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Abstract: A reference density database of aqueous alkali halide solutions is presented. The solutes 9 

are the 20 alkali halides consisting of the cations, Li+, Na+, K+, Rb+, Cs+, and anions, F-, Cl-, Br-, 10 

I-. Experimental density data of these aqueous electrolyte solutions are extensively collected and 11 

critically evaluated. A data evaluation procedure is proposed, utilizing support vector regression 12 

(SVR) to compare the experimental datasets against each other. Data evaluation is based on 13 

agreement with data from other sources rather than accuracy claimed in the literature. Datasets 14 

with large deviation from others are identified and removed. The proposed reference database 15 

consists of 11081 data points of 586 datasets from 309 references. Maximum deviations between 16 

the selected datasets do not exceed 1%, and are smaller than 0.5% for most of the aqueous alkali 17 

halide solutions. SVR models are also trained based on the reference database. Data distribution 18 

is visualized using a Gaussian mixture model. Applicability domains of the SVR models are 19 

analyzed using Williams plots. An executable program is provided for calculations based on the 20 

SVR models. 21 

Keywords: density database, data evaluation, aqueous alkali halide solutions, support vector 22 

regression, Gaussian mixture model. 23 
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1 Introduction 53 

For various industries, accurate measurements and modeling of thermodynamic properties of 54 

electrolyte solutions are required 1. Density is an important property for development of 55 

thermodynamic property models 2. Furthermore, deriving apparent and partial molal volumes from 56 

accurate density data provides insights into the structural information of the aqueous electrolyte 57 

solutions 3. 58 
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In aqueous electrolyte solutions, density is very different from in pure water, being up to 100% 59 

larger at high salt composition compared to pure water density at the same temperature and 60 

pressure, especially for the heavier salts. In addition, in equations of state, the volumetric 61 

parameters are more sensitive to density than to phase equilibria and thermal properties. One 62 

should expect large deviations when the density is not included in the objective function 4,5. 63 

Therefore, density is an important property that has to be critically evaluated before it can be used 64 

in model development. 65 

Obtaining a reference database for aqueous alkali halide solutions is important for many 66 

reasons. For instance: 67 

- While density has been extensively measured for some of the aqueous solutions, the 68 

measurements are not of the same quality. Critical evaluation of experimental data and 69 

removal of data of poor quality are essential steps. 70 

- The aqueous alkali halide solutions are the first systems that model developers often work 71 

on. From the perspective of model development, a reference density database is practical. 72 

- Many more complicated industrially relevant mixtures consist of water and one or more 73 

alkali halides. In the measured data series, usually a few data points are available for 74 

aqueous alkali halide solutions. Comparison of the aqueous alkali halide data against a 75 

reference database for the system can verify the validity of measurements of the more 76 

complicated mixtures before the data are used in industrial applications. 77 

In this work, density data of 20 aqueous alkali halide solutions are extensively collected and 78 

critically evaluated. Because datasets from hundreds of references are available with very different 79 

quality, a fast evaluation approach is proposed here, utilizing the support vector regression (SVR) 80 

algorithm to compare the experimental datasets against each other. Datasets that are not consistent 81 

with most other datasets are identified and removed. A reference database for the density of 82 

aqueous alkali halide solutions is proposed. Based on this reference database, correlations are 83 

developed and provided. This work, along with the databases for other properties that were 84 

published previously 6,7, can be used for benchmarking future developments of electrolyte equation 85 

of state. In addition to this ready-for-use state-of-the-art density database, the proposed data 86 

evaluation procedure for density can potentially be used for other properties that do not change 87 

drastically in the aqueous phase. 88 
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2 Methodology 89 

In this section, the density data collection, evaluation, and correlation procedures are 90 

presented. In addition, approaches for assessing the data distribution and model applicability 91 

domain are also introduced. 92 

2.1 Experimental density data collections 93 

For the 20 aqueous alkali halide solutions, 14315 density data points of 819 datasets are 94 

collected from the CERE aqueous electrolyte databank 8 and DETHERM 9. Krumgalz et al. 10 95 

presented an evaluated database for densities of a few aqueous electrolyte solutions. 4 of the 20 96 

aqueous alkali halide solutions investigated here were covered by their database. Datasets from 97 

their database have also been collected along with those from the databanks. 98 

In the literature, salt composition was reported in various units. Here the experimental data 99 

are converted to the same units for comparisons. Using the equations listed in Table 1, 100 

concentration units are converted to ion-based molar fraction, which is usually used in equations 101 

of state and activity coefficient models. When the pure water density is needed for the conversion 102 

from density difference or apparent molar volume, the reported value from the same reference is 103 

used. When pure water density is not provided from the experimental references, it is calculated 104 

using IAPWS-95 11,12. In the cases that pressure was not in reported in the experimental references, 105 

it is recorded as 101.325 kPa in this database. 106 
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Table 1. Equations for converting concentration units to ion-based molar fraction. 107 

