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Abstract

Relating a set of variables X to a response y is crucial in chemometrics. A
quantitative prediction objective can be enriched by qualitative data inter-
pretation, for instance by locating the most influential features. When high-
dimensional problems arise, dimension reduction techniques can be used.
Most notable are projections (e.g. Partial Least Squares or PLS ) or variable
selections (e.g. lasso). Sparse partial least squares combine both strate-
gies, by blending variable selection into PLS. The variant presented in this
paper, Dual-sPLS, generalizes the classical PLS1 algorithm. It provides bal-
ance between accurate prediction and efficient interpretation. It is based
on penalizations inspired by classical regression methods (lasso, group lasso,
least squares, ridge) and uses the dual norm notion. The resulting sparsity
is enforced by an intuitive shrinking ratio parameter. Dual-sPLS favorably
compares to similar regression methods, on simulated and real chemical data.
Code is provided as an open-source package in R: https://CRAN.R-project.
org/package=dual.spls.

Keywords: Partial least squares, lasso, ridge, regression, sparsity, dual
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1. Introduction

Two main feats of chemometrics reside in first, providing reliable infer-
ence and second, offering interpretability of chemical data sources. On the
one hand, one may expect to estimate, within a given precision, responses
Y∈ RN×Q (e.g. hydrocarbon properties: viscosity, density, cetane number
[1]) from spectra or variables represented by quantities X∈ RN×P (nuclear
magnitude resonance or NMR, chromatography, infrared spectroscopy, etc.
[2]). It aims at relating a target Y to X through a predictive model: for
instance, NMR spectra can be linked to viscosity with predictive purposes.
On the other hand, one also wishes to interpret how variables in X influence
quantities Y: for instance, which spectral bands in NMR affect most viscos-
ity index (see e.g. [3])? This can be transcribed by a regression model, often
considered linear:

y = Xβ + ε , (1)

where ε is expected to be independent of X, with zero mean. With the
growing size of consolidated analytical chemistry databases, chemometrics
still require methodologies to 1) provide accurate predictions 2) extract per-
tinent knowledge or offer useful insights on measurements 3) combine het-
erogeneous or high-dimensional data sources. When the number P of vari-
ables (samples) is far greater than the number of observations (signals) N
(P � N), naive statistical models risk overfitting. This notably happens
in standard least squares optimizations. Dimension reduction techniques are
generic approaches to deal with high dimensionality. They include projec-
tion methods or variable selection algorithms. Commonly used strategies
start with PCA/PCR (principal component analysis/regression), performed
only on explanatory variables in X. They however do not incorporate infor-
mation held by the response Y. Partial least squares (PLS) [4, 5], also called
projection onto latent structures, is therefore common in chemometrics, with
better prediction-prone latent components. However, PLS sometimes lacks
appropriate interpretability.
As for variable selection, one often resorts to the lasso algorithm (least abso-
lute shrinkage and selection operator [6]). Shrinkage induces a form of spar-
sity, which amounts to selecting important variables. It is however known
to be sensitive to data types. It does not always yield interpretable coeffi-
cients. Blends of the two above – dimension reduction and variable selection
– have recent avatars called sparse PLS (sPLS). While they enforce lower
dimensional decompositions, they do not always provide chemically perti-
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nent feature localization for physico-analytical measurements. Thereby, we
propose a dual sparse PLS family dedicated to one dimensional or univariate
responses: y = Y, with y ∈ RN . It generalizes the standard PLS1 algorithm
by supplementing it with adequate penalties. This formally provides a uni-
fied formulation for regression methods in the spirit of the lasso mentioned
above, and also least-squares or ridge, all blended in a PLS formalism. It
also allows variable grouping : the possibility to gather explanatory variables
into more meaningful subsets (contiguous samples around a peak, disjoint
spectral bands associated to a compound). This can be used to combine
different physico-chemical modalities. Resolution resorts to the dual norm of
the chosen Dual-sPLS penalty. This new method has many advantages:

1. predictions match or outperform state-of-the-art or comparable meth-
ods,

2. in the different norm options we considered, they additionally yield
sparse representations of both simulated and real chemical near infrared
data, even singular, a frequent ill-conditioning issue in high dimension,

3. they finally offer a interpretable localization of features.

Those three properties combined offer alternative surrogates to classical ap-
proaches (PLS, lasso, least squares, ridge). It permits both accurate inference
and pertinent domain-related interpretation.
The paper is structured as follows: setting notations, we briefly revise in
Section 2 the background of the PLS, recall classical variable selection meth-
ods and evoke their blending in sparse PLS schemes, previously proposed.
Then, in Section 3, we explain principles behind the Dual-sPLS family and
detail the list of norm penalties and their algorithms in three main instances:
the (group) lasso form —being the most important— and least squares and
ridge forms. Thereafter Section 4 explicits tested data (simulated and real)
and the choices of model settings, calibration and validation. Each of the
three penalties types are extensively benchmarked in Section 5. We finally
draw concluding remarks with perspectives in Section 6 and supplementary
material in the appendix.

Notation and definitions
Matrices, vectors and scalars are denoted by boldface uppercase letters,

boldface lowercase and light lowercase letters respectively, e.g. X, y and λ.
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The transpose of matrixX isXT . The identity matrix of size P is represented
by IP . The `1-norm and the `2-norm of vector a w of length P are

‖w‖1 =
P∑
p=1

|wp| and ‖w‖2 =

√√√√ P∑
p=1

|wp|2 . (2)

We denote by `0(w) the sparsity index or count measure [7] of the non-zero
coordinates of w and `c0(w) its complement i.e. `c0(w) = P−`0(w). To
choose the number of latent variables we rely on the mean squared error
(MSE) expressed as

MSE =
1

N

N∑
n=1

(yn − ŷn)2 , (3)

for a response vector y of N observations and a given estimate ŷ. For perfor-
mance evaluation, we choose the root mean squares error (RMSE), the mean
absolute error (MAE) and the determination coefficient (R2):

RMSE =

√√√√ 1

N

N∑
n=1

(yn − ŷn)2 =
1√
N
‖y− ŷ‖2 , (4)

MAE =
1

N

N∑
n=1

|yn − ŷn| =
1

N
‖y− ŷ‖1 , (5)

R2 =

∑N
n=1(yn − ȳ)2∑N
n=1(yn − ŷn)2

where ȳ =

∑N
n=1 yn
N

. (6)

The vector of signs of w is noted sign(w), and (w)+ is the vector composed
of wp if wp ≥ 0 and 0 if wp < 01.
In the following, we assume that the matrix X ∈ RN×P of independent
variables and the response vector y ∈ RN are mean-centered. We use the
convention where columns denote variables and rows observations.

