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Abstract 
Numerical models representing geological reservoirs can be used to forecast production and help 

engineers to design optimal development plans. These models should be as representative as possible of 

the true dynamic behavior and reproduce available static and dynamic data. However, identifying 

models constrained to production data can be very challenging and time consuming. Machine learning 

techniques can be considered to mimic and replace the fluid flow simulator in the process. However, the 

benefit of these approaches strongly depends on the simulation time required to train reliable 

predictors. Previous studies highlighted the potential of the multi-fidelity approach rooted in cokriging to 

efficiently provide accurate estimations of fluid flow simulator outputs. This technique consists in 

combining simulation results obtained on several levels of resolution for the reservoir model to predict 

the output properties on the finest level (the most accurate one). The degraded levels can correspond 

for instance to a coarser discretization in space or time, or to less complex physics. The idea behind is to 

take advantage of the coarse level low-cost information to limit the total simulation time required to 

train the meta-models. In this paper, we propose a new sequential design strategy for iteratively and 

automatically training (kriging and) cokriging based meta-models. As highlighted on two synthetic cases, 

this approach makes it possible to identify training sets leading to accurate estimations for the error 

between measured and simulated production data (objective function) while requiring limited simulation 

times. 

 

Keywords meta-modeling; multi-fidelity; machine learning; kriging; cokriging; sequential design; history-

matching 

 

1. Introduction 
Numerical models representing underground geological reservoirs are used to forecast production for 

various exploitation schemes. They help engineers to design optimal development plans. A reservoir 

model consists of a grid representing the structure of the reservoir; it is populated with facies and 
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petrophysical properties such as porosity and permeability. These characteristics are generally 

distributed in the grid using geostatistical simulation methods. These techniques generate equiprobable 

realizations with given statistical properties. They can be constrained to available static data such as 

values of the target properties collected at wells (e.g. derived from logs) or secondary information 

inferred from 3D seismic data. Then, fluid flow simulators are used to compute the pressure evolution 

and fluid dynamics in the grid during production.  

The reservoir models used for production forecast should be as representative as possible of the true 

dynamic behavior. They are thus chosen as the ones that reproduce not only the static data, but also the 

dynamic ones, namely production and 4D-seismic related data acquired on the field. However, the 

process of identifying such calibrated models can be very challenging and time consuming due to various 

factors, of which the potentially large number of model input parameters that need to be adjusted 

(petrophysical property in each grid block but also reservoir properties such as fluid characteristics, well 

properties …), the need to preserve the model geological consistency, the complexity of the non-linear 

physical processes involved, and the computation time required for a single fluid-flow simulation. 

Different tools have been developed to assist in the resolution of this calibration – or history-matching – 

process. They aim at reducing the computational overburden required to solve the problem, and in 

particular the number of simulations to be performed [5,17]. Optimization algorithms can be applied to 

drive the perturbation of the model input parameters in order to minimize a cost (or objective) function 

that quantifies the mismatch between the dynamic data and the corresponding simulated values. 

Preliminary sensitivity analyses can also be conducted to identify the model parameters that influence 

the most this cost function. Considering the other parameters as constant in the calibration process can 

then simplify the problem and reduce computation times.  

Simultaneously, machine learning techniques can be considered to mimic the simulator and provide fast 

and accurate estimations of its outputs for any parameter values. More precisely, the idea is to build 

meta-models that approximate the relation between the simulator input parameters and output 

properties. Such meta-models are trained on the basis of a sample of values, also called training set: they 

correspond to points from the parameter space and their associated simulated responses. Different 

methods exist to build meta-models (see for instance [7] for a review): polynomial regression, 

polynomial chaos expansion, Gaussian processes (rooted in kriging), neural networks, support vector 

regression ... Several of them have already been used in the reservoir engineering context. Reviews and 

examples can be found in [31,32,5] for example.  

The benefit of using machine learning techniques in the calibration workflow strongly depends on the 

simulation time required to train relevant and accurate meta-models. The training set should be 

sufficiently informative on the relationship between the input and output properties, but also not too 

large to limit the total simulation time. If selecting a small ensemble, the meta-model may lack accuracy 

in some parts of the parameter space. Considering larger sets should improve the predictivity of the 

meta-model, but at the cost of longer simulation times. In practice, no predefined rules exist for the 

definition of a training set optimal in terms of simulation time and prediction accuracy, and the 

definition and simulation of this ensemble is a potential source of time wasting in the workflow. As a 
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result, sequential strategies have been proposed in the literature to overcome this limitation. They 

consist in generating first a small sample of the parameter space, and then in complementing iteratively 

this ensemble according to some criteria that depend on the objective of the study. Some approaches 

favor optimization purposes and aim at identifying new points close to optimum values [8]. Others are 

dedicated to the building of predictors that are accurate in the whole parameter space. We refer to 

these second approaches in what follows. 

Kriging-based meta-models not only provide a prediction, but also a measure of the associated 

uncertainty through the kriging variance that represents the model mean square error. This variance can 

serve as a basis to identify regions of the parameter space that may not be well approximated by the 

current predictor. This was considered for instance in [27]: the new point added to the training set is the 

one that maximizes the kriging variance. In addition, as this variance only depends on the distance 

between the sampling points and not on their target output values, the approach can easily be extended 

to identify several new points at a time as described in [11]. This property of the kriging variance is also 

used in [27,25] to estimate the reduction of the integrated variance over the whole parameter space 

(Integrated Mean Square Error or IMSE) that would be obtained for given additional points. The training 

set is then augmented with the point corresponding to the maximum reduction of the IMSE. To better 

integrate the predictor accuracy in the sequential process, some authors refer to the cross-validation 

errors to complement the training set (e.g. [1,11]). These errors are used in [1] to identify regions of the 

parameter space in which performing additional simulations, and in [11] to weight the kriging variance 

with regards to Voronoi polygons around the training set. The additional points are the ones that 

maximize this weighted variance.  

Another degree of freedom to reduce simulation time is the level of resolution of the numerical reservoir 

models: discretization in time and space, physics complexity… Coarser levels of resolution are generally 

faster to simulate, and even if their output values are less accurate, they can capture trends or features 

also representative of finer scales. This scale dependency can be integrated in the meta-model definition 

to save simulation time. For instance, multi-scale meta-models rooted in cokriging were proposed in [10, 

13]. They provide estimations of the property of interest on the fine level while being trained with values 

simulated on different resolution levels (both fine and coarse). More precisely, the values simulated on 

the coarse level are considered as secondary information for the fine level, providing a trend that is 

adjusted according to the fine level training set. Multi-fidelity cokriging based meta-models proved to be 

efficient in reservoir engineering in [15] to compute quality maps and in [29] in the context of history-

matching for two levels of resolution. Less simulation time can be required to build accurate predictors 

compared to meta-models rooted in kriging, provided that the coarse level is sufficiently informative on 

the fine level. In these reservoir engineering studies [15,29], the potential of the multi-fidelity approach 

was assessed on fixed training sets. The objective of the present paper is to complement the multi-scale 

workflow developed in [29] for history-matching with a sequential design strategy to make the process 

fully efficient and suitable for the operational context. Compared to the single level case, this strategy 

should not only identify the parameter values for the additional points, but also the level of resolution on 

which performing the corresponding simulations to get a good trade-off between simulation cost and 

information inferred for the process. Multi-scale design approaches were already proposed in [30] and 
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[11] for instance. The strategy introduced in [30] consists in enlarging an initial sample on both levels to 

generate largest nested samples. In [11], two steps are considered. First, the simulation point to be 

added is identified as the one that maximizes the weighted cokriging variance of the fine level predictor. 

Then, the level of fidelity on which performing the simulation for this point is chosen based on IMSE 

reduction and simulation time ratio between the levels. Here, we propose a new sequential approach 

derived from existing strategies for the building of both kriging and cokriging based estimators. It is 

designed to efficiently provide estimations of scalar outputs of interest that are accurate in the whole 

parameter space, but also to limit computational requirements for identifying new points. The potential 

of this approach is assessed for the meta-modeling of the objective function in the context of history-

matching. The resulting estimations can then be considered for sensitivity analysis to identify the most 

relevant parameters to be adjusted in the minimization process. The developed strategy may also be 

envisioned for the exploration step in probabilistic approaches, such as the one proposed in [5]. Note 

however that the proposed sequential approach is generic and can be considered for the prediction of 

any scalar output whatever the simulation context. 

The paper outline is as follows. The definitions of kriging and cokriging based meta-modeling are 

recapped in section 2 in a generic context. Section 3 is dedicated to the proposed sequential design 

strategy. It is first introduced in the kriging framework and then extended to the multi-fidelity context. 

Finally, its application for the prediction of the history-matching error is presented in section 4, 

considering two synthetic test cases. 