Original salt concentration unit Conversion to ion-based molar fractiona 

molality 𝑥𝑖 = 𝑍𝑖𝑥𝑖
0 (𝑍𝑥𝑖

0 + 1 𝑀water⁄ )⁄  

weight fraction 𝑥𝑖 = 𝑍𝑖 𝑥𝑖
0 𝑀salt⁄ [𝑍 𝑥𝑖

0 𝑀salt⁄ + (1 − 𝑥𝑖
0) 𝑀water⁄ ]⁄  

salt-based molar fraction 𝑥𝑖 = 𝑍𝑖𝑥𝑖
0 [1 + (𝑍𝑖 − 1)𝑥𝑖

0]⁄  

molarity 𝑥𝑖 = 𝑍𝑖𝑥𝑖
0 [𝑍𝑥𝑖

0 + (𝜌 1000 − 𝑥𝑖
0𝑀salt⁄ ) 𝑀water⁄ ]⁄  

kg salt per kg solvent 𝑥𝑖 = 𝑍𝑖 𝑥𝑖
0 𝑀salt⁄ (𝑍 𝑥𝑖

0 𝑀salt⁄ + 1 𝑀water⁄ )⁄  

mol water per mol salt 𝑥𝑖 = 𝑍𝑖 (𝑍 + 𝑥𝑖
0)⁄  

g of salt per 100 cm3 solution 𝑥𝑖 = 10𝑍𝑖 𝑥𝑖
0 𝑀salt⁄ [10𝑍 𝑥𝑖

0 𝑀salt⁄ + (𝜌 − 10𝑥𝑖
0) 𝑀water⁄ ]⁄  

a) 𝑥𝑖
0 is the original salt composition unit as noted in the first column of the table. 𝑥𝑖 is the ion-based 108 

molar fraction. Z is the total number of ions in the salt, and is 2 for alkali halides. 𝑍𝑖 is the number of ions 109 
i in the salt, and is 1 for alkali halides. M is the molar mass in kg/mol, taken from the NIST Chemistry 110 

WebBook 13. 𝑀water = 0.0180153 kg/mol. 𝜌 is the density of the solution in kg/m3. 111 

2.2 Data evaluation 112 

The goal of this work is to remove datasets that are outliers, i.e., anomalies, in the collected 113 

databank. Common anomaly detection algorithms include isolation forest, robust covariance, 114 

support vector regression one-class, etc 14–17. These classification-based algorithms detect 115 

anomalies based on data distribution. Both response (density) and variables (temperature, 116 

composition, and pressure) are used as inputs for evaluating data distribution. However, in the 117 

scenario of this work, only the data of high accuracy can be selected in the reference database, 118 

while the algorithms are not capable of automatically distinguishing the data points that deviate 119 

from the consistent datasets by only a few percent. More importantly, in these algorithms, the 120 

scarceness of data at high temperature and pressure outweighs the deviations in density, and would 121 

result in undesirable removal of the valuable data in the scarcer region. Therefore, selection of the 122 

reference database can only be achieved based on observation of the deviations of the data points 123 

from a preliminary model that is trained to the data, which reflects deviations of the data points 124 

from each other. 125 

The support vector regression (SVR) is used for correlating the collected data and for 126 

comparing the data with each other. Through the Gibbs phase rule, it is known that a homogeneous 127 

mixture of water and a salt has 3 degrees of freedom, i.e., composition (x), temperature (T), and 128 

pressure (p). This is different from in the usual applications of the machine learning models on 129 



6 

predicting thermodynamic properties (e.g., group contribution and quantitative structure-property 130 

relationship models (QSPR) 18–20), in which case dominant features have to be selected and do not 131 

contain complete information of the response. Therefore, given datasets that are consistent with 132 

each other, the experimental data should be regressed to the SVR model with very high accuracy. 133 