1It corresponds to the Rectified Linear Unit (ReLU), a popular activation function for
neural networks.
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2. Background

2.1. Partial Least Squares (PLS)
PLS originated from econometrics [8]. It was progressively and succes-

fully applied to other fields [9]: social and behavioral sciences, biosciences
from bioinformatics [10] to neuroimaging [11], and chemometrics [4, 5]. It
denotes a class of methods aimed at explaining the relationship between ex-
planatory data and responses with the help of latent variables. They boast
the management of both formative and reflective measurements, require low
sample sizes and mild distributional assumptions.
PLS avatars root on projecting data onto a lower dimensional space using new
orthogonal directions constructed as linear combinations of original variables.
Its principle consists in compressing the predictor X into a smaller score ma-
trix of M < P variables. When Principal Component Analysis (PCA) [12]
ought to best summarize X by taking into account only the correlation be-
tween the variables in X, the PLS steps up and also consider the covariance
between X and y. The latent space is spanned by M components written as
tm = Xwm, m ∈ {1, . . . ,M}. Weights wm are constructed in order to obtain
an orthogonal basis. Several algorithms have been proposed. NIPALS (non-
linear iterative partial least squares) [13] and SIMPLS [14] are most popular.
When applied to a one-dimensional reponse, as in our case, both are shown
to be equivalent. They solve the following optimization problem for the first
component:

max
w

(yTXw) s.t. ‖w‖2 = 1 . (7)

The convex Problem (7) can be solved with Lagrange multipliers. For µ > 0,
it rewrites:

min
w

L(w) where L(w) = −zTw + µ(‖w‖2 − 1) and z = XTy . (8)

Solving (8) leads to
w = XTy . (9)

The PLS algorithm uses the weight vector w to project regressorX into score
vector t = Xw. NIPALS iteratively computes weight vectors by deflation
while SIMPLS is more direct. Let Ptm−1 denotes the orthogonal projection
onto the space spanned by components t1, . . . , tm−1. The algorithm considers
the part of X that is orthogonal to tk, k < m. For the mth component, X is
replaced by Xm such that:

Xm = X− Pt1,...,tm−1X = Xm−1 − Ptm−1Xm−1 . (10)
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The PLS1 algorithm is described in Algorithm 1.

Algorithm 1 PLS1
Input: X,y,M
X1 = X
for m = 1, . . . ,M do
wm = XT

my (weight vector computation)
tm = Xmwm (component construction)
Xm+1 = Xm − PtmXm (deflation)

end for

PLS thus projects X onto the space of lower dimension spanned by the
loadings w1, . . . ,wm, in order to replace X by T=XW, where T∈ RN×M .
The PLS regression fitted values for M components is given by:

ŷ = Tβ̂ = T(TTT)−1Ty = XW(TTT)−1Ty . (11)

Based on the above, PLS regression coefficients are computed as:

β̂
PLS

= W(TTT)−1Ty . (12)

2.2. Least absolute shrinkage and selection operator
By selecting the most important features, variable selection produces a

less complicated model. It has the potential advantage of being easier to
handle than the complete full set of variables. The optimization problem in
standard linear regression is stated as:

arg min
β
‖y−Xβ‖22 . (13)

Provided X has full column rank, the ordinary least squares (LS) estimation
is ŷLS = P[X]y, where [X] is the space spanned by the columns of X. In
other terms, β̂

LS
= (XTX)−1XTy A popular sparsity-based approach is the

lasso developed by Tibshirani in 1996 [6]. It is reknown for its `1 penalty
scheme that shrinks less relevant variables to zero. It is obtained by solving:

arg min
β
‖y−Xβ‖22 subject to ‖β‖1 ≤ λ . (14)

Threshold parameter λ > 0 controls the extent of shrinkage applied to the
estimate; that is, the number `c0 of coefficients set to zero. An appropriate
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λ is important to get interpretable results. If β̂
LS

exists, as mentioned in
[6], then for a λ ≥ ‖β̂

LS
‖1, the lasso estimate β̂

l
is equal to the ordinary

least square solution. And for λ =
‖β̂

LS
‖1

2
, it selects on average half of the

variables. We can reformulate (14) as

arg min
β

1

2
‖y−Xβ‖22 + t‖β‖1 . (15)

Note that there is a (non-explicit) correspondence between parameters λ and
t. In the orthonormal design case, i.e. XTX = IP , there exists β̂l closed form
solution called soft thresholding verifying

β̂l
p = sign(β̂LS

p )(|β̂LS
p | − λ)+ ∀p ∈ {1, . . . , P} . (16)

Coefficients whose magnitude is smaller than λ are set to zero. Amplitudes
of the others are shrunk with respect of the threshold. While proved success-
ful for numerous applications, some drawbacks are reported [15, 16]. Some
are: 1) non strict convexity of the criterion when the number of predictors
exceeds the number of observations (P > N) 2) algorithm saturation when
N variables have been selected 3) with highly correlated variables, tendency
to pick mildly representative ones.
Another shrinking method is ridge regression [17] with optimization problem:

arg min
β

1

2
‖y−Xβ‖22 + t‖β‖2 . (17)

Its trick is to add a diagonal matrix to (XTX) in order to overcome the
singularity problem. Therefore, the solution always exists, expressed as:

β̂
r

= (XTX + tIP )−1XTy . (18)

Compared to the lasso, it uses an `2-norm instead of the `1 penalization but
retains most variables by design.

