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Abstract 

Rethinking electric mobility in terms of user needs, vehicle characteristics and affordability, as well as 

actual driving conditions is the motivation for this paper. Studies and experience have highlighted that 

users’ range anxiety may be alleviated by intelligent technological solutions. In this work, a 

comprehensive investigation of several such solutions and their impact on overall trip time for long-

distance journeys has been carried out. In particular, the impact of battery size, driving speed, energy 

consumption, as well as charging strategy (i.e. sequence of events and charging power) has been 

evaluated. The goal is to understand how to best influence driving operation (in terms of driving speed 

and charging strategy) for given physical design parameters (battery size, maximum charging power, 

etc.) and make long-distance trips feasible even with smaller battery capacities. 
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Introduction 

Rethinking electric mobility in terms of real user needs, vehicle characteristics and affordability, as well 

as actual driving conditions is the motivation for this paper from the CEVOLVER project. Studies and 

experience have highlighted that users’ range anxiety may be alleviated by intelligent technological 
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solutions. Schoenberg and Dressler (2019) show that since the charging infrastructure is not yet 

ubiquitous, appropriate route planning for electric vehicles (EVs) is necessary. Many route and charging 

planners exist in the literature for many different objectives. Schoenberg and Dressler (2019) and Souley 

et al. (2021) focus on travel time, Alizadeh et al. (2014) aim to find individual and collective optimum in 

terms of both time and energy cost, Wang et al. (2018) target trade-offs of several criteria including 

energy consumption for traction. Accurate estimation of energy consumption is critical for EVs since it 

has a direct impact on the charging needs and travel time, as discussed in Morlock et al. (2019) and De 

Nunzio et al. (2020). However, very few studies focus on other aspects or parameters influencing 

drivers’ inclination towards EVs adoption. For instance, Luo et al. (2020) investigate battery swap 

opportunities to increase driving range, while Liu et al. (2021) consider optimal planning of the charging 

infrastructure location to reduce range anxiety. 

This work builds upon the results presented in Brandes et al. (2020) and De Nunzio et al. (2020), in 

which a smart driving and charging solution to minimize trip time on long-distance journeys was 

presented. A comprehensive numerical evaluation of the proposed route and charging planning solution 

has been now carried out with the purpose of investigating the impact of several parameters’ variation 

under fixed real-world conditions. In particular, the impact of battery size, driving speed, energy 

consumption, as well as charging strategy (i.e. sequence of events, charging power and duration) has 

been evaluated. The goal is to understand how to best influence driving operation (in terms of driving 

speed and charging strategy) for specific physical design parameters (battery size, maximum charging 

power, etc.). The underlying motivation for gaining this knowledge is to provide the user with a holistic 

solution for affordable electromobility by removing a misconception that long trips are only possible 

with large battery capacities. This study also provides users and car makers with a better understanding 

of which physical design parameters and battery sizes best match with desired driving operation. 

Reducing battery size will reduce the total cost of ownership of the electric vehicle, which intrinsically 

has a large positive impact on the energy efficiency, the environment, and the society. Vehicle buyers 

may be reluctant to choose such vehicles since they view them as not suitable for their occasional long 

trips, several times a year or less. This paper clearly shows that such trips are possible even today with 

much smaller battery capacities, but require intelligent technical solutions to support the driver, such as 

speed control, fast charging, and optimal charging strategies. The necessary adaptive cruise control 

systems will add only little cost to the vehicle in comparison to the alternative of oversizing batteries, 

while contributing to saving energy and increasing road safety. Substantial improvements over 

unsupported driving are highlighted in the results. 

Methodology 

In this work, the modeling and optimization framework presented in De Nunzio et al. (2020) is adapted 

for carrying out a comprehensive parameter variation analysis for the long-distance routing of EVs. A 

series of realistic parameters of the journey have been identified and simulated. In the following the 

holistic modeling approach for the road network, with currently existing fast charging infrastructure 
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along the route, the vehicle’s energy consumption and travel time including charging time, as well as the 

optimization objective of the routing problem are summarized. 