2. Kriging and cokriging based meta-modeling 
In this section, we recap the basics of kriging and cokriging based meta-models for scalar functions 

(sections 2.1 and 2.2, respectively), and how they extend to functional properties such as time-

dependent ones (section 2.4). The approaches are presented in a generic context. The indices computed 

to quantify the quality of the meta-models are introduced in section 2.3.  

2.1 Kriging based meta-modeling 

Let 𝒚(𝒙) be the target scalar output that needs to be approximated and 𝒙 = (𝒙𝟏, … , 𝒙𝒅)  ∈ ℝ𝒅 the 
vector of input parameters. In reservoir engineering, 𝒚 can refer to the objective function or to any 
production property at a given time such as the oil flow rate at a producer. This output is considered 
here to be a realization of a Gaussian process 𝒀(𝒙) defined by:  
 
 𝑌(𝒙) = 𝑚(𝒙) + 𝑍(𝒙) (1) 

𝑚(𝒙) represents the mean of the Gaussian process and 𝑍(𝒙) the fluctuations around the mean. 𝑚 is 

generally modeled by 𝒉𝑻(𝒙)𝜷 where 𝒉(𝒙) = (ℎ𝑗(𝒙))𝑗=1…𝑝 are some regression functions and 𝜷 =

(𝛽𝑗)𝑗=1…𝑝 the corresponding regression coefficients. 𝑍(𝒙) is a stationary Gaussian process with zero 

mean and covariance 𝐾. In practice, 𝐾 is generally defined with a parametric form. In what follows, we 

consider the Matérn 5/2 covariance function [22]: 

𝐾(𝒙, 𝒙′) = 𝜎2𝑅(𝒙, 𝒙′) = 𝜎2 ∏ 𝑘𝑗(𝑥𝑗, 𝑥𝑗
′)

𝑑

𝑗=1
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with 𝑘𝑗(𝑥𝑗, 𝑥𝑗
′) =  (1 +

√5|𝑥𝑗−𝑥𝑗
′|

𝜆𝑗
+

5(𝑥𝑗−𝑥𝑗
′)

2

3𝜆𝑗
2 )  𝑒𝑥𝑝 (−

√5|𝑥𝑗−𝑥𝑗
′|

𝜆𝑗
). 𝜎2 denotes the process variance and 

(𝜆𝑗)𝑗=1…𝑑 the parameters of the correlation function 𝑅.  

 
Let us now assume that the value of the target output 𝒚 is known for a sample of the parameter space 

𝑫 = {𝒙𝟏, … . , 𝒙𝒏}, 𝒙𝒊 ∈ ℝ𝒅, also called design of experiments. This ensemble of 𝒏 values 

(𝒚(𝒙𝟏), … . , 𝒚(𝒙𝒏)) is denoted 𝒚𝑫 in what follows. Then, the best linear predictor of 𝒚 at a new point 𝒙∗ 

given 𝒚𝑫 is: 
 
 𝑦̂(𝒙∗)  = 𝒉𝑻(𝒙∗)𝜷 +  𝒓𝑇(𝒙∗)𝑹−𝟏(𝒚𝑫 − 𝑯𝜷) (2) 

where 𝑹 ∈ ℝ𝒏×𝒏, 𝑯 ∈ ℝ𝒑×𝒑 and 𝒓(𝒙∗) ∈ ℝ𝒏 are defined as: 𝑹𝒊𝒋 = 𝑹(𝒙𝒊, 𝒙𝒋), 𝑯𝒊𝒋 = 𝒉𝒋(𝒙𝒊) and 𝒓𝒋(𝒙∗) =

𝑹(𝒙𝒋, 𝒙∗). The variance of predictor 𝒚̂, also called kriging variance, is given by: 
 
 

𝑠̂2(𝒙∗) = 𝜎2 (1 − (𝒉𝑻(𝒙∗) 𝒓𝑻(𝒙∗)) ( 0 𝑯𝑻

𝑯 𝑹
)

−𝟏

(
𝒉(𝒙∗)

𝒓(𝒙∗)
)) (3) 

It represents the model mean square error. Let us note that, for a given covariance function 𝐾, this 
variance only depends on the location of the sample in the parameter space, and not on the actual value 
of the target output for the sample. It can thus be easily computed for any sample 𝑫 without the 
corresponding estimation of 𝑦(𝑫). This property will be used to identify a batch of points in sequential 
design strategies (see [11] for instance). 
 
The last step to complete the definition of predictor 𝑦̂ consists in estimating the covariance function 

characteristics 𝜎2 and (𝜆𝑗)𝑗=1…𝑑, as well as the 𝜷 regression coefficients. This is usually done by 

maximizing the logarithm of the likelihood function [20]. Assuming the Gaussian vector 𝑌(𝑫) follows a 

multivariate normal distribution and ignoring constant terms, the logarithm of the 𝐿 likelihood function 

associated to the hyper-parameters is defined as [28]: 

 log (𝐿(𝒚𝑫|𝜷, 𝜎2, 𝝀)) = −
1

2
(𝑛 log 𝜎2 + log(det(𝑹)) +

(𝒚𝑫 − 𝑯𝜷)
𝑇

𝑹−𝟏(𝒚𝑫 − 𝑯𝜷)

𝝈𝟐
) (4) 

The maximum likelihood estimates for 𝜷 et 𝜎𝟐 given 𝝀 are then: 

 𝜷̂(𝝀) = (𝑯𝑇𝑹−𝟏𝑯)
−1

𝑯𝑇𝑹−𝟏𝒚𝑫 (5) 

and 𝜎2̂(𝝀) =
1

𝑛
 (𝒚𝑫 − 𝑯𝜷̂)

𝑇
𝑹−𝟏(𝒚𝑫 − 𝑯𝜷̂) (6) 

Substituting these estimators in equation (4), the log likelihood rewrites: 

 log (𝐿(𝒚𝑫|𝝀)) = −
1

2
(𝑛 log 𝜎2̂(𝝀) + log(det(𝑹)) + 𝑛) (7) 
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This expression depends on 𝝀 alone. The maximum likelihood estimate for 𝝀 can then be obtained by 

minimizing 𝑛 log 𝜎𝟐̂ + 𝐥og(det(𝑹)). In this work, the kriging based meta-models are computed using the 

DiceKriging R package [26] and a constant mean 𝑚. 

 

2.2 Cokriging based meta-modeling 

Let us now consider the multi-fidelity framework. We assume that different levels of resolution are 

available for the simulations and that they form a hierarchy of codes with decreasing levels of accuracy. 

They can be obtained for instance with discretizations coarsening in time or space. The objective of the 

multi-fidelity meta-modeling is then to approximate the output of interest on the finest level using the 

values simulated for this property on all levels. To do so, we refer to the approach rooted in cokriging 

that has been introduced in [10] and further improved in [13]. For simplicity, it is recalled here with two 

levels of resolution. They are referred to as the fine and the coarse levels in what follows, the coarse one 

being the less accurate. However, the method is valid for any number of levels. 

Let us denote 𝑦𝑓(𝒙) the output property of interest on the fine level and 𝑦𝑐(𝒙) the corresponding output 

on the coarse level, 𝒙 ∈ ℝ𝑑 being the vector of input parameters. As previously, these outputs are 

assumed to be realizations of Gaussian processes denoted by 𝑌𝑓(𝒙) and 𝑌𝑐(𝒙), respectively. The model 

proposed in [10] is based on the following Markov-type property assumption: 

 𝐶𝑜𝑣 (𝑌𝑓(𝒙), 𝑌𝑐(𝒙′)|𝑌𝑐(𝒙)) = 0    ∀ 𝒙 ≠ 𝒙′  (8) 

In other words, we consider that, if 𝑌𝑐(𝒙) is known, the values simulated on the coarse level for any 

other input parameter values 𝒙′ ≠ 𝒙 will not provide additional information on 𝑌𝑓(𝒙). As demonstrated 

in [19], this assumption guarantees the existence of 𝜌(𝒙) such that 𝑌𝑓(𝒙) − 𝜌(𝒙)𝑌𝑐(𝒙) and 𝑌𝑐(𝒙) are 

independent and leads to the following representation of the Gaussian process 𝑌𝑓: 

 𝑌𝑓(𝒙) = 𝜌(𝒙)𝑌𝑐(𝒙) +  𝑌𝑑(𝒙) (9) 

𝑌𝑑(𝒙) denotes a Gaussian process independent of 𝑌𝑐(𝒙) that represents the difference 𝑦𝑑(𝒙) between 

𝑦𝑓(𝒙) and 𝜌(𝒙)𝑦𝑐(𝒙). For simplicity, the scale factor 𝜌 is taken constant in what follows. Formulations 

associated to a parametric form can be found in [13]. 