2.3. Blending methods: sparse Partial Least Squares (sPLS)
Sparse Partial Least Squares (sPLS) denotes a body of works adding a

variable selection flavor to the standard PLS framework. We focus here on
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ones specifically using lasso inspired penalties. An `1-norm can be incorpo-
rated in optimization problem (7). Noting

Ĉov(Xw,y) =
1

N
wTz, with z = XTy = NĈov(X,y) , (19)

adding the coupling parameter λs > 0 and orthogonality constraint on com-
ponents, we get, for the first component:

ŵ = arg min
w∈Rp

{−Ĉov(Xw,y) + λs‖w‖1}, for wTw = 1 . (20)

Problem (20) is tackled in 2008 [18] using sparse PCA [19]. Then itera-
tive PLS [20] is combined to singular value decomposition. We denote it as
sPLSLeCao after the first author. In 2010 [21], Problem (20) is reframed by
imposing the `1 penalty on a surrogate direction close to the original vector
w, providing an approximate solution with sPLSChun. In 2018, [22] refor-
mulates Problem (20) using recent results from proximal optimization [23]
with sPLSDurif. In this last case, sPLSDurif provides an exact and closed-form
solution reminiscing the soft threshold operator. Moreover, they suggest an
adaptive method for computing the sPLS weight vectors using classical PLS
ones.
Along the lines of methods presented above, Dual-sPLS aims at inference
and interpretability: accurate predictions combined with sparse localization
features for better chemometrics performance. Following [22], we also wish
to provide a means to tuning the relative sparsity of the outcome. Finally, as
different analytical chemistry modalities provide different insights on chemi-
cal mixtures, the Dual-sPLS is designed to naturally allow the combination of
heterogeneous datasets as a byproduct of the versatile dual norm approach2.

3. Dual Sparse Partial Least Squares (Dual-sPLS)

3.1. Motivation and purposes
The classical data fidelity `2-norm is often used in penalties applications.

Arbitrary norm choices may not lead to trackable algorithms. However, the
concept of dual norm is a means to formulate a unifying optimization frame-
work with practical algorithmic properties.

2Application of this extention is not performed here and is subject to a later work.
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Definition 3.1 Let Ω(·) be a norm on RP . For any z ∈ RP , the associated
dual norm, denoted Ω∗(·), is defined as

Ω∗(z) = max
w

(zTw) s.t. Ω(w) = 1 . (21)

Comparing (7) and (21), we find that the optimization of the PLS objective
function amounts to finding the vector w1 that fits the dual norm of the `2-
norm of z, where z = XTy. This gives us the incentive to evaluate different
norm expressions that could be used as domain-related penalizations. Thus,
for any norm Ω(.) used, the first component will be:

ŵ = arg min
w∈Rp

{−zTw}, s.t. Ω(w) = 1 . (22)

Although formulation is generic, we emphasize four types of norms that make
practical sense when dealing with measurements typically available in chemo-
metrics. We provide the corresponding R [24] package dual.spls [25] with a
complete description. It contains the following main functions, each of them
being associated to specific penalty:

1. Dual-sPLSl (pseudo-lasso norm, d.spls.lasso()). Similar to the sPLS
Problem (20), an intuitive norm combines `2 and `1:

Ω(w) = λ‖w‖1 + ‖w‖2 . (23)

2. Dual-sPLSgl (pseudo-group lasso norm, d.spls.GL()). Inspired by
group lasso [26], it combines groups of measurements. It applies pseudo-
lasso to each group individually while constraining the total set. For G
groups, wg represents the variables of the loading vector w that belongs
to group g. The corresponding norm is formulated as:

Ω(w) =
G∑
g=1

αg‖wg‖2 + λg‖wg‖1 , (24)

where αg ≥ 0,∀g ∈ {1, . . . , G} and
∑

g∈1,...,G αg = 1.

3. Dual-sPLSLS (pseudo-least squares norm, d.spls.LS()). It introduces
N1, a matrix of p columns, and applies when X is not singular:

Ω(w) = λ‖N1w‖1 + ‖Xw‖2 . (25)

The classical least squares solution is recovered for λ = 0.
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4. Dual-sPLSr (pseudo-ridge norm, d.spls.ridge()). It deals with cases
where X is singular and resorts to a ridge-like penalization:

Ω(w) = λ1‖w‖1 + λ2‖Xw‖2 + ‖w‖2 . (26)

The construction of weight vectors w1, . . . ,wM differs in each of the four
cases. It however follows similar steps as for the PLS. Starting with a refor-
mulation of optimization Problem (21) and using Lagrange multipliers, we
aim at iteratively minimizing the function L(w) = −zTw+µ(Ω(w)− 1), for
µ > 0. As some norms are not differentiable, we resort to the more generic
notion of subgradient ∇Ω(w) [23]. It identifies to the classical differential
when it is defined. The subgradient of L vanishes for

∇Ω(w) =
z
µ
. (27)

It is then sufficient to substitute the gradient — when it exists— of the
considered norm of Ω(w) in (27).
We provide in the following a detailed analysis for the pseudo-lasso case of
Dual-sPLS (see (23)) and some remarks for the other norms. In all cases we
impose that w and z lie in the same orthant; it generalizes, in n dimensions,
the quadrant in the 2D plane or the octant in the 3D space. In other words,
corresponding coordinates of w and z have the same sign.