Modeling the road network as a graph 

The road network can be naturally modeled as a directed graph, where road segments are denoted as 

arcs and intersections are denoted as nodes. In this work, the directed graph is weighted with travel 

time or energy consumption costs and is used to calculate the optimal route to go from an origin to a 

destination by means of a shortest-path algorithm. Since long-distance route planning for EVs with 

charging capabilities is considered here, the routing decisions are not only made in terms of arcs choice, 

but additional decision variables need to be included. This is achieved by expanding the graph as a 

multigraph (i.e. multiple arcs connecting a same pair of nodes), by creating additional arcs where 

multiple decisions are possible and combining this with real-world traffic data. 

Speed multigraph expansion 

The first additional decision variable allows the trip planner in the simulation to adapt the driving speed 

on certain road segments along the route to find the right trade-off between trip time and energy 

expenditure. In other words, on certain high-speed portions of the route, it might be worth traveling at 

a lower speed than the average traffic speed in order to reduce energy consumption, and therefore 

reduce the amount of energy required to complete the trip, which may ultimately result in reducing the 

number of stops to charge the battery. In this work the road segments with an average traffic speed 

𝑣𝑡𝑟𝑎𝑓 higher than a certain threshold 𝑣𝑐𝑟𝑢𝑖𝑠𝑒 are duplicated in the speed multigraph by creating as many 

copies as the desired alternatives of cruise speed. This means that on those segments the optimal trip 

planner will be able to choose between traveling at the speed 𝑣𝑡𝑟𝑎𝑓 and traveling at the speed 𝑣𝑐𝑟𝑢𝑖𝑠𝑒, 

and generate the optimal speed profile over the entire planned journey.   

Charging multigraph expansion 

The second additional decision variable allows the trip planner to choose the location of the charging 

events along the route and the amount of energy to recover during charging. All the arcs of the graph 

originating from a node with a charging point are replicated in the charging multigraph by creating as 

many copies as the predefined levels of energy that is possible to recover during charge. The allowed 

levels of charge with respect to energy content are defined here as 𝛿𝑐 ∈ {0, 10, 20, … ,100}%, expressed 

as a percentage of the battery net capacity (or usable capacity) 𝐶. Therefore, each arc originating from a 

node with a charging point is modeled as 11 different arcs in the charging multigraph, one arc for each 

possible predefined value of 𝛿𝑐. Thus, whenever a charging station is available, the optimal trip planner 

will be able to choose between skipping charge altogether and charging by specific amounts as multiples 

of 10% of net capacity. 
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Energy consumption model 

The energy consumption of the electric vehicle is obtained via a model-based approach by considering 

vehicle longitudinal dynamics, powertrain and auxiliary power for thermal comfort. The vehicle 

parameters, efficiency factors and electric drive losses data were provided by “Centro Ricerche Fiat” 

(CRF). The auxiliary power demand is modeled as a convex function of the ambient temperature, 

available on each road segment, as in De Nunzio et al. (2017). The battery is assumed to be kept in the 

ideal temperature range of 25-35°C by its management system, as in De Cauwer et al. (2022). An overall 

average electric drive efficiency is considered in this work and varied as a parameter in the simulation 

experiments. Now denote a generic energy consumption weight 𝜔𝑒 for each arc of the routing graph 

considering both required energy for travel and energy recovery on the arcs where charging is possible.  

Travel and charging time model 

The time required to traverse a road segment depends on the type of arc in the routing graph. The 

travel time estimate on an arc where there are no additional decisions in terms of speed and charging is 

simply determined based on the traffic speed and the segment length 𝐿, as 𝐿/𝑣𝑡𝑟𝑎𝑓. On the arcs where 

the driving speed may be reduced to 𝑣𝑐𝑟𝑢𝑖𝑠𝑒, the travel time takes on two values, that is either 𝐿/𝑣𝑡𝑟𝑎𝑓 

or 𝐿/𝑣𝑐𝑟𝑢𝑖𝑠𝑒.  