Referring to equation (1) and to the notations introduced in section 2.1, we denote by 𝒉𝒄
𝑻(𝒙)𝜷𝒄 and 

𝒉𝒅
𝑻(𝒙)𝜷𝒅 the mean of Gaussian processes 𝑌𝑐(𝒙) and 𝑌𝑑(𝒙), respectively, and by 𝐾𝑐(𝒙, 𝒙′) = 𝜎𝑐

2𝑅𝑐(𝒙, 𝒙′) 

and 𝐾𝑑(𝒙, 𝒙′) = 𝜎𝑑
2𝑅𝑑(𝒙, 𝒙′) their covariance functions. Let us also assume known 𝒚𝒇

𝑫 = 𝑦𝑓(𝑫𝒇) ∈ ℝ𝑛𝑓, 

the values of the target output on the fine level for a design of experiments 𝑫𝒇 = {𝒙𝒇
𝟏, … , 𝒙

𝒇

𝒏𝒇} , 𝒙𝒇
𝒊 ∈ ℝ𝑑, 

as well as 𝒚𝒄
𝑫 = 𝑦𝑐(𝑫𝒄) ∈ ℝ𝑛𝑐 the values of the target output on the coarse level for another sample of 

the parameter space 𝑫𝒄 = {𝒙𝒄
𝟏, … . , 𝒙𝒄

𝒏𝒄}, 𝒙𝒄
𝒊 ∈ ℝ𝑑. We assume here that the two designs 𝑫𝒇 and 𝑫𝒄 are 

nested in the sense that 𝑫𝒇 ⊆ 𝑫𝒄. This assumption is not mandatory but simplifies the model parameter 

estimation as explained in [13,12]. Following equation (2), the best linear predictor of 𝑦𝑐 at a new point 

𝒙∗ given 𝒚𝒄
𝑫 is: 
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 𝑦̂𝑐(𝒙∗)  = 𝒉𝒄

𝑻(𝒙∗)𝜷𝒄 + 𝒓𝒄
𝑻(𝒙∗)𝑹𝒄

−𝟏(𝒚𝒄
𝑫 − 𝑯𝒄𝜷𝒄) (10) 

with associated variance 
 
 

𝑠̂𝑐
2(𝒙∗) = 𝜎𝑐

2 (1 − (𝒉𝒄
𝑻(𝒙∗) 𝒓𝒄

𝑻(𝒙∗)) (
0 𝑯𝒄

𝑻

𝑯𝒄 𝑹𝒄
)

−𝟏

(
𝒉𝒄(𝒙∗)

𝒓𝒄(𝒙∗)
)). (11) 

Then, considering the recursive formulation introduced in [13,12], the multi-fidelity estimator for 𝒚𝒇 is 

given by:  
 𝑦̂𝑓(𝒙∗) = 𝜌𝑦̂𝑐(𝒙∗) +  𝒉𝒅

𝑻(𝒙∗)𝜷𝒅 + 𝒓𝒅
𝑻(𝒙∗)𝑹𝒅

−𝟏(𝒚𝑓
𝑫 − 𝑯𝒅𝜷𝑑), 𝒙∗ ∈ ℝ𝑑 (12) 

with associated variance  

 

𝑠̂𝑓
2(𝒙∗) = 𝜌2𝑠̂𝑐

2(𝒙∗) + 𝜎𝑑
2 (1 − (𝒉𝒅

𝑻(𝒙∗) 𝒓𝒅
𝑻(𝒙∗)) (

0 𝑯𝒅
𝑻

𝑯𝒅 𝑹𝒅
)

−𝟏

(
𝒉𝒅(𝒙∗)

𝒓𝒅(𝒙∗)
)) (13) 

In these formula, (𝑹𝒅)𝑖𝑗 = 𝑅𝑑(𝒙𝒇
𝒊 , 𝒙𝒇

𝒋
), 𝑯𝒅 = 𝒉𝑑

𝑇(𝑫𝒇) and 𝒓𝒅
𝑻(𝒙∗) = 𝑅𝑑(𝑫𝒇, 𝑥∗). This recursive 

formulation for the multi-fidelity model is equivalent to the one initially proposed in [10] but reduces the 

computational cost in terms of time and memory [13]. Indeed, the building of a cokriging estimator with 

N levels of resolution becomes equivalent to the building of N consecutive kriging-based estimators, 

reducing the size of the matrices to be inverted and stored.  

Thanks to the independence condition, parameters related to the coarse level (𝜷𝒄, 𝜎𝑐
2, 𝝀𝒄) can be 

estimated independently from the ones characterizing the fine level (𝜌, 𝜷𝑑, 𝜎𝑑
2, 𝝀𝒅). Likelihood 

maximization can be considered to estimate parameters (𝜷𝒄, 𝜎𝑐
2, 𝝀𝒄) characterizing the coarse level 

kriging estimator 𝑦̂𝑐 (equations (4) to (7)). For the fine level, closed-form expressions for the estimates of 

the scale factor 𝜌 and regression coefficients 𝜷𝑑 given 𝝀𝒅 are proposed in [12,13]. They are obtained 

from a joint Bayesian estimation of 𝜌 and 𝜷𝑑, leading to the following estimates:   

(
𝜌̂

𝜷𝑑̂
) = (𝑭𝑑

𝑇𝑹𝑑
−𝟏𝑭𝑑)

−1
𝑭𝑑

𝑇𝑹𝑑
−𝟏𝒚

𝒇
𝑫 

with 𝑭𝑑 = (𝒚𝒄(𝑫𝒇) 𝑯𝒅). The estimate for 𝜎𝑑
2 corresponds to the restricted maximum likelihood 

estimate: 𝜎𝑑
2̂ =

1

𝑛𝑓−𝑝−1
 (𝒚𝒇

𝑫 − 𝑭𝑑 (
𝜌̂

𝜷𝑑̂
))

𝑇

𝑹𝑑
−𝟏 (𝒚𝒇

𝑫 − 𝑭𝑑 (
𝜌̂

𝜷𝑑̂
)). Finally, hyperparameters 𝝀𝒅 are 

obtained by maximizing the concentrated log-likelihood : (𝑛𝑓 − 𝑝 − 1) log 𝜎𝑑
2̂ + log(det(𝑹𝒅)). The 

interested reader can refer to [12,13] for more detailed computations. This formulation is the one used 

in the present work through its implementation in the MuFiCokriging [14] R package. Note that constant 

values are considered here for the mean and scale factor. 
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As for kriging, given 𝜌 and covariance functions 𝐾𝑐, 𝐾𝑑, the variance of the cokriging predictor 𝑠̂𝑓
2 only 

depends on the location of the nested sample in the parameter space, and not on the actual value of the 

target output for this sample. It can thus be easily computed for any sample without the corresponding 

estimations of the target output. 

2.3 Meta-model quality assessment 

Different indices can be computed to evaluate the accuracy or quality of the meta-models, i.e. their 

ability to provide estimations close to the true simulated values. They refer to the computation of the 

error between some simulations and their corresponding estimations.  

First, these simulations can be the training set 𝑫 itself, referring to cross-validation. We consider more 

specifically the leave-one-out cross-validation technique (LOO-CV). It consists in computing additional 

meta-models using 𝑛 − 1 points of the training set, and in considering the prediction error on the left-

out points to assess the meta-model predictivity. More precisely, denoting 𝑦̂−𝑖 and 𝑠̂−𝑖
2  the kriging 

estimator and variance computed from the training set 𝑫−𝑖 = (𝒙𝒋)
1≤𝑗≠𝑖≤𝑛

, the cross-validation squared 

error at point 𝒙𝒊 is equal to (𝑒𝐿𝑂𝑂−𝐶𝑉
𝑖 (𝒙𝒊))2 = (𝑦(𝒙𝒊) − 𝑦̂−𝑖(𝒙𝒊))2. It can also be normalized by the 

kriging variance as  

 
𝜂(𝒙𝒊) =

(𝑒𝐿𝑂𝑂−𝐶𝑉
𝑖 (𝒙𝒊))2

𝑠̂−𝑖
2 (𝒙𝒊)

. 
(14) 

Then, the overall predictivity can be assessed through coefficient 𝑄2 as: 

 
𝑄2 = 1 −  

∑ (𝑒𝐿𝑂𝑂−𝐶𝑉
𝑖 (𝒙𝒊))2𝑛

𝑗=1

∑ (𝑦(𝒙𝒋) − 𝑦̅)2𝑛
𝑗=1

 (15) 

where 𝑦̅ represents the mean of 𝒚𝑫 = 𝑦(𝑫). The 𝑄2 coefficient gets closer to 1 when cross-validation 

errors decrease. In practice, some characteristics of 𝑦̂ such as the covariance function can be used for 

meta-models 𝑦̂−𝑖 to limit the additional computation cost. More details can be found for instance in [4] 

for kriging and in [12] for cokriging. 

