shape factor allows us to compare between the dual-porosity / dual-fracture model and 

the standard dual-porosity without bias.  
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Shape factor determination 

Many shape factors are proposed in the literature, and each one has its application range. Here, 

we perform several numerical simulations to compare the impact of different shape factors on 

a matrix block with a size of 100x25 m. 

The accuracy of a shape factor depends mainly on the size of the matrix block, and is 

independent of other parameters. So we can perform a comparison of the shape factor accuracy 

with different parameter values and simulation conditions. Here, we consider an impermeable 

matrix block. The initial matrix temperature is of 150 °C. A temperature of 100 °C is imposed 

on the fractures surrounding the matrix block. The reference solution is obtained with a very 

fine grid discretization and a single-porosity model simulation. Figure 8 shows the average 

matrix temperature against time using a standard dual-porosity approach with several different 

shape factors. Comparing with the reference solution, both Kazemi et al.’s (1976) and Lim & 

Aziz’s (1995) shape factors underestimate the exchange on a 100x25 m matrix block. A higher 

shape factor is required. According to the simulations illustrated in Fig. 8, it seems that using  

= 14.5 is a compromised suitable choice for this matrix-fracture exchange computation. This 

shape factor is used in the standard dual-porosity model in the following simulations. 

 

Doublet of horizontal wells 

A pair of horizontal wells (one injector and one producer) with a length of 300 m is considered 

(Fig. 9). A water of 80°C and with a flow rate of 50000 kg/day is injected through the injection 

well, and a water with a flow rate of 50000 kg/day is produced at the production well. The 

minimum bottom-hole pressure at the production well is of 50 bar.  

The reference solution is obtained using a very fine grid simulation with a single-porosity 

model. The fractures are explicitly discretized, and small cells are used for the discretization of 

matrix media in the near-fracture zones (Fig. 9). The dual-porosity model has 20 cells in the x-

direction and 20 cells in the y-direction with a cell size of 25x25x10 m. The dual-fracture 

approach has the same discretization as the standard dual-porosity model.  

Figure 10 compares produced water temperature at the production well for the standard dual-

porosity model, the dual-porosity / dual-fracture model and the reference solution. The 

reference solution shows that thermal breakthrough is quite early due to the high hydraulic 

conductivity in the factures along the y-direction. However, the standard dual-porosity model 

(curve “DP” in the figure) shows a very late thermal breakthrough because of the overestimated 

thermal exchange between matrix and fractures due to the low fracture cell temperature in the 

standard dual-porosity simulation. At the end of 10000 days, the dual-porosity model still 

produces hot water with the initial reservoir temperature of 200°C, while produced water 

temperature of the reference solution drops to 180°C. In fact, with the standard dual-porosity 

model, the cold water is assumed to move through all the fractures in a fractured cell, and the 

temperature is dropped to the same value in these fractures. Thus the thermal exchange between 
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matrix and fractures is overestimated because of a lower fracture temperature. So, the cold water 

is more heated by the overestimated transfer, and the thermal breakthrough is delayed. We 

observed that the dual-porosity / dual-fracture model (curve “DP dual-fracture” in the figure) 

gives a result very similar to the reference solution, because this model can calculate different 

fracture temperatures according to the fracture orientation to get a more accurate matrix-fracture 

thermal exchange.  

Figure 11 presents the temperature map of the fine grid reference solution at 1000 days, and 

Figure 12 is the pressure map of the reference solution. The cold water moves forward along 

the y-fractures quickly, because the exchange areas between a matrix block and y-fractures are 

relatively small. The temperature in the x-fractures varies very slowly, because of the large 

exchange area with the matrix block and poor thermal connections between x- and y-fractures. 

The fracture temperature around a matrix block is very different according to the fracture 

orientation. However, the pressure front moves quite uniform and the fracture pressure is also 

uniform around a matrix block, whatever the fracture orientation. 