3.2. Norm options (lasso, group lasso, least squares and ridge)
3.2.1. Pseudo-lasso

We rconsider Equation (23). Let δ be the sign vector of w and z. By
differentiating Ω(w), we get

∇Ω(w) = λδ +
w

‖w‖2
, (28)

and by substituting it in (27), we obtain

w
‖w‖2

=
z
µ
− λδ . (29)

The closed-form solution of the Dual-sPLSl optimization problem consists in
zeroing coordinates whose magnitude is lower than the soft threshold λ and
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in reducing the others toward zero. Thus, for ν = λµ and p ∈ {1, . . . , P}, it
can be expressed as:

wp
‖w‖2

=
1

µ
δp(|zp| − ν)+ . (30)

A common issue is the choice of the appropriate shrinking parameter. Cross-
Validation [27], evoked in Section 4.3, is popularly adopted in sparse regres-
sions. We choose a more intuitive option. We obtain it adaptively, according
to the proportion of variables that we would like to keep in the active set
at each iteration. The procedure is illustrated in Figure 1. It represents
the empirical cumulative distribution of sorted magnitudes of |XTy| from
the real data DNIR described later in Section (4.2). Fixing a shriking ratio
ς of expected zero coefficients (e.g. ς = 80 %), we select the threshold ν at
iteration m as depicted. As the cumulative destribution is non-decreasing,
we choose the first x-axis value corresponding to ordinate 0.8.
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Figure 1: Empirical cumulative distribution of the sorted magnitude of z = XTy from
real data DNIR to control sparsity.

To guarantee the unit norm property for w, we set µ = ‖zν‖2 where zν is the
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vector of coordinates δp(|zp| − ν)+ for p ∈ {1, . . . , P}. Consequently,

w =
µ

ν‖zν‖1 + ‖zν‖22
zν .

The rationale behind constrainting the direction w instead of the regres-
sion coefficients β̂ is their collinearity. Indeed, the estimator writes β̂ =
W(TTT)−1TTy. Being collinear, soft-thresholding w performs a variable
selection at the same location in β̂ coordinates. The pseudo-lasso Dual-sPLS
is described in Algorithm 2.

Algorithm 2 Dual-sPLSl

Input: X,y,M (number of components desired), ς (shrinking ratio)
X1 = X
for m = 1, . . . ,M do
zm = XT

my (weight vector)
Find ν adaptatively according to ς
zν = (δp(|zp| − ν)+)p (applying the threshold), p ∈ {1, . . . , P}
µ = ‖zν‖2 and λ =

ν

µ

wp =
‖zν‖2

ν‖zν‖1 + ‖zν‖22
zν (loadings)

tm = Xmwm (component)
Xm+1 = Xm − PtmXm (deflation)

end for
β̂ = W(TTT)−1TTy

Note that as long as w and zν are collinear, the sparsity of the results only
requires the computation of w, up to a non-zero factor.

3.2.2. Pseudo-group lasso
Response y may be explained separately by explanatory variables of dif-

ferent nature with prediction models. Combining them appropriately is po-
tentially beneficial both in predictive and interpretative powers. The same
reasoning could be used to partition the dataset into groups.
Physico-chemical motivation resides in segmenting a spectrum into homoge-
nous bands or combining complementary modalities (e.g. IR and NMR) to
predict the same property (e.g. viscosity, density). We consider G groups,
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and zg sub-vector of z denotes variables belonging to group g. The group
lasso inspired norm is expressed as in Equation (24). The closed-form solu-
tion is collinear to the vector zνg . It is given by

zνg = δg(|zg| − νg)+ and zν =
(
zνg
)
g∈{1,...,G} , (31)

δg being the vector of signs of wg and νg = λgµ for g ∈ {1, . . . , G}. Each
group is driven by its own threshold νg. The latter can be obtained similarly
as in Section 3.2.1. Note that this Dual-sPLS version reduces to the pseudo-
lasso case when G = 1.

3.2.3. Pseudo-least squares and pseudo-ridge
The above can be generalized in many ways, by defining more versatile

norm shapes, including notably weighted norms. One such possibility is
∀w ∈ RP

Ω(w) = λ1‖N1w‖1 + ‖N2w‖2 + λ2‖w‖2 . (32)

It is not easily solvable in general. However, an appropriate choice of ma-
trices N1 and N2, and factors λ1 and λ2 allow us to recover the lasso and
group lasso norms, but also several other already known concepts, like fused
lasso, least squares or ridge. We focus here on two main situations whose
optimization problem resolution can be obtained analytically. An obvious
option heavily inspired by least squares regression sets N2 = X and λ2 = 0.
Its resolution supplements the traditional least squares problem with a more
selective shrinkage akin to that of our pseudo-lasso. Namely we first note

Ω(w) = λ‖N1w‖1 + ‖Xw‖2 . (33)

Then for ν = µλ and δ the vector of signs of N1w and N1z,

w
‖Xw‖2

= (XTX)−1
z
µ
− λ(XTX)−1NT

1 δ , (34)

where we have implicitly assumed that X has full rank. Consequently, we
penalize |β̂

LS
| instead of |z|. For equation (34) to take a genuine pseudo-lasso

form, it is sufficient that N1 verifies

(XTX)−1NT
1 δ = sign

(
(XTX)−1z

)
. (35)
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However, as it does not play a role in loadings’ computation, it does not need
to be computed explicitly. Thus, the coordinates of the simplified closed-form
solution is:

wp

‖Xw‖2
=

1

µ
sign(β̂LS

p )(|β̂LS
p | − ν)+ , (36)

When X is singular, the above cannot hold. Meanwhile, this case can be
addressed with a regularization inspired by the ridge [17]. By choosing N1 =
IP , N2 = λ2X and λ2 = 1, equation (32) writes

Ω(w) = λ1‖w‖1 + λ2‖Xw‖2 + ‖w‖2 . (37)

It amounts to penalize |zν2 | where zν2 =

(
ν2XTX+IP

)−1
and ν2 = λ2

w
‖Xw‖2

,

instead of |z| like in the pseudo-lasso. For ν1 = λ1µ, the closed-form solution
is formulated as:

w
‖w‖2

=
1

µ
δ(|zν2| − ν1)+ . (38)

where δ = sign(zν2z). Adding the diagonal perturbation resolves the non-
invertability of XTX.