If the user can afford it, an additional sample of the parameter space, independent of the training set 𝑫 

and referred to as the test set 𝑫𝒕𝒆𝒔𝒕 = {𝒙̃𝟏, … . , 𝒙̃𝑛𝑡𝑒𝑠𝑡}, 𝒙̃𝒊 ∈ ℝ𝑑, can also be considered to assess the 

meta-model quality. Once the output of interest 𝑦 has been simulated for this sample, the overall 

predictivity of the meta-model 𝑦̂ can be assessed through the 𝑅2 coefficient as: 

 
𝑅2 = 1 −  

∑ (𝑦(𝒙̃𝒋) − 𝑦̂(𝒙̃𝒋))2𝑛𝑡𝑒𝑠𝑡
𝑗=1

∑ (𝑦(𝒙̃𝒋) − 𝑦̅)2𝑛𝑡𝑒𝑠𝑡
𝑗=1

 (16) 

𝑦̅ represents the mean of 𝒚𝒕𝒆𝒔𝒕 = 𝑦(𝑫𝒕𝒆𝒔𝒕). The R2 coefficient gets closer to 1 when prediction errors 

decrease. 



9 
 

The 𝑅2 and 𝑄2 indices can be computed in both simple and multi-fidelity frameworks, for the coarse and 

fine levels. For cross-validation in the multi-fidelity context, both observations 𝑦𝑓(𝒙𝒊) and 𝑦𝑐(𝒙𝒊) are 

considered unknown when building  𝑦̂𝑓,−𝑖. 

2.4 Functional outputs  

The meta-models introduced above apply to scalar properties. Let us now assume that the property to 

be estimated also depends on time. In reservoir engineering, this can refer for instance to the evolution 

of pressure or production rate through time at a given well. To build meta-models approximating these 

properties, a first possibility consists in considering the property at each time independently and to apply 

the meta-modeling approaches described above. Such functional outputs can also be approximated with 

less meta-models using a reduced-basis decomposition as proposed in [21,3] and extended to the multi-

fidelity context in [29]. More precisely, let us denote 𝑦𝑓(𝒙, 𝒕) the functional target output on the fine 

level, where 𝒙 ∈ ℝ𝑑 refers to the vector of input parameters and 𝒕 refers to time. We assume known the 

values of the target output for a sample of the parameter space 𝑫𝒇 = {𝒙𝒇
𝟏, … , 𝒙

𝒇

𝒏𝒇
} , 𝒙𝒇

𝒊 ∈ ℝ𝑑 and a set of 

time values {𝒕𝟏, … , 𝒕𝑻}. They are denoted by 𝒚𝒇
𝑫 ∈ ℝ𝑇×𝑛𝑓 with (𝒚𝒇

𝑫)
𝑖𝑗

= 𝑦𝑓(𝒙𝒇
𝒋

, 𝒕𝒊). Then the estimator 

of 𝑦𝑓 at times 𝒕𝒊, 𝑖 ∈ {1 … 𝑇} for a new point 𝒙∗ ∈ ℝ𝒅 is given by: 

 
𝑦̂𝑓(𝒙∗, 𝒕𝒊) = 𝑦̅𝑓(𝒕𝒊) + ∑ 𝛼̂𝑘(𝒙∗)𝜙𝑘(𝒕𝒊)

𝐿

𝑙=1

 (17) 

𝑦̅𝑓(𝒕𝒊) is the average value of 𝑦𝑓(𝑫𝒇, 𝒕𝒊). The basis vectors 𝜙𝑘 are obtained by Proper Orthogonal 

Decomposition (POD) of the data set 𝒚𝒇
𝑫 ∈ ℝ𝑇×𝑛𝑓 [18]. They are sorted by decreasing order of explained 

variance. To limit computation times, only the 𝐿 first vectors of the basis that correspond to a sufficiently 

large percentage of explained variance (e.g. 95%) are retained. Meta-model 𝛼̂𝑘 approximates the 

projection coefficient of 𝑦𝑓 on 𝜙𝑘 – the component 𝛼𝑘 -, using the corresponding projection coefficients 

computed for the training set 𝒚𝒇
𝑫. In this approach, 𝐿 meta-models are thus built independently from 

each other, one per component.   

Let us now assume known 𝒚𝒄
𝑫 ∈ ℝ𝑇×𝑛𝑐, the values of the coarse target output 𝑦𝑐 at times {𝒕𝟏, … , 𝒕𝑻} for 

a sample 𝑫𝒄 of the parameter space, 𝑫𝒇 ⊆ 𝑫𝒄. Then we can estimate 𝑦𝑓(. , 𝒕𝒊), 𝑖 = 1. . . 𝑇, by computing 

multi-fidelity meta-models for each component 𝛼𝑘 , 𝑘 = 1 … 𝐿, using the projection of data sets 𝒚𝒇
𝑫 and 

𝒚𝒄
𝑫 on the basis vectors 𝜙𝑘. 

The approach described here also applies to outputs that vary with the location in the spatial domain 

[21]. In this case, 𝒕 refers to spatial location and the discretization over 𝒕 to grid blocks. 

 

3. Sequential design strategy  
Previous works [15,29] highlight the strong potential of the multi-fidelity approach in reservoir 

engineering. However, these studies do not provide clear guidelines to define an optimal training set and 

avoid simulation time wasting. Here, we propose to develop a sequential strategy to make the building 
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of cokriging based meta-models for the objective function fully automatic. To do so, we first introduce a 

new generic sequential design approach for the kriging and cokriging based estimation of scalar outputs. 

It is presented in section 3.1 for kriging-based meta-models, and extended to the multi-fidelity context in 

section 3.2. The way it is applied to estimate the objective function in the history-matching process is 

discussed later (section 4.1). 

3.1 Single level of resolution 

The sequential method proposed in this work for kriging based meta-models follows two steps: first, 

identify a region of the parameter space where the estimator accuracy is low, and then identify the point 

in this region that maximizes the kriging variance. This approach is derived from the one proposed in 

[11]. More precisely, we introduce as in [11] a partitioning of the parameter space defined by the 

Voronoi polygons around the design of experiments 𝑫. However, it is only used here to narrow the 

search space. In addition, the next point to be simulated is identified among a large sample of the area 

(using here a Sobol’ sequence) rather than with an optimization approach. The objective of these 

changes is twofold: give more weight to the cross-validation error; and reduce the computation times 

through a limited search space and the possibility to estimate the kriging variance at once for the whole 

sample using matrix computations.   

The proposed algorithm is described below for the identification of one point at a time. Its extension to a 
batch version (several points added per iteration) is given in a second step. The Voronoi partitioning 

associated to the sample 𝑫 = {𝒙𝟏, … . , 𝒙𝒏}, 𝒙𝒊 ∈ ℝ𝒅 is denoted by (𝑽𝒊)𝒊=𝟏…𝒏. The target scalar output is 

denoted by 𝒚. 
 
Algorithm 1  

1) Generate an initial sample of the parameter space 𝑫 and compute the corresponding values of 

the target output 𝒚𝑫 = 𝒚(𝑫) ∈ ℝ𝒏  

2) Build a kriging-based estimator 𝒚̂ for the target output using the training set 𝒚𝑫 
3) While the stopping criterion is not fulfilled 

a. Identify the point 𝒙𝑴 in 𝑫 for which the normalized cross-validation squared error 𝜼 
defined in equation (13) is the largest:  

𝒙𝑴 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒙𝒊𝝐𝑫

𝜼(𝒙𝒊) 

b. Generate a large sample 𝑺 of the Voronoi polygon 𝑽𝑴 (using for instance a Sobol’ 
sequence) and compute the kriging variance for the points of this sample 

c. Identify the point 𝒙𝒏𝒆𝒘 in 𝑺 with the largest kriging variance and add it to the design 
𝑫 ← 𝑫 ∪ 𝒙𝒏𝒆𝒘 

d. Perform simulation for 𝒙𝒏𝒆𝒘 and complement the training set 𝒚𝑫: 𝒚𝑫 ← 𝒚𝑫 ∪ 𝒚(𝒙𝒏𝒆𝒘) 
e. Build a kriging-based estimator 𝒚̂ for the target output 𝒚 with the augmented training 

set 𝒚𝑫 
 
In this algorithm, the sampling of the Voronoi polygons is performed in two steps: first, a Sobol’ 

sequence is generated in the parameter space; then the points of the sample that are within the Voronoi 

cell of interest are identified. This is repeated until a large enough number of points in the cell has been 

obtained (e.g. several thousands). The stopping criterion at step 3 can be defined as a target value for 

the predictor accuracy, defined on the cross-validation 𝑄2 coefficient (15) or on the 𝑅2 coefficient 
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computed on a test sample (16). In addition, a maximum size for the design can be considered. It 

corresponds to the maximum number of simulations the user can afford.  