The accuracy indicates agreement between the experimental datasets in addition to agreement of 134 

the datasets with the trained model. On the other hand, when a dataset deviates much from the 135 

trained SVR model in a region where other experimental datasets agree well with the model, we 136 

can conclude that the deviating dataset is inconsistent with the other experimental datasets. Plotted 137 

against the 3 degrees of freedom, it can be observed whether a data point is “deviating” beyond 138 

the scattering of other data; it can also be observed whether the data range is severely compromised 139 

when a dataset is removed as deviations are observed to be larger compared to the other datasets. 140 

When a data point from a dataset is considered to be deviating too much from the other data, the 141 

entire dataset that contains the deviating data point is removed. The procedure is repeated until all 142 

datasets agree well with each other up to a desirable accuracy without the need to remove any more 143 

experimental datasets. In general, no more than 4 regressions were needed. In the evaluation, all 144 

the data are included for regressing the SVR model, because the regressed model is intended only 145 

for comparing the datasets against each other, rather than for calculations. After the reference 146 

database is finalized, it is split into training, validation, and test sets for correlating SVR models 147 

that are used for calculations, as will be explained in Section 2.4. Figure 1 summarizes the 148 

procedure of density data evaluation and correlation. The evaluation procedure is applied for the 149 

20 aqueous alkali halide solutions. Then, the reference database is finalized, and is used for training 150 

the SVR models. 151 
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 152 

Figure 1. Density data evaluation and correlation: (a) workflow and (b) schematics. 153 

Figure 2 shows a comparison of the collected data and selected data (reference database) of 154 

the (water + KCl) density as an example of the evaluation procedure. At the start, input data include 155 

some datasets that deviate from others by more than 10%, and some datasets that already deviate 156 

from others by only 1~3%, but fall in the range that other datasets agree very well with each other. 157 

As these datasets are removed, agreement between the remaining datasets is improved. For this 158 

case, the procedure took 3 rounds of evaluations. The data that have been excluded in the final 159 

reference database are marked as grey in the graphs of the collected data to show the comparably 160 

larger deviations compared to the data that have been kept. In the graphs on the second row, only 161 

the kept data are shown, with a much smaller scale of deviation. Before the evaluation, the 162 

collected data present deviations of more than 15% in some cases, and much scattering in regions 163 

with a lot of data. At the end, all the remaining data agree with each other within 0.5%. The 164 

procedure is performed on the density data of the 20 aqueous alkali halide solutions. 165 
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 166 

Figure 2. Comparison of collected data (before evaluation) and selected data (after evaluation) of (water + 167 
KCl) density. Data that are removed in the finalized reference database are marked as grey in the graphs 168 
of the collected data. 169 

2.3 Gaussian mixture model analysis 170 

The Gaussian mixture model (GMM) is a probability model that implements iterative 171 

expectation maximization algorithm for analyzing data clustering 21. In this work, it is used for 172 

providing a qualitative visualization of data distribution. GMMs are trained for the selected density 173 

data of each aqueous alkali halide solution. The GMM is defined as: 174 

𝑞(𝒛|𝝅, 𝝁, 𝚺) =  ∑ 𝜋𝑘𝒩(𝒛|𝜇𝑘, Σ𝑘)

𝐾

𝑘=1

 
(1) 

∑ 𝜋𝑘 = 1

𝐾

𝑘=1

 
(2) 

where 𝑞 is the likelihood (usually denoted as p, but noted as q here to avoid confusion with the 175 

pressure), 𝒛 = (𝑇, 𝑝, 𝑥) is the input (each data point), 𝝅 = {𝜋1, … , 𝜋𝐾} are mixing coefficients, and 176 