Figure 13 shows the temperature in the fracture cells simulated with the standard dual-porosity 

model at 1000 days. The temperature front moves slowly towards the production well. In fact, 

in the fine grid simulation, the matrix-fracture heat exchange with the fractures in the y-

direction is small, due to small contact area with a matrix block. The matrix cannot supply 

sufficient energy to heat the moving cold water. While in the standard dual-porosity model, the 

matrix-fracture exchange occurs uniformly through all the fractures surrounding the matrix 

block. The exchange with x-fractures is more important than that with y-fractures, because the 

contact area is larger with x-fractures. In other words, the dual-porosity model highly 

overestimated the matrix-fracture heat exchange in this example. So the cold water front cannot 

move forward very quickly.  

Figure 14 presents the fracture temperature maps simulated with the dual-fracture model at 

1000 days. Figure 14a is the temperature in the X-fracture medium, and Figure 14b is the 

temperature in the Y-fracture medium. The temperatures in these two media are quite different. 

In the X-fracture medium, which represents the fractures oriented in the x-direction, the 

temperature front moves slowly towards the producer. This result is similar to the temperature 

in x-fractures in the reference solution. In the Y-fracture medium, which represents the fractures 

oriented in the y-direction, the temperature front moves quickly, which is also similar the 

temperature in the y-fractures in the reference solution. This is because we consider separately 

the matrix exchange with x-fractures and y-fractures in the dual-fracture model. So the 

produced water temperature can be more accurately predicted. Figure 15 is the fracture pressure 

maps of the dual-fracture model at 1000 days. As expected, the pressures in these two fracture 

media are almost identical. 

Figure 16 compares the average temperature in four matrix zones of 100x100x10 m located 

near the corner (Fig. 16a). In all the zones, the simulation results with the dual-porosity / dual-

fracture model are very similar to the reference solution, and are much better than those from 

the standard dual-porosity model. In Zone 1, which is very close to the injection well, cold 

water enters into this zone very quickly. The standard dual-porosity model gives an 
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overestimated matrix-fracture thermal exchange, and this overestimated heat exchange makes 

the temperature in this matrix zone drops quickly. A similar analysis can be applied to Zone 2, 

which is also close to the injection well. For Zone 3, which is very close to the production well, 

the cold water arrives late with the standard dual-porosity model, because the water is 

overheated on its way by the overestimated matrix-fracture thermal transfer. So the temperature 

drop is delayed in the matrix Zone 3 by the standard dual-porosity simulation. This analysis is 

also suitable for Zone 4, which is far from the injector. The dual-porosity and dual-fracture 

model can handle conveniently the fracture temperature simulation and the matrix-fracture 

thermal exchange computation.  

Now we perform a dual-porosity simulation using a coarser grid with 5 cells in the x-direction 

and 5 cells in the y-direction. The cell size is of 100x100x10 m. Figure 17 compares the 

produced water temperature simulated by 5x5 cells with the reference solution as well as with 

the dual-porosity simulation of 20x20 cells. Again, the dual-porosity and dual-fracture model 

using a coarser grid with 5x5 cells improves the standard dual-porosity simulation. As the wells 

are modeled as sink/source on the grid cells, the distance between the doublet in the numerical 

model is shortened by using the coarser grid with 5x5 cells. This reduces globally the thermal 

breakthrough time. So the produced water temperature simulated by the standard dual-porosity 

model with 5x5 cells seems better than that of the standard dual-porosity model with 20x20 

wells. But for the dual-porosity and dual-fracture simulations, using 20x20 cells is still better 

than using 5x5 cells.   

 

Doublet of vertical wells 

Now we consider a pair of vertical wells located at the diagonal corners. Figure 18 shows the 

temperature map of the reference simulation at 1000 days. The fracture temperature around a 

matrix block is again not uniformly distributed. We found two directions in which the cold 

water moves, one along x-fractures and one along y-fractures. The cold water moves faster 

along y-fractures than along x-fractures, because the exchange area of a matrix block with y-

fractures is smaller than that with x-fractures and less heat is supplied to the y-fractures. Figure 

19 presents the fracture temperature map with the standard dual-porosity model simulation. The 

cold water is concentrated near the injection well, and the temperature front moves very slowly 

in the y-direction. The standard dual-porosity model cannot simulate correctly the global 

temperature distribution along the fractures. Figure 20 presents the fracture temperature 

obtained with the dual-porosity / dual-fracture model. The temperatures in both x- and y-

fractures seem correctly simulated with the dual-fracture model, and the cold water moves 

rapidly in the Y-fracture medium.   