In practice, the user may have the possibility to run several simulations simultaneously, for instance on a 

computer cluster. It appears interesting in this case to add several new points in the design at once and 

run the corresponding simulations simultaneously. To do so, we propose to select the 𝑞 points to be 

added in the 𝑞 Voronoi polygons corresponding to the largest 𝑞 cross-validation errors computed on the 

design of experiments. More precisely, the first point is selected in the Voronoi polygon associated to the 

largest cross-validation error, and so forth until 𝑞 points have been identified. Note that the kriging 

variance is updated each time a new point is selected. As mentioned previously, this can be done 

without running the corresponding simulation for unchanged hyper-parameters. The resulting version of 

Algorithm 1 for this batch configuration is given below.  

Algorithm 1 – batch version  

1) Generate an initial sample of the parameter space 𝑫 = {𝒙𝟏, … . , 𝒙𝒏}, 𝒙𝒊 ∈ ℝ𝒅 and compute the 

corresponding values of the target output 𝒚𝑫 = 𝒚(𝑫) ∈ ℝ𝒏  

2) Build a kriging-based estimator 𝒚̂ for the target output using the training set 𝒚𝑫. Let 𝒔̂𝟐 denotes 
the predictor variance (equation (3)) 

3) While the stopping criterion is not fulfilled 
a. Let 𝑫′ = 𝑫. For 𝒋 = 𝟏 … 𝒒, do 

i. Identify the point 𝒙𝑴 in 𝑫′ for which the normalized cross-validation squared 
error is the largest:  

𝒙𝑴 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒙𝒊𝝐𝑫′ 

𝜼(𝒙𝒊) 

ii. Remove 𝒙𝑴 from 𝑫′ : 𝑫′ ← 𝑫′\{𝒙𝑴} 
iii. Generate a large sample 𝑺 of 𝑽𝑴 and compute the kriging variance for the points 

of this sample applying equation (3) with design 𝑫 and 𝒚̂ hyper-parameters 

iv. Identify the point 𝒙𝒏𝒆𝒘
𝒋

 in 𝑺 with the largest kriging variance and add it to the 

design 𝑫 ← 𝑫 ∪ 𝒙𝒏𝒆𝒘
𝒋

 

b. Perform the simulations for 𝒙𝒏𝒆𝒘
𝟏 ,…,𝒙𝒏𝒆𝒘

𝒒
 and complement the training set 𝒚𝑫: 𝒚𝑫 ←

𝒚𝑫 ∪ {𝒚(𝒙𝒏𝒆𝒘
𝟏 ),…, 𝒚 (𝒙𝒏𝒆𝒘

𝒒
)} 

c. Build a kriging-based estimator  𝒚̂ for the target output with the enlarged training set 𝒚𝑫 
 

3.2 Multi-fidelity context 

To extend the sequential strategy presented above to the multi-fidelity context, two questions need to 

be addressed: which points should be added to the sample at each iteration, and on which level of 

resolution should these points be simulated. The results obtained in previous work [29] tend to show 

that, for a sufficient linear correlation between the coarse and fine values of the property, 

complementing a set of fine-level simulated values with coarse ones induces a rapid increase of the 

prediction accuracy for this property before a stagnation (plateau). Based on this, we propose here to 

add points on the coarse level only in a first step to retrieve as much low-cost information as possible 

before to complement the training set with points simulated on all levels. More precisely, we give 

priority to the accuracy of the coarse level estimator to drive the sequential approach: new points are 

identified first and foremost to get and then maintain a satisfying accuracy for this meta-model, using 
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the sequential approach proposed in section 3.1. The idea behind is that, if the two levels are correlated 

enough, a good accuracy of the coarse level kriging model should improve at low cost the multi-fidelity 

predictor accuracy on the fine level. In the second step of the process, the sequential approach 

described in section 3.1 is considered on the fine level for the identification of new points aiming at 

improving the cokriging based estimator. These points are systematically simulated here on the two 

levels of resolution. However, this may be improved in future work, considering for instance simulation 

time ratios and IMSE reduction as in [11] to choose the proper level of simulation. Finally, the selection 

of any number 𝑞 of points per iteration follows the same principle as in the simple fidelity context, with 

one point selected per Voronoi cell of interest. 

The resulting algorithm is described below. Index 𝒄 refers to the training set on the coarse level and to 
the associated kriging based meta-model of the target output. Index 𝒇 refers to the training set on the 
fine level and to the cokriging based meta-model of the target output. The Voronoi partitioning 

associated to samples 𝑫𝒇 and 𝑫𝒄 are denoted by (𝑽𝒊
𝒇

)𝒊=𝟏…𝒏𝒇
 and (𝑽𝒊

𝒄)𝒊=𝟏…𝒏𝒄
 respectively.  

 
Algorithm 2 – batch version  

1) Generate an initial nested sample of the parameter space  𝑫𝒇 = {𝒙𝒇
𝟏, … , 𝒙

𝒇

𝒏𝒇},  𝑫𝒄 =

{𝒙𝒄
𝟏, … . , 𝒙𝒄

𝒏𝒄}, 𝑫𝒇 ⊆ 𝑫𝒄, and compute the corresponding values of the target output 𝒚𝒇
𝑫 ∈ ℝ𝒏𝒇,  

𝒚𝒄
𝑫 ∈ ℝ𝒏𝒄 

2) Build a cokriging based estimator 𝒚̂𝒇 for the target output on the fine level using the nested 

training set 𝒚𝒇
𝑫, 𝒚𝒄

𝑫. It includes the kriging-based estimator of the target output on the coarse 

level 𝒚̂𝒄.  
3) While the global stopping criterion is not fulfilled 

a. Case 1: The quality criterion on the coarse level is not fulfilled.  
i. Let 𝑫𝒄

′ =  𝑫𝒄. For 𝒋 = 𝟏 … 𝒒, do 

1. Identify the point 𝒙𝒄
𝑴 in 𝑫𝒄

′  for which the normalized cross-validation 
squared error 𝜼𝒄 defined in equation (14) is the largest:  

𝒙𝒄
𝑴 = 𝐚𝐫𝐠𝐦𝐚𝐱

𝒙𝒄
𝒊 𝝐𝑫𝒄

′
𝜼𝒄(𝒙𝒄

𝒊 ) 

2. Remove 𝒙𝒄
𝑴 from 𝑫𝒄

′  : 𝑫𝒄
′ ← 𝑫𝒄

′ \{𝒙𝒄
𝑴} 

3. Generate a large sample 𝑺 of 𝑽𝑴
𝒄  and compute the kriging variance for 

the points of this sample applying equation (11) with design 𝑫𝒄 and 𝒚̂𝒄 
hyper-parameters 

4. Identify the point 𝒙𝒏𝒆𝒘
𝒋

 in 𝑺 with the largest kriging variance and add it 

to the design  𝑫𝒄 ←  𝑫𝒄 ∪ 𝒙𝒏𝒆𝒘
𝒋

 

ii. Perform coarse level simulations for 𝒙𝒏𝒆𝒘
𝟏 ,…,𝒙𝒏𝒆𝒘

𝒒
 and complement the training 

set 𝒚𝒄
𝑫: 𝒚𝒄

𝑫 ← 𝒚𝒄
𝑫 ∪ {𝒚𝒄(𝒙𝒏𝒆𝒘

𝟏 ),…, 𝒚𝒄(𝒙𝒏𝒆𝒘
𝒒

)} 
b. Case 2: The quality criterion on the coarse level is fulfilled. 

i. Let 𝑫𝒇
′ =  𝑫𝒇. For 𝒋 = 𝟏 … 𝒒, do 

1. Identify the point 𝒙𝑴 in 𝑫𝒇
′  for which the normalized cross-validation 

squared error 𝜼𝒇 defined in equation (14) is the largest:  

𝒙𝒇
𝑴 = 𝐚𝐫𝐠𝐦𝐚𝐱

𝒙𝒇
𝒊 𝝐𝑫𝒇

′
𝜼𝒇(𝒙𝒇

𝒊 ) 

2. Remove 𝒙𝒇
𝑴 from 𝑫𝒇

′  : 𝑫𝒇
′ ← 𝑫𝒇

′ \{𝒙𝒇
𝑴} 
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3. Generate a large sample 𝑺 of 𝑽𝑴
𝒇

  and compute the cokriging variance 

for the points of this sample applying equation (13) with designs 𝑫𝒇, 𝑫𝒄 

and 𝒚̂𝒇 hyper-parameters 

4. Identify the point 𝒙𝒏𝒆𝒘
𝒋

 in 𝑺 with the largest cokriging variance and add it 

to the designs associated to both levels: 𝑫𝒇 ←  𝑫𝒇 ∪ 𝒙𝒏𝒆𝒘
𝒋

 and  𝑫𝒄 ←

 𝑫𝒄 ∪ 𝒙𝒏𝒆𝒘
𝒋

 

ii. Perform a coarse and a fine level simulation for 𝒙𝒏𝒆𝒘
𝟏 ,… 𝒙𝒏𝒆𝒘

𝒒
 and complement 

the training sets 𝒚𝒇
𝑫 and 𝒚𝒄

𝑫 : 𝒚𝒇
𝑫 ← 𝒚𝒇

𝑫 ∪ {𝒚𝒇(𝒙𝒏𝒆𝒘
𝟏 ),…,𝒚𝒇(𝒙𝒏𝒆𝒘

𝒒
)} and 𝒚𝒄

𝑫 ←

𝒚𝒄
𝑫 ∪ {𝒚𝒄(𝒙𝒏𝒆𝒘

𝟏 ),…,𝒚𝒄(𝒙𝒏𝒆𝒘
𝒒

)} 
c. Build a cokriging based estimator 𝒚̂𝒇 for the target output on the fine level with the 

augmented nested training set 𝒚𝒇
𝑫, 𝒚𝒄

𝑫 

 
The sampling of the Voronoi polygons is performed as previously in two steps: first, a Sobol’ sequence is 

generated in the parameter space; then the points of this sample that are within the Voronoi cell of 

interest are identified. 