𝝁 = {𝜇1, … , 𝜇𝐾}  and 𝚺 = {Σ1, … , Σ𝐾}  specify the mean and covariance of each Gaussian 177 

component 𝒩(𝒛|𝜇𝑘, Σ𝑘), respectively, k denotes the kth GMM component, 𝐾 denotes the total 178 
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number of GMM components, and 𝒩  denotes the Gaussian distribution. 𝝅 , 𝝁 , and 𝚺  are 179 

parameters that are trained in the GMM to approximate the data distribution, 𝒛. Given a training 180 

set, the parameters 𝝅 , 𝝁  and 𝚺  are first initialized via the k-means++ algorithm 22 and then 181 

estimated through the iterative Expectation-Maximization (EM) algorithm to maximize the 182 

likelihood 23, according to: 183 

ln 𝑞(𝒁|𝝅, 𝝁, 𝚺) =  ∑ ln ∑ 𝜋𝑘𝒩(𝒛𝑛|𝜇𝑘, Σ𝑘)

𝐾

𝑘=1

𝑁

𝑛=1

 
(3) 

where 𝒁 = (𝑻, 𝒑, 𝒙) is the input matrix, 𝑁 is the number of data points, and 𝒛𝑛 is for the nth data 184 

point. In addition, to avoid overfitting, 𝐾 is selected to minimize Bayesian information criterion 185 

(BIC) 24, which is defined as BIC= ln(𝑁) 𝑀 − 2 ln(�̂�), where 𝑁 is the number of data points, 𝑀 186 

represents the number of estimated parameters, and �̂�  denotes the maximized value of the 187 

likelihood function of the model. 188 

GMM can provide a qualitative visualization of data distribution using a contour plot. In 189 

addition, its convergence also reflects to some extent the quality of our collected database. 190 

Furthermore, in this work, we also use the GMM to determine if calculated data points can be 191 

regarded as within the range of the database. The procedure is known as novelty detection 25. Any 192 

data point located in a low data-distribution-density region can be considered a novelty. In this 193 

way, GMM enables us to determine whether our database can be applied to a new condition. An 194 

executable program is provided in the Supplementary Material for calculations. The GMM plot of 195 

the database is presented in the user interface as calculations are made. In this way, whether the 196 

calculations are within the ranges of the proposed database is visualized. 197 

2.4 Support vector regression (SVR) 198 

SVR provides the flexibility to define how much error is acceptable in the regression 26. 199 

Deviations below a threshold, ε, are considered unimportant. In this way, a tube is defined of which 200 

the centerline is the prediction of the SVR model. Within the tube, deviations are not penalized in 201 

the objective function. The very idea of SVR is suitable for identifying datasets that present larger 202 

deviations compared to others. Advantages of SVR include that its generalization capability and 203 

prediction accuracy are excellent 27. Therefore, SVR is very suitable for evaluating and correlating 204 
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data of thermodynamic properties, for which extensive measurements are prohibitively expensive, 205 

and evenly distributed data are usually unavailable. 206 

In SVR, Eq. (5) is minimized subject to the constraints of Eq. (6). 207 

1

2
‖𝒘‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑁

𝑖=1

 

(5) 

𝑦𝑖 − 𝒘T ∙ 𝜙(𝒙𝑖) − 𝑏 ≤ 𝜀 − 𝜉𝑖 , ∀𝑖 = 1, ⋯ , 𝑁 (6a) 

𝒘T ∙ 𝜙(𝒙𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗, ∀𝑖 = 1, ⋯ , 𝑁 (6b) 

𝜉𝑖 ≥ 0, ∀𝑖 = 1, ⋯ , 𝑁 (6c) 

𝜉𝑖
∗ ≥ 0, ∀𝑖 = 1, ⋯ , 𝑁 (6d) 

where 𝒘 is the coefficient factor, 𝐶 is the box constraint, 𝜀 is the margin within which errors are 208 

ignored, 𝜉𝑖 and 𝜉𝑖
∗ are the slack variables, 𝑦𝑖 is the response, 𝒙𝑖 is the variable vector, 𝜙 and b are 209 

defined in the SVR approximation: 210 

𝑓(𝒙) = 𝒘T ∙ 𝜙(𝒙) + 𝑏 (7) 

The slack variables, 𝜉𝑖 and 𝜉𝑖
∗, are introduced for each data point, and allow regression errors 211 

to be larger than the margin error value, 𝜀. 212 

Eqs. (5) and (6) are transformed into the dual formula using the Lagrange multipliers 28, 𝛼𝑖 213 

and 𝛼𝑖
∗. 214 

𝐿(𝛼) =
1

2
∑ ∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝒙𝑖, 𝒙𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

+ 𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗)

𝑁

𝑖=1

− ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑁

𝑖=1

 

(8) 

∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑁

𝑖=1

= 0, ∀𝑖 = 1, ⋯ , 𝑁 

(9a) 

0 ≤ 𝛼𝑖 ≤ 𝐶, ∀𝑖 = 1, ⋯ , 𝑁 (9b) 
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0 ≤ 𝛼𝑖
∗ ≤ 𝐶, ∀𝑖 = 1, ⋯ , 𝑁 (9c) 

Instead of Eq. (5), Eq. (8) is minimized subject the constraints of Eq. (9). 215 

In this work, the Gaussian kernel function 29 is used: 216 

𝐾(𝒙𝑖, 𝒙𝑗) ≡ 𝜙(𝒙𝑖) ∙ 𝜙(𝒙𝑗) = exp (−‖𝒙𝑖 − 𝒙𝑗‖
2

) (10) 

Predictions of a response at given x is calculated according to, 217 

𝑓(𝒙) = ∑(𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝒙𝑖, 𝒙)

𝑁

𝑖=1

+ 𝑏 

(11) 

The data are standardized before the model is trained. The SVR implementation in Matlab is 218 

used. The training process of the SVR model is performed in nested loops: 219 

- In the outer loop, the SVR hyper parameters, i.e., the box constraint, kernel scale, and 220 

threshold, ε, are optimized using the Bayesian optimization 30–32 with the expected-221 

improvement-plus algorithm 30 as the acquisition function to choose the next promising 222 

hyper parameter set, which is expected to have smaller errors for the validation set. 223 

- In the inner loop, with fixed hyper parameters, the SVR model is optimized using the 224 

sequential minimal optimization algorithm 33. 225 

In practice, the maximum number of iterations is set at 100, which turned out to be large enough 226 

for convergence. 227 

The SVR model is used in both the evaluation and correlation of the database. In the 228 

evaluation, the entire database is used for training the SVR model in each step, as shown in Figure 229 

1b. 230 

In the correlation, the obtained reference database is split into training, validation, and test 231 

sets. For each solution, 20% of the data are set aside as test sets; the remaining 80% of the data are 232 

used as training/validation sets. 10-fold cross-validation is implemented for training the SVR 233 

models. The accuracy of the model on the training/validation and test sets are investigated. An 234 
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executable program with user interface are provided in the Supplementary Material for 235 

calculations using the trained model. 236 

2.5 Williams plot analysis 237 

In addition to the GMM analysis, the Williams plot analysis 34 is employed for visualizing 238 

distribution of the selected data. 239 

ℎ𝑖 = 𝒙𝑖
T(𝑿T𝑿)−1𝒙𝑖 (12) 

where ℎ𝑖 is the hat value, 𝒙𝑖 is the variable vector of a data point, and X is the variable matrix of 240 

the entire database. The threshold value ℎ∗ = 3(𝑃 + 1) 𝑁⁄  is also calculated and compared with 241 

the hat value of all the data points, where 𝑃 = 3 is the number of variables, and N is the number 242 

of data points. 243 

In the Williams plot, the relative deviation of the SVR model is plotted against the hat value. 244 

The approach is widely used for evaluating the applicability domain in QSAR models. When ℎ𝑖 >245 

ℎ∗, in QSAR models, the calculation is considered extrapolated and could be less reliable; however, 246 

for the density correlation here, the data point is considered to be located in a scarcer region. 247 

Because of the completeness of information in thermodynamic (3 degrees of freedom of the 248 

density of the mixture of water and a salt) as compared to the incompleteness of information for 249 

mapping between molecular structure and activity (as in QSAR models), the threshold can be 250 

considered much stricter here than in QSAR models. As will be discussed in Section 3 and in the 251 

Supplementary Material, deviations do not significantly increase beyond the threshold, indicating 252 

good correlation of the model in scarcer regions. Therefore, this threshold hat value of the database 253 

is not intended as a strict bar beyond which calculation should be prohibited. Instead, the threshold 254 

serves as merely an indicator that the calculations are made in scarcer regions. 255 

Furthermore, when calculations are made using the correlation, comparing the hat value of 256 

the calculations with the threshold and with the hat values of data points in the database visualizes 257 

whether the calculated data are located in a region where there are extensive data points that have 258 

been used in training the correlation. 259 
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3 Results and discussion 260 