4. Simulated and real data, model settings, evaluation

4.1. Simulated sparse data: Gaussian mixtures DSIM and DSIM

For an in-depth analysis of machine learning algorithms, resorting to sim-
ulated data allows an unbiased access to ground truth. We thereby propose
a parametrized model. It is thought to provide similarities with common
analytical chemistry data, with all sparse parameters controlled. We choose
a positively weighted mixture of K Gaussians peaks with preset scale σ2 and
randomly picked amplitudes A and locations µ. They are summed as follows
and uniformly sampled:

K∑
k=1

Ak exp(−x− µk
2σ2

) . (39)

They are affected by a stochastic Gaussian contamination. The response
vector y is defined by an explicit linear model composed of weighted sums of
X values. Weights can be random or fixed quantities by range of indices.
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Figure 2: DSIM (left) and DSIM (right) simulated data.

In this work, to evaluate Dual-sPLS in both precision and information loca-
tion, we devise a sparse additive model with only S � P positive weights and
P −S null weights. Namely, only S variables are responsible in the construc-
tion of response y. This information is especially beneficial to demonstrate
the strength of variable selection in sparse methods. Since we deal with
high-dimensional situations, we simulated DSIM: 300 mixtures of 30 Gaus-
sians represented by 1000 variables (Figure 2 (left)). Highlighted red areas
denote variables involved in the computation of response y. The correspond-
ing matrix of DSIM is singular and used in the evaluation of Dual-sPLSl and
Dual-sPLSr. Since the Dual-sPLSLS is only operational with invertible ma-
trices, we also simulated non-singular data matrix DSIM, 200 mixtures of
100 Gaussians represented by 50 variables. The response y corresponding
to DSIM depends only on the first five and last twelve variables as shown in
Figure 2 (right).

4.2. Real data: near-infrared (NIR) spectroscopy DNIR

In chemistry, complex mixtures of molecules are analyzed with different
physico-chemical methods. Besides, determining macroscopic properties is
important to their use.
The evaluation on real data is done using NIR spectra of hydrocarbon sam-
ples. NIR is based on the principle of absorption of radiation (infrared) by
matter [28]. Infrared radiations correspond to wavenumbers directly greater
than those of the visible light spectrum. The absorption of radiation de-
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pends on chemical bonds, therefore a NIR spectrum encodes information
about the composition of the sample. We focus on the density property
which is obtained by standardized methods. The IFPEN dataset DNIR was
partly exposed in [29, 30]. It is available at http://www.laurent-duval.eu
and subject to a forthcoming publication [31]. It is composed of 208 samples
with 1557 variables. The corresponding matrix X is singular. Many chem-
ical data require adequate preprocessing: normalization, baseline removal
[32], deconvolution [7]. Here we simply apply a discrete derivative obtained
with a Savitzky–Golay smoothing filter [33] of degree 2 and length 15. It
serves as both a crude baseline filter and diversity enhancement operator
[34]. The NIR preprocessed dataset DNIR is represented in Figure 3.
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Figure 3: DNIR: first derivative of the NIR spectra of 208 samples.

4.3. Model settings: number of latent component selection
Selecting the appropriate numberM of latent components is crucial when

building a regression model. It balances between model complexity and pre-
diction accuracy (degrees of freedom), preventing the risk of overfitting. This
issue is especially important when using PLS and its extensions in chemo-
metrics. The commonly used procedure is based on cross validation.
First, observations are split randomly several times into a calibration and a
validation set. Second, candidate models using the calibration sets are con-
structed with different numbers of latent components. Third, each prediction
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is evaluated on the validation set with MSE. The latter are averaged for each
model. Finally, the smallest one with the lowest averaged MSE reveals an
adequate number of latent components.

4.4. Calibration and validation
The evaluation of prediction models traditionally divides the dataset into

two representative sets called calibration and validation. Three main meth-
ods are used. In the first one, observations are randomly selected. The
second only considers the distribution of values in the response y [35, Strat-
ified sampling]. A third class is known as Kennard and Stone method [36].
It optimizes relative distances between observations according to variables of
X. In chemometrics, one may expect the existence of a yet unknown depen-
dence between analytical measurements and properties. Taking both X and
y values for a proper calibration and validation split would be desirable. The
attempts of [37] to consider X and y in a single distance with appropriate
weights is not straightforward. It is difficult to adequately weight variables
that do not belong to the same space. We have recently proposed a Cal-
ValXy for that purpose. It consists in dividing the dataset into subgroups
according to the repartition of y and applying the Kennard and Stone to
each subgroup. It is summarized in Algorithm 3, and extensively described
in [38].

Algorithm 3 Calibration and validation CalValXy
Input: X,Xtype(index of which set belongs each observation of X),
Listecal (number of calibration points to pick from each subset)
G = mean(X) (centroid)
C1 = maxn ‖xG − xn‖, n ∈ {1, . . . , N} (first calibration point)
s = subset where C1 is located
while Listecal is not empty do
s← s+ 1
Find the minmax point C in subset s
Remove C from X and Listecal
Store C in a vector of calibration index cal

end while
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5. Comparative evaluation and discussion

We benchmark each proposed Dual-SPLS regression flavor (respectively
pseudo-lasso, least squares and ridge) against its classical counterpart, and
comparable sparse SPLSs, when applicable. We follow a common proce-
dure to state the main results. First, we split observations into calibration
(80 %) and validation (20 %). We replaced the traditional Kennard and Stone
method (KS) [36] — using explanatory variables X only — with CalValXy
(cf. Section 4.4 and [38]). The latter incorporates the response variable y in
the splitting and proves slightly better than KS. Comparative performance
is assessed in both accuracy and quality of interpretation. For the first one,
common objective metrics are root mean squared error (RMSE), mean ab-
solute error (MAE), or determination coefficient (R2) (see end of Section 1).
As metrics yield similar outcomes, we only compare, in the topmost figures,
RMSE values for either calibration (left) or validation (right), as we increase
the number M of latent components from one to ten. For the second one, we
assess both variable selection and localization by vertically stacking regres-
sion coefficients for each compared algorithm in the bottom figure. Results
are extensively discussed on simulated and real data for Dual-SPLSl, and in
less details for the least squares and ridge flavors. Complementary outcomes
are provided in the supplementary materials.