Note that a different number of points 𝑞 could be identified in cases 1 and 2. 

Global stopping criterion for the process 

The global stopping criterion aims at identifying the optimal iteration at which ending the sequential 

process, in terms of both fine level prediction accuracy and total simulation time. Several aspects can be 

embedded in this criterion, such as a target value for the 𝑅2 coefficient computed on the cokriging 

estimator (equation (16)) or a maximum simulation budget.  

Quality criterion on the coarse level 

The quality criterion on the coarse level aims at identifying a good tradeoff between the coarse level 

meta-model accuracy and the simulation time. It should thus identify robustly either a satisfying 

accuracy of the predictions, or a potential stagnation of this accuracy despite the addition of new 

simulations. To achieve this, we introduce a moving average for the cross-validation index 𝑄2𝑐 through 

iterations defined by: 

𝛾(𝑘) =
1

𝑝
∑ 𝑄2𝑐(𝑖)

𝑘

𝑖=𝑘−𝑝+1

−
1

𝑝
∑ 𝑄2𝑐

𝑘−𝑝

𝑖=𝑘−2𝑝+1

(𝑖) 

𝑘 represents the current iteration index, 𝑄2𝑐(𝑖) the cross-validation coefficient at iteration 𝑖 (equation 

(15)) and 𝑝 the size of the moving window. For instance, 𝑝 can be taken equal to half the number of 

coarse level simulations equivalent in time to a fine level simulation. The idea is to evaluate the gain in 

accuracy within a total simulation time equal to a fine level one. The quality criterion at iteration 𝑘 is 

then defined by:  

(𝑄2𝑐(𝑘) ≥ 0.95 and 𝛾(𝑘) < 0.005) or (𝑄2𝑐(𝑘) < 0.95 and 0 < 𝛾(𝑘) < 0.005) 

In other words, we keep on adding points on the coarse level as long as the accuracy improves 

sufficiently (𝛾(𝑘) ≥ 0.005), or if it shows a degradation combined to an unsatisfying cross-validation 
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index (𝛾(𝑘) < 0 and 𝑄2𝑐(𝑘) < 0.95). In addition, for robustness purposes, we require that this quality 

criterion is met a certain number of times more than its complementary to stop the process.  

 

4. Application to reservoir engineering 
Let us now assess the potential of the proposed sequential design strategies in the context of history-

matching for the prediction of the error between production and simulated data (objective function). 

The formulation used to quantify this error and the conducted experiments are specified in section 4.1. 

The two synthetic cases considered for validation are described in section 4.2, and the results presented 

and analyzed in section 4.3. 

4.1 Experiments 

For the reservoir under consideration, we assume available an ensemble of production data at wells over 

a period of time. They can be for instance gas-oil ratio, pressure, or fluid rate measurements. The 

calibration or history-matching process then consists in identifying numerical models of the considered 

reservoir that reproduce these data. In practice, this is achieved by adjusting the value of some model 

input parameters within realistic uncertainty ranges. These parameters characterize for instance the 

petrophysical property distributions, fluids, wells … Optimization algorithms can also be considered to 

automatically drive the perturbation of these parameters in order to minimize the objective function 

(OF) that quantifies the error between the production data and the corresponding simulated values. This 

function is usually defined using a weighted least-square formulation as  

 

𝑂𝐹(𝒙) =
1

2
∑ 𝜔𝑝 ∑ (

𝑦𝑝(𝒙, 𝑡𝑘) − 𝑦𝑝
𝑟𝑒𝑓

(𝑡𝑘)

𝜎𝑝(𝑡𝑘)
)

2𝑇(𝑝)

𝑘=1

𝑃

𝑝=1

=  
1

2
∑ 𝜔𝑝𝑂𝐹𝑝(𝒙)

𝑃

𝑝=1

 

            

(18) 

The production data to be reproduced are denoted by 𝑦𝑝
𝑟𝑒𝑓

(𝑡) where 𝑡 represents time. Index 𝑝 refers to 

the 𝑃 available data series, each series corresponding to the set of 𝑇(𝑝) available measurements 

through time of a given dynamic property at a given well (gas-oil ratio, water cut, bottomhole 

pressure…). 𝜎𝑝(𝑡) represents the measurement uncertainty for data series 𝑝 at time 𝑡. The vector of the 

𝑑 uncertain input parameters to be adjusted is denoted by 𝒙 ∈ ℝ𝒅. For a given reservoir model 

characterized by 𝒙, the value computed by the fluid flow simulator for data series 𝑝 at time 𝑡 is denoted 

𝑦𝑝(𝒙, 𝑡). Finally, weights 𝜔𝑝 are constant through time for each data series. They aim at balancing the 

contribution of the data in the objective function.  

Meta-modeling of the objective function  

The objective of the study is to efficiently build predictors for the objective function (18) that are 

accurate for any value of the uncertain parameters within their uncertainty range. These predictors can 

then be considered instead of the simulator to quantify the impact of the uncertain input parameters on 

the objective function and identify the most influential ones. Discarding the other parameters in the 

calibration process can then simplify the problem and make it easier to solve.  
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We assume known the values simulated for each production data 𝑦𝑝 on a given sample 𝑫 of the 

parameter space and the set of acquisition times {𝑡1, … , 𝑡𝑇(𝑝)}. We can derive the values 𝑂𝐹𝑫 = 𝑂𝐹(𝑫) 

of the objective function for this sample using equation (18). Then, the kriging based meta-modeling 

technique described in section 2.1 can be considered to build predictors 𝑂𝐹̂ for the objective function 

based on the training set 𝑂𝐹𝑫. In this case, the target output 𝑦 corresponds to the objective function 

and parameters 𝒙 to the uncertain reservoir characteristics to be adjusted in the calibration process. This 

way of building estimations for the objective function based on sample 𝑂𝐹𝑫 will be referred to as the 

direct approach in what follows. Its extension to the multi-fidelity context is straightforward as soon as 

additional simulations of properties 𝑦𝑝 are available on a coarser level of resolution for a sample 𝑫𝒄 ⊃

𝑫. However, results presented in [29] in a non-sequential setting show that cokriging based metamodels 

of the objective function computed following this direct approach can be disappointing: they do not 

necessarily provide accurate predictions within less simulation time than kriging based metamodels. As 

detailed in [29], these results are probably due to the fact that the values of the objective function on 

the two levels of resolution are poorly correlated for the considered case study. To overcome this 

limitation, a less straightforward meta-modeling strategy was thus introduced in [29]. It consists of two 

steps: 

1. Using the approach detailed in section 2.4 for functional outputs (equation (17)), compute meta-

models 𝑦̂𝑝(𝒙, . ) that approximate at times {𝑡1, … , 𝑡𝑇(𝑝)} each time-dependent simulated 

production output 𝑦𝑝(𝒙, . ) considered in the objective function definition (18). These meta-

models can be built using kriging or cokriging depending on the available information. 

2. Use the resulting meta-models 𝑦̂𝑝(𝒙, . ) to predict the objective function value as 

𝑂𝐹̂(𝒙∗) =
1

2
∑ 𝜔𝑝 ∑ (

𝑦̂𝑝(𝒙∗,𝑡𝑘)−𝑦𝑝
𝑟𝑒𝑓

(𝑡𝑘)

𝜎𝑝(𝑡𝑘)
)

2
𝑇(𝑝)
𝑘=1

𝑃
𝑝=1   

with 𝑦̂𝑝(𝒙∗, 𝑡𝑘) = 𝑦̅𝑝(𝑡𝑘) + ∑ 𝛼̂𝑝𝑙(𝒙∗)𝜙𝑝𝑙(𝑡𝑘)
𝐿(𝑝)
𝑙=1  and 𝒙∗ ∈ ℝ𝑑 

(19) 

This strategy led to better performances in [29] for both kriging and cokriging and will be referred to as 

“vectorial” hereafter. Note that the quality of the objective function estimations is assessed similarly in 

the direct and vectorial approaches using the error between 𝑂𝐹̂(𝒙) and the corresponding true value.   