The collected datasets are evaluated using the procedure explained in Section 2. Table 2 261 

provides the resulting reference database for the density of the 20 aqueous alkali halide solutions. 262 

11081 data points of 586 datasets from 309 references are included in the database. The references 263 

are provided in the last column of the table. We recommend that these references be cited when 264 

using the database. The database is provided in the Supplementary Material. As an example, the 265 

(water + KCl) system is discussed in detail here. The plots for the other aqueous alkali halide 266 

solutions are provided in the Supplementary Material. Figure 3 shows the GMM plot for the 267 

density data of the (water + KCl) system. The contour is to visualize data distribution. The GMM 268 

is analyzed on the T-xion projection, because most of the density data of the system are distributed 269 

at or near atmospheric pressure. The experimental data are plotted together with the contours. 270 
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Table 2. Reference database for the density of the 20 aqueous alkali halide solutions, and deviations of the SVR model. AAD is the percentage average absolute 271 
deviation. MAD is the percentage maximum absolute deviation. 272 

Water 

+ 

Collected data  Selected data 

No. of 

data 

points 

No. of 

datasets 

 No. of 

data 

points 

No. of 

datasets 

T (K) 𝑥ion Reference AAD (%)  MAD (%)  

Training-

Validation 

Test Training-

Validation 

Test 

LiF 55 5  55 5 291.15-308.15 0-0.0019 35–39 0.0031 0.0014 0.12 0.0030 

NaF 347 17  347 17 273.15-572.70 0-0.019 36–52 0.013 0.031 0.59 0.60 

KF 465 18  448 14 293.15-572.70 0-0.17 36,37,42–47,53–58 0.055 0.050 0.53 0.74 

RbF 32 4  32 4 291.15-333.15 0-0.067 36,42,43,59 0.057 0.084 0.42 0.37 

CsF 27 3  27 3 293.15-333.15 0-0.050 36,42,43 0.15 0.13 0.42 0.27 

LiCl 1650 77  1181 57 273.15-549.80 0-0.27 36,41–44,60–111 0.031 0.024 0.57 0.57 

NaCl 3647 185  2687 137 253.00-573.35 0-0.098 41–44,48,54,93–223 0.018 0.012 0.25 0.16 

KCl 2264 160  1624 105 273.15-473.15 0-0.11 40,41,43–45,53,54,91,92,99–111,196–

217,223–284 

0.017 0.012 0.31 0.30 

RbCl 301 30  168 14 288.15-328.15 0-0.12 41,43,44,52,54,101–104,123,223,281,282,285 0.064 0.10 0.34 0.36 

CsCl 408 36  351 30 273.85-473.15 0-0.19 42,43,88,91,102–107,119–

124,196,217,223,282,285–294 

0.20 0.29 1.0 0.75 

LiBr 939 25  698 19 229.15-525.00 0-0.22 36,42,43,66–68,97,108,109,137,285,295–302 0.045 0.062 0.41 0.51 

NaBr 1319 55  1204 37 273.15-549.80 0-0.14 36,42–44,62,66,73,97,108–110,195,217,223–

225,282,285–287,302–317 

0.055 0.040 1.0 0.39 

KBr 1083 67  856 49 270.91-473.15 0-0.12 36,41–44,56,62,66,96,100,102,108,109,135–

138,213–217,221,224,229–

236,282,285,290,295,302,314,315,318–327 

0.037 0.030 0.49 0.20 

RbBr 77 6  38 4 291.15-333.15 0-0.074 36,42,43,52 0.082 0.048 0.41 0.070 

CsBr 120 12  50 7 298.15-308.15 0-0.073 36,43,62,88,223,286,287 0.12 0.18 0.43 0.28 

LiI 352 17  289 10 278.15-575.75 0-0.12 42,62,68,97,107,109,285,328–330 0.056 0.051 0.84 0.19 

NaI 271 38  165 20 293.15-323.15 0-0.15 36,43,44,54,97,102,107–

109,154,237,290,298,311,331–336 

0.095 0.085 1.7 0.15 

KI 750 46  661 37 270.32-473.15 0-0.13 36,41,43–45,48,53,56,93,100,107–

109,154,212–216,235–

238,282,285,290,295,305,318,322,336–342 

0.022 0.033 0.45 0.63 

RbI 64 7  56 6 273.15-333.15 0-0.11 36,42,43,52,107,137 0.21 0.28 0.87 0.38 

CsI 144 11  144 11 273.15-343.34 0-0.058 35,36,42,43,107,137,223,286,287,290,343 0.093 0.13 0.46 0.38 