5.1. Dual-sPLS pseudo-lasso evaluation (DSIM, DNIR)
Dual-sPLSl is compared to standard PLS, three alternative sparse PLS

(sPLSLeCao [18], sPLSChun [21], sPLSDurif [22]) and lasso [6]. Their respective
parameters are selected by cross validation (Section 4.1). Both sPLSLeCao

and Dual-sPLSl explicitely specify a sparsity parameter: the (approximate)
proportion of variables ς to be discarded (`c0/P ). We set it here to 99 %.
We first evaluate Dual-sPLSl on simulated data DSIM (Section 4.1) in Figure
4. Top-left and right plots entail that accuracy (RMSE) globally improves as
the number of latent variables M increases for all five PLS-related methods
— in both calibration and validation. The lasso performance, independent
on the number of components, is represented by the sixth dotted curve. From
six to ten latent variables, all curves tend to plateau, with close RMSE val-
ues. Dual-SPLSl, sPLSChun and PLS provide the best results (lowest curves).
Thus, adding more components seems uncessary. We choose six latent vari-
ables to compare coefficient localization. On Figure 4-bottom, we stack seven
panels: original spectra (1) and the coefficients for: PLS (2), Dual-sPLSl (3),
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sPLSLeCao (4), sPLSChun (5), sPLSDurif (6), lasso (7). PLS coefficients (panel
2) match the shape of the simulated data (panel 1). However, it fails to
localize the most important variables, unlike sparse PLS. The `0 criterion
(Section 1) quantifies the sparsity induced by each method. Dual-sPLSl,
sPLSLeCao and lasso perform best, selecting as expected a small number of
variables, with an `0 value around 40 to 60. It however is not sufficient
to hint at improvements in interpretability. Looking only at variables af-
fecting the response (shaded red background in panel 1), most compared
methods exhibit significant coefficients in many (useless) areas (transparent
background). Only Dual-sPLSl, sPLSLeCao present concentrated coefficients
that can help chemical interpretation. On this rudimentary yet explainable
model, we hint that Dual-sPLSl provides a predictive quality comparable to
its challengers, and is the best in providing at the same time accurate local-
ization on simulated data, with a verifiable (yet simplified) prediction model.
We are now able to evaluate the performance of Dual-sPLSl on real near-
infrared data DNIR (4.2) for density prediction. Similarly to DSIM, RMSE
curves in Figure 5 for calibration (top-left) and validation (top-right) glob-
ally decrease with an increasing number of components. Errors plateau after
six components, indicating that additional latent structure orders might be
weakly helpful. The performance gap for sPLSDurif could occur as it was
mainly designed for classification. Again, we assess model interpretation in
Figure 5 (bottom) for six latent vectors. By nature, location of the most
influential features of spectra for a specific property is yet to be unveiled.
One may expect that most of the meaningful variables are located in the ac-
tive parts of the signal, e.g. spectral bands with relatively higher intensities,
with some others possibly in quieter wavenumber ranges. On the top panel,
NIR spectra are mainly active3 from 4000 cm−1 to 4800 cm−1 and 5500 cm−1

to 6000 cm−1. Meaningful PLS coefficients are visible on a much wider sup-
port, provoking ambiguity on the identification of spectral bands related to
density. All sPLS actually have smaller support, sPLSLeCao and Dual-sPLSl

being the sparsest with `0 respectively equal to 88 and 82. The first singu-
larity of Dual-sPLSl is the contiguous and smoothness of its coefficients. By
contrast, sPLSChun and sPLSDurif coefficients location appear to be more scat-
tered across the wavenumber axis, in non-contiguous small chunks and even

3We do not endeavour a chemical explanation here. It ought to be substanciated in
forthcoming paper [31]
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isolated spikes. The second is the absence of response in the 5500 cm−1 to
6000 cm−1 bands3 in Dual-sPLSl. We are not able to chemically explain the
discrepancy of absence/presence results in this band. However, Dual-sPLSl

does not need it to remain almost as accurate as its competitors.

5.2. Dual-sPLS pseudo-least squares evaluation (DSIM)
The Dual-sPLSLS requires data to be represented by a non-singular ma-

trix X, as explained in Section 3.2.3. Since real data DNIR is singular, we use
simulated data DSIM presented in Section 4.1. As the number of variables
in DSIM is already small, we only shrink 60 % of its variables to evaluate the
Dual-sPLSLS against classical least squares. The latter is denoted by dashes,
as the number of latent components is meaningless in this case.

For calibration (Figure 6 top-left) the RMSE for Dual-sPLSLS decreases
mildly as the number of components increases. It approaches the least
squares performance. For validation (Figure 6 top-right) Dual-sPLSLS per-
forms similarly or better than least squares all over model orders. This
contrast in performance might be explained by a tendency to overfit for least
squares. A better prediction performance is expected with our model. Sim-
ilarly to the Dual-sPLSl, we also choose to evaluate it with six components
in the bottom of Figure 6. Again, redish regions indicate active variables for
the unknown linear model. We observe an overall similarity in the dynam-
ics of both regression coefficients: strong amplitude in the first five and last
ten variables corresponding to active regions. The main difference resides in
the intermediate part, irrelevant to the response. Least squares as expected
shrinks inactive variables towards zero but not as much as Dual-sPLSLS does.
This is exemplified in the zoomed panels, where Dual-sPLSLS exhibit much
less non-zero coefficients.