Let us now discuss the application of the proposed sequential approaches for the meta-modeling of the 

objective function (18) in the direct and vectorial cases. Algorithms 1 and 2 proposed in section 3 can be 

directly applied to generate a sequential sampling aiming at improving the objective function predictors 

computed with the direct approach. However, the random variable representing this function in the 

vectorial approach (19) is not necessarily a Gaussian process. As a first approximation, we propose 

nevertheless to apply algorithms 1 and 2 to its variance to complement the training set. Several 

hypotheses are made to estimate this variance. First, we assume that the processes representing 𝛼𝑝𝑙(𝒙) 

are independent for 𝑙 ∈ {1, … , 𝐿(𝑝)}. The variance of the predictor for the objective function term 

𝑂𝐹𝑝(𝒙) related to data series 𝑦𝑝
𝑟𝑒𝑓

 is then equal to: 
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𝑉𝑎𝑟𝑝(𝒙) = 2 ∑ ∑
∑ 𝜙𝑝𝑙(𝑡𝑖)𝜙𝑝𝑙(𝑡𝑗)𝑠̂𝑝𝑙

2 (𝒙)𝑙=1…𝐿(𝑝)

𝜎𝑝
2(𝑡𝑖)𝜎𝑝

2(𝑡𝑗)
(∑ 𝜙𝑝𝑙(𝑡𝑖)𝜙𝑝𝑙(𝑡𝑗)𝑠̂𝑝𝑙

2 (𝒙)

𝐿(𝑝)

𝑙=1

+ 2𝜇𝑝(𝒙, 𝑡𝑖)𝜇𝑝(𝒙, 𝑡𝑗))

𝑇(𝑝)

𝑗=1

𝑇(𝑝)

𝑖=1

 

(20) 

where 𝜇𝑝(𝒙, 𝑡) = 𝑦̅𝑝(𝑡) + ∑ 𝛼̂𝑝𝑙(𝒙)𝜙𝑝𝑙(𝑡)
𝐿(𝑝)
𝑙=1 − 𝑦𝑝

𝑟𝑒𝑓
(𝑡). Then, we make the additional assumption that 

the random variables representing 𝑂𝐹𝑝(𝒙) are independent for all 𝑝. This may however not be the case 

in practice. It results in the following estimation for the variance associated to the random variable 

representing the objective function: 

𝑉𝑎𝑟(𝒙) =  
1

4
∑ 𝜔𝑝

2𝑉𝑎𝑟𝑝(𝒙)

𝑝

 (21) 

with 𝑉𝑎𝑟𝑝(𝒙) defined by (20). These equations still hold with the cokriging based meta-model for the 

fine level. 

Experiment settings 

For the validation experiments, the proposed sequential strategies are initiated from a small sample of 

the parameter space generated using Latin Hypercube Sampling (LHS) [27]. This technique is chosen here 

as it makes it possible to control the size of the sample. In addition, it is designed to provide a good 

coverage of the parameter space for the chosen size of the sample, with points homogeneously 

distributed in the range of variation of each parameter. Fine and coarse level simulations are then 

performed for all the models of the initial sample and used as a starting point for the kriging and 

cokriging based sequential strategies. Here, sequential processes are performed considering one and 

three points added per iteration for both the vectorial and direct modeling of the objective function. 

These four experiments are repeated from other initial samples of the same size to obtain more robust 

results. Finally, the sequential processes are stopped after a given number of simulations as the study 

aims to compare the efficiency of the different approaches.  

The sequential experiments are also complemented with non-sequential ones that serve as a basis for 

comparison. More precisely, samples of various sizes are generated using the LHS approach and used to 

build kriging based meta-models of the objective function. In addition, the fine level LHS samples 𝑫𝒇 

used to initiate the multi-fidelity sequential processes are combined to larger independent LHS 𝑫𝒄 to 

obtain nested samples. To do so, we proceed as proposed in [13]: for each 𝒙𝒇
𝒊 ∈ 𝑫𝒇, the point of 𝑫𝒄 the 

closest to 𝒙𝒇
𝒊  (in the sense of the Euclidian distance) is removed from 𝑫𝒄 and replaced by 𝒙𝒇

𝒊 . The 

resulting nested samples are used to build cokriging based meta-models. Again, several nested designs 

of the same size are generated. 

4.2 Test cases 

The experiments described above are conducted on two synthetic cases derived from the Punq-S3 [6] 

and Brugge [23] benchmarks.  
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In both cases, the lower level of resolution corresponds to a coarser discretization of the reservoir grid 

(less grid blocks). Geostatistical methods are used to populate the fine level geological model with 

porosity and horizontal permeability. The FFT-MA method [16] with conditioning at wells is applied for 

porosity. Horizontal permeability follows a lognormal distribution. Its values are assigned to the reservoir 

grid by cosimulation with porosity using the SGS method [9]. The values associated to the coarse model 

are then derived from the resulting fine-level distributions using upscaling techniques: arithmetic 

averaging for porosity and a method combining arithmetic and harmonic averaging for permeability [2]. 

The vertical permeability is taken equal to 10% of the horizontal one. 

The Punq case reservoir consists of a simple dome structure and is produced by depletion from six wells 

with an aquifer support. The model deals with 3-phase flow simulations and is characterized by outputs 

at wells with irregular behaviors, due in particular to gas production and threshold constraints on 

pressure at wells. The Brugge case study includes only two phases but presents additional complexity 

compared to the Punq case and aims at consolidating the results. The reservoir includes an internal fault 

and is discretized into more grid blocks, leading to larger simulation times (40mn on average for Brugge 

and only 3mn for Punq on the finest levels of resolution). It is produced by water injection and contains 

30 wells. This induces more data series to consider in the calibration process, and thus more meta-

models to compute for the vectorial based estimation of the objective function. The number of 

parameters is also larger, and some of them affect the petrophysical property distributions. Finally, the 

production data are the ones provided during the benchmark and were not generated with one model of 

the chosen uncertainty space contrary to the Punq based case. More details are given below. 

Punq case 

The first test case is the one already used in [29] to assess the potential of the multi-fidelity approach. It 

is derived from the Punq-S3 case, defined for benchmark purposes within the framework of the PUNQ 

European project [6].  

The Punq case represents a dome-shaped reservoir with an horizontal extension of about 3.4 km X 5 km, 

bounded by a sealing fault to the east and south and by an aquifer otherwise (Figure 1). Its upper part is 

initially filled with gas. It is produced by depletion from 6 producers located around the gas/oil contact 

(Figure 1). The production scheme is defined over 16 years with a first year of well testing followed by 3 

years of shut-in before production starts for a period of 12 years. During this 12-year production period, 

wells are closed two weeks every year for well testing. Otherwise, production is driven by oil flow rate 

targets at wells, with a minimum accepted bottomhole pressure of 120 bars.  
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Figure 1 – Punq case: top reservoir depth and well location  

The structure of the reservoir is discretized into 5 layers of about 5m thick. Two horizontal discretizations 

of these layers are then considered, which characterize the fine and coarse levels of resolution for the 

multi-fidelity context: 

- The coarse model is defined on the same grid as the Punq-S3 model. It is composed of 19 X 28 X 

5 grid blocks, among which 1761 are active (see Figure 1) 

- The discretization grid used for the fine model is obtained by splitting horizontally each grid 

block of the coarse model into 3 X 3 grid blocks of equal size. This results in 57 X 84 grid blocks in 

each of the five layers. 15849 in total are active.    

Geostatistical simulation methods are used in each layer independently to populate the fine model with 

petrophysical properties as detailed above. A 3-phase flow simulation is then performed on the resulting 

fine geological model, considered in what follows as the “true” one. This provides production data at the 

6 wells used for calibration, namely gas-oil ratio, water cut and bottomhole pressure.  

We now assume that this reference model is known, except for the 7 characteristics given in Table 1, 

related to horizontal permeability multipliers (constant per layer), aquifer properties and Kr-Pc curves. 

The calibration problem then consists in perturbing these 7 parameters in order to identify models 

reproducing the reference data. As a result, our objective here is to build meta-models that approximate 

the objective function (18) as a function of 𝒙 ∈ ℝ𝟕 within the uncertainty ranges defined in Table 1. This 

objective function is computed for the P=18 production data series (gas-oil ratio, water cut and 
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bottomhole pressure at the 6 producers) with values available at T=241 times. The uncertainty on the 

measurements is taken equal to 𝜎𝑝(𝑡) = max (0.1 × 𝑦𝑝
𝑟𝑒𝑓

(𝑡),0.005). The weights 𝜔𝑝 are taken equal at 

all wells for a given dynamic property and chosen to balance the average contribution of each property. 