 273 
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 274 

Figure 3. Gaussian mixture model for the density data of the (water + KCl) system. The contour plot is the 275 
calculated data-distribution-density. The dots are data points of the database. 276 

Based on the database, an SVR model is developed according to the procedure introduced in 277 

Section 2.4. Figure 4 shows the parity plot of the SVR correlation for the density of the (water + 278 

KCl) system. The test set is calculated with comparable accuracy compared to the training and 279 

validation sets. The SVR model is very accurate within the range of the database. Percentage 280 

average absolute deviation (AAD) and percentage maximum absolute deviation (MAD) for the 20 281 

aqueous alkali halide solutions are provided in Table 2. The deviations are slightly larger compared 282 

to the maximum deviations in the data evaluation step, in which the models are trained on all the 283 

data of the aqueous alkali halide solutions (maximum deviations between the selected datasets do 284 

not exceed 1.1%, and are smaller than 0.5% for most of the aqueous alkali halide solutions). We 285 

expect that training the SVR model based on the entire database would slightly improve correlation 286 

accuracy without hampering the extrapolation performance of the model. However, we would not 287 

be able to verify this without any data for the test set. Therefore, 20% of the database is set aside 288 

as a test set. 289 
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 290 

Figure 4. Parity plot of the SVR correlation for the density of the (water + KCl) system. 291 

Figure 5 shows the Williams plot of the SVR correlation for the density data of the (water + 292 

KCl) system. There are some data points that exceed the threshold hat value. Most of these data 293 

points are at high pressure, while the majority in the database are at atmospheric pressure. However, 294 

deviations are not larger compared to the data points below the threshold. For the test set, the 295 

deviations are comparable to those of the training and validation sets. The good correlation and 296 

prediction show that the database is reliable on the edges of the data coverage, where there are 297 

much fewer data points, and that the SVR model is not over fitted. The Williams plot for the SVR 298 

model of the other aqueous alkali halide solutions are provided in the Supplementary Material. 299 

The behavior is similar to that of the (water + KCl) system. 300 

 301 

Figure 5. Williams plot of the SVR correlation for the density data of the (water + KCl) system. The hat 302 
values are calculated using Eq. (13) for the training & validation sets, and for the test set. 303 
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An executable program is provided in the Supplementary Material for calculating density of 304 

the aqueous alkali halide solutions. Figure 6 shows an example of the user interface. Density results 305 

are provided along with data ranges of the solution, and illustrations of the calculations plotted on 306 

the Williams and GMM plots. 307 

 308 

Figure 6. Example of the user interface for density calculation. The salt is selected using the dropdown 309 
list on the top-left corner. Then, input can be made in the numeric edit fields, or imported from a file. A 310 
sample file is provided in the Supplementary Material. Then, at the click of the “Calculate” button, results 311 
are shown in the table on the right side. Notes about the calculation are displayed above the table, 312 
summarizing ranges of the database for the mixture, or, in the case of a calculation beyond the database 313 
ranges, warnings about which input variable exceeds the range. The Williams and GMM plots are shown 314 
on the bottom. 315 

4 Conclusions 316 

In this work, the experimental density data of 20 aqueous alkali halide solutions are 317 

extensively collected and critically evaluated using machine learning. A reference database 318 
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consisting of 11081 data points of 586 datasets from 309 references is constructed. Maximum 319 

deviations between the selected datasets do not exceed 1.1%, and are smaller than 0.5% for most 320 

of the aqueous alkali halide solutions. Data distribution is visualized using the Williams plot and 321 

Gaussian mixture model. Support vector regression models are developed based on the database, 322 

and implemented in an executable program. 323 

The obtained database and models can be utilized in the development of electrolyte equations 324 

of state. The proposed data evaluation procedure for density can potentially be used for other 325 

properties that do not change drastically in the aqueous phase. 326 

5 Supplementary Material 327 

The followings are provided in the Supplementary Material: 328 

- An Excel file containing all the data. 329 

- An executable program for density calculation. 330 

- GMM and Williams plots for the aqueous alkali halide solutions. 331 
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