Furthermore, on the arcs where a charge event may occur, the travel time estimate must consider 

several contributions to correctly describe the time needed for charging. A term 𝑡𝑑 is used to depict the 

detour time required to reach the charger location. A term 𝑡𝑠 represents the time spent after stopping 

the vehicle to interact with the charger and set-up the charge. A last term 𝑡𝑐 corresponds to the actual 

charging time, which depends on the battery state of charge (SoC) at the beginning of the charge, the 

final SoC, the battery net capacity and the charging power. In order to correctly estimate the charging 

time 𝑡𝑐, a charging model calibrated with experimental data provided by CRF was used in this work. 

Figure 1 shows the charging time curve for the considered battery with a net capacity of 38 kWh and 

accepted battery input charging power of 50 kW or 85 kW. Now define a generic trip-time weight for 

each arc of the routing graph as 𝜔𝑡 considering both required time for travel and for charging. 

Routing problem definition 

Finally, the route planning problem can be formulated as a bi-objective optimization aiming to find the 

best trade-off between trip time and energy consumption. The objective function 𝐽 to be minimized 

over the entire trip can be easily expressed as a weighted sum of time and energy costs (𝜔𝑡 and 𝜔𝑒) 

with a trade-off weight 𝜆 ∈ [0,1]:  

 𝐽 =  𝜆𝜔𝑡 + (1 − 𝜆)𝜔𝑒 (1) 
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Figure 1 DC fast charging time profile for a battery with a net capacity of 38 kWh and different charging powers. 

To resume, in the proposed approach some model parameters are constant for comparison consistency: 

traffic conditions, ambient temperature, detour time 𝑡𝑑 and stop time 𝑡𝑠. Some parameters are varied 

to assess their impact on the results: battery net capacity, cruise speed alternative 𝑣𝑐𝑟𝑢𝑖𝑠𝑒, electric drive 

efficiency and optimization trade-off 𝜆. The input variables optimized by the proposed trip planner, also 

referred to as the optimizer, are: route choice, driving speed, charging location and amount of energy 

transferred during charging. The analyzed output variables are: overall trip energy consumption, overall 

trip time, number of charging events (or stops), overall trip mean speed. 

Simulation experiments 

Numerous simulation experiments have been conducted to evaluate the solution variability to different 

parameters and different driving and charging strategies. The simulation scenario was provided by the 

European Union’s funded project CEVOLVER and it corresponds to a long-distance trip of about 800 km 

from Stuttgart, Germany, to Nice, France, across the Alps. The considered electric vehicle is a Fiat 500e. 

The topography information was provided by HERE Maps. The location of existing charging stations is 

known and retrieved from OpenChargeMap and, in this analysis, they are all assumed available for 

charging. An illustration of the route with the existing on-route direct-current (DC) fast charging stations 

with a charging power between 50 kW and 150 kW is given in Figure 2. 

The parameters and their numerical values that were used in the simulations are discussed hereafter:   

• The battery net capacity 𝐶 is increased from the nominal net capacity of the considered vehicle 

(i.e. 38 kWh), to a maximum hypothetical usable capacity of 68 kWh with steps of 5 kWh. This 

parameter variation is meant to investigate the impact of a larger battery on the driving and 

charging strategy, but also and more importantly on the overall trip time. It is assumed that the 

battery capacity variations do not have an impact on the vehicle parameters, such as its overall 

mass or aerodynamic properties. This was assumed in order not to bias the results in the scope of 

this paper with secondary effects. It can be reasonably assumed that in the upcoming future 

larger battery capacities can be achieved without too much impact on the vehicle mass due to 

technological advancements on cells gravimetric energy density. 