5.3. Dual-sPLS pseudo-ridge evaluation (DSIM, DNIR)
Dual-sPLSr is compared to classical ridge regression (Section 2.2) either

applied to simulated data DSIM or real data DNIR. Ridge hyper parameter
t (equation (17)) is fixed using cross validation. We set λ2 for Dual-sPLSr

(equation (26)) to
1

t
for easier comparison. All other parameters are kept

as for Dual-sPLSl (Section 5.1). Looking at top-left and -right in Figure 7
Dual-sPLSr reaches a plateau for DSIM after five latent components. More-
over, its RMSE values are slightly lower than ridge’s for both calibration and
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Figure 4: Dual-sPLSl evaluation on simulated data DSIM. (Top) RMSE values for cal-
ibration (left) and validation (right) with respect to the number of latent components.
(Bottom) From top to bottom: simulated data DSIM, regression coefficients of PLS, Dual-
sPLSl, sPLSLeCao, sPLSChun, sPLSDurif for six components, and lasso.
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Figure 5: Dual-sPLSl evaluation on real data DNIR. (Top) RMSE values for calibration
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validation. We can safely select six latent components as before. Reference
coefficients for ridge are misleading because the largest ones do not reside
in influencing areas. They therefore can not be used for data interpretation.
By selecting only fifty variables, located in red regions governing the model,
Dual-sPLSr better succeeds in both prediction and localization. Similar con-
clusions can be drawn for real data DNIR on RMSE values. Dual-sPLSr

even better predicts the response y with only four components. Regression
coefficients (Figure 8 bottom) yield comments akin to above. While ridge ap-
parently emphasizes unimportant features, Dual-sPLSr seems more reliable
in identifiying of relevant variables to predict density using chemical data.

6. Conclusion and perspectives

We propose a family of dual sparse Partial Least Squares algorithms that
broadens the compass of standard PLS. Along with competitive prediction
accuracy with respect to PLS as used in chemometrics, we expect additional
benefits in dimension reduction or model interpretability. This is achieved
by supplementing the traditional optimization problem with well-chosen dual
norms.
We chiefly validate this approach by borrowing three classical regression
penalties: lasso, least-squares, ridge. Each proposed Dual-sPLS draws close
to the reference in calibration/validation performance with a reduced number
of latent components. This is assessed in a benchmark on both realistic sim-
ulated models and real near infrared spectroscopy data, against a standard
baseline and sparse contenders. Coefficients are sieved with a user-defined
sparsity target. They are well-located in influential data ranges, suggesting
a means for better interpretability of the trained prediction reduced model.
Pseudo-lasso and ridge Dual-sPLS avatars exhibit close colocation of selected
features in both datasets despite different penalties. This suggests a robust
identification of meaningful information in signals.
The Dual-sPLS framework is thus a good candidate for a host of applications.
We provide it as an open-source package in R [25]. It can be prolonged to
other field-favorite penalties, for instance elastic net. We plan to evaluate the
alluded “pseudo-group lasso” option, to refine feature selection on important
contiguous areas, or to combine datasets providing complementary informa-
tion on the predicted response. To improve prediction robustness or reduce
the number of necessary latent components (toward three or four instead
of six), we explore additional diversity enhancement preprocessing, such as
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Figure 7: Dual-sPLSr evaluation on simulated data DSIM. (Top) RMSE values for cal-
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higher-order derivatives and discrete wavelet transforms. Last, as PLS de-
serves sounder statistical foundations, we endeavor a study of asymptotic
convergence bounds.
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Appendix A. Detailed resolution of Dual-sPLSs

Appendix A.1. Dual-sPLS pseudo-group lasso
We recall Equation (24): the Dual-sPLSgl norm case applied to optimization
Problem (21). Note that here

• g represents a group of P (g) index extracted from {1, . . . , P};

• G represents the number of groups;

• wg represents the values of index g in the loading vector w.

We denote zg the variables of z belonging to group g. We impose zg and wg

to be in the same orthant. Let δg be their vector of signs. By differentiating
equation (24) we obtain

∂Ω(w)

∂wg
=

αgwg
‖wg‖2

+ αgλgδg . (A.1)

Using Lagrange multipliers as in Section 3.1, we compare (27) to (A.1) and
obtain for g ∈ {1, . . . , G}:
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wg

‖wg‖2
=

zg
αgµ
− λgδg , (A.2)

which is simplified by
wg

‖wg‖2
=

1

µαg
zνg , (A.3)

where
zνg = δg(|zg| − νg)+ for g ∈ {1, . . . , G} . (A.4)

Here νg = µαgλg and controls the amount of variables that we would like
to shrink to zero. By applying `2-norm to (A.3), we conclude that for g ∈
{1, . . . , G},

µ =
G∑
g=1

‖zνg‖2 and αg =
‖zνg‖2
µ

. (A.5)

The term ‖wg‖2 is more involved. Thus, we simply use grid search. For
each group g, ten possible values are chosen to be tested. The selection is
done by detecting the maximum value of ‖wg‖2 for each group g, denoted
‖wg‖max2 . The latter is computed by zeroing ‖wg′‖2 for all groups g′ 6= g and
is expressed as:

‖wg‖max2 =
µ

Ωg(zνg)
. (A.6)

Then, ten values of each group g are selected inside the interval [0, ‖wg‖max2 ].
The grid search tests all the possible combinations and retains the one that
allows the smallest error. We summarize the methodology with Algorithm 4.
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Algorithm 4 Dual-sPLSgl algorithm

Input: X1, . . . ,XG, y, M (number of components desired), ς (shrinking
ratio), α1, . . . , αg.
for m = 1, . . . ,M do
Xm = (X1, . . . ,XG) (combining data)
zm = XT

my (weight vector)
Find ν adaptively according to ς for each group seperatly
zνg = δg(|zg| − νg)+ for g ∈ {1, . . . , G} (applying the threshold)
µ =

∑G
g=1 ‖zνg‖2

αg =
‖zνg‖2
µ

and λg =
νg
αgµ

for g ∈ {1, . . . , G}

‖wg‖max2 =
µ

Ωg(zνg)
for g ∈ {1, . . . , G}

selection of the values of ‖wg‖2 for each group

wg =
‖wg‖2
µαg

zνg for g ∈ {1, . . . , G} (loadings)

wg =

(
wg

)G
g=1

tm = Xmwm (component)
Xm+1 = Xm − PtmXm (deflation)

end for
Compute β̂.