Figure 21 compares the produced water temperature for these three simulations. The dual-

porosity / dual-fracture model gives better result than the standard dual-porosity model. The 

temperature decrease with the dual-fracture simulation at early time might relate to the 

inaccuracy of the matrix-fracture exchange in a single matrix block as illustrated in Fig. 8. We 

cannot find a perfect shape factor for matrix-fracture exchange simulation, even if the fracture 

temperature is uniformly distributed around the matrix block. The shape factor used in this 
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simulation underestimates the matrix-fracture exchange in early time (Fig. 8). To improve 

further the accuracy of matrix-fracture transfer computation, application of MINC method can 

be useful.  

Figure 22 presents the average temperature variation at the four zones near the corner. In all the 

zones, the dual-porosity / dual-fracture model improves the standard dual-porosity model 

simulations. 

 

 

Conclusion 

A dual-porosity and dual-fracture approach is proposed for geothermal reservoir simulations. 

In this approach, the fracture medium of a dual-porosity model is split into two sets of fractures: 

one for the transport in the x-direction, and the other for the transport in the y-direction. These 

two sets of fractures are hydraulically connected without barrier using very high 

transmissibilities, but they are thermally poorly connected due to low thermal conductivity. In 

the discretization grid, each grid cell has three superposed cells: one matrix cell and two fracture 

cells. These two fracture cells have near-identical pressures, but may have very different 

temperature. This approach is suitable for the simulation of thermal problem in fractured 

reservoirs. A commonly-used dual-porosity may overestimate the matrix-fracture heat 

exchange in the geothermal context. The proposed new approach can simulate much more 

accurately the heat exchange compared to a standard dual-porosity model. It can be considered 

as an extension of the dual-porosity model to non-isothermal modeling, and is particularly 

adapted to geothermal reservoir simulations.  

The proposed dual-porosity and dual-fracture approach improves the matrix-fracture exchange 

modeling by considering more realistic fracture temperatures. The heat flow inside a matrix 

block is still based on shape factors using a pseudo-steady-state approach. It is expected that 

the transient flow behavior inside the matrix block can further be improved by using the MINC 

approach. Combining the dual-fracture model and the MINC method is our ongoing work. 

 

 

Nomenclature 

C = geometric transmissibility coefficient 

d = distance, L 

F = flux, MT-1 

G = conductive transmissibility, ML2T-3-1 

g = gravitational acceleration, LT-2 

H = enthalpy, ML2T-2 

K = permeability, L2 

Lx = matrix block dimension in x-direction, L 
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Ly = matrix block dimension in y-direction, L 

P = pressure, ML-1T-2 

qw = source/sink term of water, MT-1 

qE = source/sink term of energy, ML2T-3 

Q = matrix-fracture exchange, MT-1 

S = surface area, L2  

t = time, T  

T = convective transmissibility, L3 

U = internal energy, ML2T-2 

v

 = velocity, LT-1 

V = volume, L3 

VG = bulk volume, L3 

w = fracture aperture, L 

 

 = shape factor coefficient (Eq.(39)) 

 = porosity  

 = density, ML-3 
  = viscosity, ML-1T-1 

 = water mobility, L-2T 

E = defined by Eq.(13), MT-1 

 = shape factor, L-2  

 = temperature,  

 = thermal conductivity, MLT-3-1 

 = set of direct neighbours 

 

Superscript 
D = diffusive or conductive exchange 

f = fracture 

ff = exchange between X-fracture and Y-fracture media 

fX = X-fracture 

fY = Y-fracture 

H = convective exchange 

m = matrix  

mf = matrix-fracture exchange 

 

Subscript 
b = matrix block 

E = energy 

i = cell index 

j = cell index 

r = rock 

w = water 

x = x direction 

y = y direction 

z = z direction 

X = X-fracture medium 

Y = Y-fracture medium 
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