• The alternative cruise speed parameter 𝑣𝑐𝑟𝑢𝑖𝑠𝑒 was varied between 135 km/h and 90 km/h with 

steps of 5 km/h, and only one value was used for each experiment. As discussed before, on the 
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road segments where the average traffic speed 𝑣𝑡𝑟𝑎𝑓 is higher than 𝑣𝑐𝑟𝑢𝑖𝑠𝑒, the additional cruise 

speed option 𝑣𝑐𝑟𝑢𝑖𝑠𝑒 is added on the segment. 

• The electric drive efficiency used as a parameter in the energy consumption model was also 

assumed to take on two different values. The first value of 85% efficiency corresponds to the data 

provided by the car maker for the considered vehicle and represents a good approximation of the 

current state-of-the-art in terms of EVs electric drive performance. The other considered value 

was 90% efficiency, which represents a fair estimate of what technological improvement will be 

able to achieve within the next 5 to 10 years on production vehicles. 

The other parameters that were kept constant in the experiments are: 

• The traffic conditions correspond to morning rush hour at 8am of a typical working day, as 

retrieved from HERE Maps, and were stored for repeated use in order to make the results 

comparable. 

• The ambient temperature was assumed to be constant at 20 °C along the entire route. This 

assumption allows us to focus on the effects of smart driving and battery capacity on the overall 

driving experience without local and unpredictable perturbations. In practice, this translates into 

a constant auxiliary power demand of 650 W. 

• The parameters of the travel time model were set to 𝑡𝑑 = 60 seconds and 𝑡𝑠 = 180 seconds. 

Three different driving and charging strategies have been compared for this paper. The first strategy, 

named naive criterion, serves as a baseline and simply aims to mimic the likely behavior of an 

unassisted driver who, once selected the fastest route, would start searching for the next available fast 

charging station as soon as the battery state of charge drops below a fixed threshold, set here at 40% 

SoC (i.e. about 150-200 km remaining range for the tested battery net capacities). This seems to be a 

realistic choice for an unassisted driver, most likely unfamiliar with the existing charging infrastructure 

during long trips. Note that the naïve criterion considers the cruise speed parameter 𝑣𝑐𝑟𝑢𝑖𝑠𝑒 as a speed 

limit, thus simulating a more cautious driver not willing to exceed a maximum driving speed on a long 

Figure 2 Illustration of the route between Stuttgart, Germany, and Nice, France, with all the existing charging stations identified by red markers. 
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trip. The second charging strategy is called energy optimum and aims to minimize only energy 

consumption by determining the optimal combination of input variables as defined in Section 2.4. This 

charging strategy corresponds to a choice of 𝜆 = 0 in Equation (1). The third strategy is called trip-time 

optimum and aims to minimize total trip time by determining the optimal combination of the same 

input variables as defined in Section 2.4. With this strategy, the suggested driving cruise speed generally 

matches the traffic speed and is reduced only on road sections with higher consumption in order to save 

time by reducing energy needs during charging. This corresponds to a choice of 𝜆 = 1. 

A novel means of displaying the multi-dimensional results and dependencies among the different 

parameters was developed in Figure 3, with battery net capacity plotted against trip mean speed, and 

can be seen as electromobility maps. Note that while battery net capacity is a design parameter, trip 

mean speed is an output of the optimal trip planner and reflects how the optimized driving speed, 

depending on the cruise speed parameter, can impact the overall trip time. The number of charging 

stops is displayed as a background colormap and ranges from 1 to 5. The overall trip time (3a, 3c, 3e) 

and energy consumption (3b, 3d, 3f) results for each strategy are displayed as contour lines to easily 

visualize the combination of parameters yielding the same results. The respective optimization scenario 

results in uniform contours (either energy, 3d, or time, 3e) for that strategy, but at the cost of a complex 

“conjugate” (e. g. time, 3c, or energy 3d). The naïve criterion shown in Figure 3a and 3b is unsupported 

and will always follow the cruise speed which inherently favors energy savings and hence results in 

uniform energy consumption, 3b. Figure 3c and 3d show the results for the energy optimum strategy is 

shown in Figures 3c and 3d, and the trip-time optimum strategy in Figures 3e and 3f. Users that are 

willing to make more stops (in-line with driving club recommendations) and to use driver assistance 

systems during a long trip experience a higher potential to save on battery size and cost (up to 35% 

savings on the battery cost), and still carry out a long trip in reasonable time (roughly only 8% more). 