Appendix A.2. Dual-sPLS pseudo-least squares
We recall Equation (25): the Dual-sPLSLS pseudo case applied to optimiza-
tion Problem (21).
We impose N1z and N1w to be in the same orthant. Let δ2 be their vector
of signs. By differentiating (25) we obtain

∇Ω(w) = λNT
1 δ2 +

XTXw
‖Xw‖2

. (A.7)

Using Lagrange multipliers as in Section 3.1, we compare (27) to (A.7) and
obtain w

‖Xw‖2
= (XTX)−1

z
µ
− λ(XTX)−1NT

1 δ2 , (A.8)
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imposing the invertibility of XTX. We choose N1 such as

(XTX)−1NT
1 δ2 = sign

(
(XTX)−1z

)
. (A.9)

The resolution steps are be similar to the ones from Dual-sPLSl but instead
of applying the threshold on z, we apply it on (XTX)−1z which is exactly the
classical Least Squares regression coefficients β̂

LS
. So, the simplified solution

is
w

‖Xw‖2
=

1

µ
sign(β̂LSj

)(|β̂LSj
| − ν)+ , (A.10)

where ν is chosen adaptively.
For a simpler algorithm, ‖Xw‖2 is not computed as it is not mandatory in
this case. Additionally, w only depends on ν and β̂LS, which means N1 does
not intervene in the computation of the optimal solution. Thus, proving that
N1 exists is enough. (A.9) implies the following

NT
1 δ2 = (XTX)sign

(
(XTX)−1z

)
. (A.11)

Let w be an eignvector of N1, and N′1 be such as

N′1 = N1 −wTw and N′1w = 0 . (A.12)

Therefore, using (A.11) we have

N′1δ2 = (XTX)sign
(

(XTX)−1z
)
−wwTδ2 with N′1w = 0 . (A.13)

With N1 a square matrix of P variables, (A.13) is a system of P 2 unknowns,
P equations and P contraints. It can be verified by an infinite number of
solutions.
The following algorithm reformulates the previous steps:
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Algorithm 5 Dual-sPLSLS algorithm

Input: X,y,M (number of components desired), ς (shrinking ratio)
X1 = X
for m = 1, . . . ,M do
zm = XT

my (weight vector)
β̂LS = (XTX)−1z
Find ν adaptively according to ς and β̂LS
zν = (sign(β̂LS)(|β̂LS| − ν)+) (applying the threshold)
wm =

zν
µ

(loadings)

wm =
wm

‖w‖2
(normalizing loadings)

tm = Xmwm (component)
Xm+1 = Xm − PtmXm (deflation)

end for
Compute β̂.

Appendix A.3. Dual-sPLS pseudo-ridge
We recall Equation (26): the Dual-sPLSr pseudo case applied to opti-

mization Problem (21). We impose z and w to be in the same orthant. Let
δ be their vector of signs. By differentiating (26), we obtain

∇Ω(w) = λ1δ + λ2
XTXw
‖Xw‖2

+
w
‖w‖2

. (A.14)

Using Lagrange multipliers as in Section 3.1, we compare (27) to (A.14) and
obtain

w
‖w‖2

=

(
ν2XTX + IP

)−1
(z− ν1δ) , (A.15)

where ν1 = λ1µ and ν2 = λ2
‖w‖2
‖Xw‖2

.

In line with Dual-sPLSl, we note zX,ν2 =

(
ν2XTX + IP

)−1
z and δX its

vector of signs. We exhibit a solution imposing that w and zX,ν2 are in the
same orthant, which leads to the following reformulation of (A.15):

w
‖w‖2

=
1

µ
δX(|zX,ν2| − ν1)+ . (A.16)
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The threshold ν1 is chosen with the adaptive procedure described in Section
3.2.1 and Figure 1. However, in this case, we compare ν1 to |zX,ν2|. Since the
latter is colinear to z, the shrinkage is adequate. Denoting zν = δX(|zX,ν2| −
ν1)+, simple computations lead to

µ = ‖zν‖2 , (A.17)

and
w =

µ

ν1‖zν‖1 + ν2‖Xzν‖22 + µ2
. (A.18)

It is summarized in Algorithm 6:

Algorithm 6 Dual-sPLSr algorithm

Input: X,y,M (number of components desired), ς (shrinking ratio), ν2
X1 = X
for m = 1, . . . ,M do
zm = XT

my (weight vector)

zX,ν2 =

(
ν2XTX + IP

)−1
z

Find ν adaptively according to ς and |zX,ν2|
δX vector of signs of zX,ν2
zν = δX(|zX,ν2| − ν1)+ (applying the threshold)
µ = ‖zν‖2 and λ =

ν

µ

wm =
µ

ν1‖zν‖1 + ν2‖Xzν‖22 + µ2
(loadings)

tm = Xmwm (component)
Xm+1 = Xm − PtmXm (deflation)

end for
Compute β̂.

Appendix B. Complementary plots

As mentioned in Section 5, metrics MAE and R2 were also computed.
They support our findings based on RMSE, as they yield similar results.
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Figure B.9: Dual-sPLSl evaluation on simulated data DSIM. MAE (top) and R2 (bottom)
values for calibration (left) and validation (right) with respect to the number of latent
components derived from PLS, Dual-sPLSl, sPLSLeCao, sPLSChun, sPLSDurif and lasso
regressions.
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Figure B.10: Dual-sPLSl evaluation on real data DNIR. MAE (top) and R2 (bottom)
values for calibration (left) and validation (right) with respect to the number of latent
components derived from PLS, Dual-sPLSl, sPLSLeCao, sPLSChun, sPLSDurif and lasso
regressions.
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Figure B.11: Dual-sPLSLS evaluation on simulated data DSIM. MAE (top) and R2 (bot-
tom) values for calibration (left) and validation (right) with respect to the number of
latent components derived from Dual-sPLSLS and least squares regressions.
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Figure B.12: Dual-sPLSr evaluation on simulated dataDSIM. MAE (top) and R2 (bottom)
values for calibration (left) and validation (right) with respect to the number of latent
components derived from Dual-sPLSr and ridge regressions.
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Figure B.13: Dual-sPLSr evaluation on simulated dataDNIR. MAE (top) and R2 (bottom)
values for calibration (left) and validation (right) with respect to the number of latent
components derived from Dual-sPLSr and ridge regressions.
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