The unsupported driver only willing to accept 2 stops along the journey would need at least a 55-kWh 

battery installed in the vehicle, and even then the trip would take 10.5 hours (with a 68-kWh battery) in 

the best case (see blue crosses in Figure 3a and 3b). The energy consumption contour lines in Figure 3b 

are all vertical, showing that the alternative cruise speed parameter allows the naïve criterion to 

consistently reduce energy consumption as lower cruise speeds are chosen, and this independently of 

the battery net capacity. The results confirm the intuition that an unsupported driver would tend to 

invest in larger battery capacities to try to reduce travel time. Industry currently also seems to follow a 

similar trend. Recently Mercedes-Benz covered more than 1000 km over the Alps on a single charge 

with a prototype vehicle using a 100-kWh battery. The trip mean speed was 87 km/h for a trip time of 

12 hours. 

The first supported strategy (energy optimum), in Figure 3c and 3d, shows that the optimizer is able to 

find the best combination of alternative cruise speeds, charging stations and charging durations in order 

to improve both  
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(a) Contour lines of the trip time [h] (b) Contour lines of the energy consumption [kWh] 

(c) Contour lines of the trip time [h] (d) Contour lines of the energy consumption [kWh] 

(e) Contour lines of the trip time [h] (f) Contour lines of the energy consumption [kWh] 

Figure 3 Contour lines of the trip time (on the left) and energy consumption (on the right) for the three strategies, naive criterion, energy 

optimum and trip-time optimum (from top to bottom). The results are displayed for different battery net capacities and overall trip mean 

speed. The number of stops is indicated by the background colormap. Crosses indicate the location of the examples made in the text. 
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Figure 4 Overall travel time versus battery net capacity for the three considered strategies and for different values of electric drive efficiency. 

Results for an efficiency of 85% are displayed on the left, results related to an efficiency of 90% are displayed on the right. Linear fits of the data 

points are also displayed to visually illustrate the rate of variation of travel time with battery net capacity for all strategies. 

trip time and energy consumption in comparison to the naive criterion. In particular, in Figure 3c, the 

simulation shows a minimum trip time of 10.5 hours, and this is achieved by optimizing the energy 

expenditure of the trip, which ultimately results in needing fewer stops for charging as illustrated by the 

background colormap. A battery with 50 kWh net capacity would suffice to achieve an overall trip time 

of 10.5 hours if the driver here was willing to accept 2 stops and was able to maintain a mean trip speed 

of slightly over 91 km/h (see blue cross in Figure 3c). Energy consumption in Figure 3d monotonically 

decreases with mean speed, as for the naive criterion, but at a higher rate. 

The trip-time optimum strategy in Figure 3e and 3f shows again that the optimizer is able to find the 

best combination of alternative cruise speeds, charging stations and charging durations to improve 

performance in comparison to the naive criterion. Note that a narrower range of overall trip mean 

speed is observed in the results meaning that the optimizer mostly chose the average traffic speed 𝑣𝑡𝑟𝑎𝑓 

rather than the alternative cruise speed 𝑣𝑐𝑟𝑢𝑖𝑠𝑒, and hence shows the need for adaptive cruise control 

systems. Supported drivers could achieve an overall trip time of 10.5 hours even with a smaller battery 

net capacity (i.e. 43 kWh) if they were willing to accept 4 stops along the journey and use ACC to 

maintain the recommended cruise speed profile (see blue cross in Figure 3e). 

Once the willingness for charging stops and driver assistance systems has been established, it is possible 

to analyze the tradeoffs and calculate the potential advantages for battery sizing and ultimately vehicle 

cost. Reducing the battery net capacity from 60 kWh to 40 kWh would be a 33% reduction in battery 

capacity. Unsupported drivers would have to accept 3 stops to achieve this trip with this smaller battery 

capacity, and would require 12.5 hours if maintaining a trip mean speed of 89 Km/h (see green cross in 

Figure 3a). Even though it is only a 7% increase in overall trip time, the longer trip would likely not be 

acceptable. The energy optimum user would also have to accept 3 stops, but could achieve the trip in 12 

hours if maintaining a trip mean speed of 91 Km/h (see green cross in Figure 3c). This would mean a 12% 

increase in overall trip time compared to the vehicle with a 60-kWh battery net capacity. However, 

energy savings compared to the other driver criterion would be minimal at that trip mean speed. The 
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trip time optimum user willing to accept 4 stops would be able to carry out the trip in about 10.6 hours 

even with a battery net capacity of 40 kWh (see green cross in Figure 3e). This would only mean an 

increase of 7% for the overall trip time in comparison to vehicle with 60 kWh battery net capacity. A 

huge saving potential in vehicle price for a small loss of trip time. 

Finally, an investigation of the electric drive efficiency parameter was conducted. The objective of this 

analysis was to assess the impact of foreseeable technological advancements to improve EVs powertrain 

efficiency on the smart driving and charging services proposed in this work. The results are shown in 

Figure 4 in terms of travel time with respect to battery net capacity. Each data point in the two graphs 

represents the result of a simulation experiment for a choice of 𝑣𝑐𝑟𝑢𝑖𝑠𝑒 for a given battery net capacity, 

and a line fits the data points for each strategy to better show the trade-off. It is shown that the travel 

time of the naive criterion is the most sensitive to battery net capacity variation, for both values of 

electric drive efficiency. This sensitivity is only slightly reduced as the electric drive efficiency increases. 

The time gain for a unitary (in kWh) increase of battery net capacity is 3.9 minutes for an electric drive 

efficiency of 85%, and only slightly reduces to 3.5 minutes for a higher efficiency of 90%. The trip time 

optimum is nearly insensitive to battery net capacity, which indicates that significantly smaller battery 

net capacities are usable for long trips, and this advantage remains even for increased electric drive 

efficiencies, e. g. the travel time gain per unitary increase of battery net capacity drops to 2.2 minutes 

for an electric drive efficiency of 85%, and 2 minutes for an efficiency of 90%. Vehicles with smaller 

battery net capacities and lower drive efficiencies are available today. Implementing novel driver 

assistance strategies can alleviate range anxiety and even lead users to choose cars with smaller 

batteries. Finally, technological efforts to boost powertrain efficiency appear to be less urgent with 

regards to reducing travel time, and transition to electric mobility can be further promoted today with 

the right driving assistance. 

Conclusions 

To conclude, it has been shown that user’s expectations can theoretically be met for long-distance trips 

even with smaller battery capacities, but this requires novel eco-routing and eco-driving, as well as 

automatic speed control to support the acceptable execution of trips. Although there is no simple recipe 

to determine the optimal battery size, if the user’s acceptance/tolerance for charging stops during a 

long trip or the trade-off between trip time and energy consumption is known, then it is quite easy to 

determine the ideal battery capacity. Maintaining the recommended cruise speeds is best supported by 

state-of-the-art driver assistance systems, which can benefit overall trip time as well as easing driving 

load. The whole approach can therefore be made more user-centric and lead to more informed 

decisions about vehicle purchase, trip planning and driving style, and ultimately more affordable 

vehicles. An experimental campaign with a Fiat 500e is ongoing and shall be used for results validation. 

Future works will cover consideration of varying traffic conditions in the trip planning as the vehicle 

proceeds virtually along the route. 
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