They are thus different for water cut, gas oil ratio and bottomhole pressure. For the meta-modeling of 

the data series in the vectorial approach, the number 𝐿 of basis vectors retained in the POD is fixed to 3 

for all properties and training sets. Finally, as the perturbation of the considered 7 parameters does not 

imply an update of the petrophysical property distributions, the difference in simulation time between 

the two levels is only related to the fluid flow computations. The equivalent total simulation time for a 

nested design of size (𝑛𝑓 , 𝑛𝑐) is here taken equal to 𝑛𝑒𝑞 = 𝑛𝑓 + 0.054𝑛𝑐. This formula uses an average 

simulation time ratio between the levels estimated from a set of models. 

Name Reference value Min. Max. Unit Description 

SWIR 0.2 0.2 0.3 - Critical water saturation 

SORW 0.2 0.15 0.25 - Critical oil-water saturation 

SORG 0.1 0.1 0.2 - Critical oil-gas saturation 

MPH3 1 0.8 1.2 - Horizontal permeability multiplier for layer 3 

MPH4 1 0.8 1.2 - Horizontal permeability multiplier for layer 4 

MPH5 1 0.8 1.2 - Horizontal permeability multiplier for layer 5 

AQ1K 137.5 100 200 mD Permeability of aquifer 1 

Table 1 - Uncertain parameters for the Punq case 

Brugge case 

The second test case considered in this study is derived from the Brugge synthetic case, defined by TNO 

for benchmark purposes [23,24]. Based on North Sea Brent-type reservoir characteristics, this field has 

an elongated half dome structure with an internal fault as shown in Figure 2. Its horizontal dimensions 

are about 10 X 3 km2. The reservoir spans vertically over 4 geological formations, namely Schelde, Maas, 

Waal and Schie. High-permeable layers thus alternate with low-permeable ones. 

The field is operated during 10 years from 20 producing wells located in the upper part of the reservoir, 

denoted by P-j, j=1...20, and from 10 water injection wells surrounding the producers and located near 

the oil/water contact. Injectors are denoted by I-j, j=1…10. The field is initially produced by depletion: an 

additional producer is opened every month, with a target production rate of 2000 bbl/day and a 

minimum bottomhole pressure of 725 psi. Water injection starts once the producers are all opened, 

after 20 months of production: an additional injector is then opened every month, with a target injection 

rate of 4000 bbl/day and a minimum accepted bottomhole pressure of 2611 psi. 
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Figure 2 – Brugge case: top reservoir depth and well location  

The structure of the reservoir is discretized vertically into 9 layers. Two horizontal discretizations of these 

layers are considered to characterize the fine and coarse levels of resolution for the multi-fidelity 

context: 

- The coarse model is defined on the same grid as the initial Brugge model. It is composed of 139 X 

48 X 9 grid blocks, among which 44550 are active (see Figure 2) 

- The discretization grid used for the fine model is obtained by splitting each coarse grid block into 

2 X 2 grid blocks of equal size. This results in 278 X 96 grid blocks in each of the nine layers. 

534600 in total are active. 

As described above, geostatistical simulation methods are used to populate the fine model with 

petrophysical properties, each formation being considered independently from the others. The statistical 

properties are estimated from one of the benchmark realizations, and the realizations are conditioned at 

wells based on the benchmark well log data. For each level, rock types are attributed to grid blocks 

following thresholds on porosity values.  

The reference production data considered for history-matching are the ones provided by TNO to the 

benchmark participants, considering 8 years of production. They consist of 70 data series: oil and water 

flow rates at the 20 producers and bottomhole pressure at all wells. The calibration problem considered 

here then consists in adjusting the 19 input parameters described in Table 2. They are related to the 

definition of reservoir properties (capillary pressure, relative permeability) and petrophysical properties 

(permeability multipliers, mean porosity). Perturbing these last characteristics makes it necessary to re-

compute the petrophysical property distribution on the fine level whatever level of resolution 

considered for the flow simulation. The duration of a coarse level simulation is thus larger if the 
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equivalent fine level model has not already been simulated: it takes here on average 0.068 times a fine 

level simulation in this case, and 0.03 times a fine level simulation otherwise.  

Table 2 – Uncertain parameters for the Brugge case 

Name Min. Max. Unit Description 

CRO 4.5 5.5 - Corey exponent for oil 

CRW 2.5 3.5 - Corey exponent for water 

KROW 0.3 0.5 - Oil relative permeability endpoint 

KRWM 0.5 0.7 - Water relative permeability endpoint 

SORW 0.1 0.2 - Oil residual saturation 

SWI -0.05 +0.05 - Increment on the irreducible water saturation  

PCWM 1.6 2 psi Maximum capillarity pressure 

POR1 0.16 0.18 - Mean porosity in Schelde on the fine level 

POR2 0.14 0.16 - Mean porosity in Maas on the fine level 

POR3 0.22 0.24 - Mean porosity in Waal on the fine level 

POR4 0.13 0.15 - Mean porosity in Schie on the fine level 

MKHi* 0.8 1.2 - Horizontal permeability multiplier per reservoir zone  

MKVi* 0.5 2 - Vertical permeability multiplier per reservoir zone  

MKHi/MKVi: i from 1 to 4 refers to Schelde, Maas, Waal and Schie. 
 

The proposed sequential strategies are considered to predict the objective function defined using (18) 

for the P=70 available data series given at T=102 times, considering the parameter space defined in Table 

2. The uncertainty on the measurements (𝜎𝑝(𝑡)) is taken equal to 10% of the data, with a lower limit to 

50. The series weights are taken equal at all wells for a given dynamic property and chosen to balance 

the average contribution of bottomhole pressure with that of all flow rates. They are thus different for 

pressure and flow rates. For the meta-modeling of the data series in the vectorial approach, fixed 

numbers of basis vectors are considered for each series and chosen to obtain a good tradeoff between 

reasonable computation times and sufficient explained variance. They are given in Table 3. 

 P-1 P-6 P-9 P-11  P-13 Other wells 

Bottomhole pressure 2 2 5 3 3 2 

Water flow rate 5 5 5 2 2 2 

Oil flow rate 5 5 5 2 2 2 

Table 3 – Brugge case: size of the reduced basis per well and data series. P-i denotes producer i. 

4.3 Results 

The sequential processes described in section 4.1 were performed from 10 initial samples of size 8 for 

the Punq case and from 5 initial samples of size 20 for the Brugge case. Similarly, for each non sequential 

configuration, 10 different samples were generated for the Punq case, and 5 for the Brugge case. 

The results for the Punq case are summarized in Figure 3 for the direct estimation of the objective 

function and in Figure 4 for the vectorial approach. The ones obtained for the Brugge case are presented 

in Figure 5 and Figure 6. All these graphs show the evolution of the 𝑅2 coefficient on the OF estimations 
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averaged over the set of similar experiments as a function of the total simulation time expressed in 

terms of equivalent number of fine level simulations. The 𝑅2 coefficient is computed following equation 

(16) on an independent sample of size 200 for the Punq case and 101 for the Brugge case.  

In all these figures, the black curves correspond to kriging-based meta-modeling and the red curves to 

cokriging based approaches. The results obtained with (nested) LHS of increasing size are given in dashed 

lines. The other curves correspond to the sequential processes, complementing the initial designs with 

one (plain lines) and three (lines with circles) points per iteration. The results obtained in the batch case 

(three points per iteration) are presented in two different ways: for the curves with filled circles, we 

assume that, within each iteration, the three simulations on a given level are simulated simultaneously,  

while for the curves with empty circles, we assume that these simulations are run sequentially. These 

second curves aim at highlighting the impact of updating or not hyper-parameters between the 

identification of two successive points. The simulations of the (nested) initial LHS models are assumed to 

be performed sequentially. In the multi-fidelity experiments, the iterations during which fine level 

simulations are performed depend on the initial sample, so that interpolated curves are considered to 

estimate the averaged 𝑅2.  

The results obtained for the Punq case (Figure 3 and Figure 4) highlight the potential of the proposed 

sequential approach for kriging-based meta-models. Indeed, it provides an accuracy equivalent to the 

one obtained with LHS samples of the same size for the direct approach, and a better accuracy for the 

vectorial approach. In addition, no degradation can be observed in the batch case, even if the meta-

model hyper-parameters are not updated within each iteration (only the kriging variance is). The 

proposed sequential approach thus provides very satisfying results in terms of simulation time and 

accuracy if the simulations can be performed simultaneously within each iteration.  

As already pointed out in [29], the results obtained with the direct approach in the multi-fidelity context 

are quite disappointing: the technique clearly fails to provide accurate predictions within less simulation 

time than kriging. This is probably due to the fact that, as highlighted in Figure 7(a), the values of the 

objective function on the two levels of resolution are poorly correlated. This is due in particular to a shift 

between some coarse and fine level simulated production series. The interested reader can refer to [29] 

for a more thorough analysis. The sequential multi-level approach leads to results similar to the kriging-

based sequential one. The results obtained in the vectorial case are however much more encouraging. 

Indeed, in the case of one point added per iteration, the 𝑅2 increase is faster in the multi-fidelity case 

than in the simple one and reaches the same plateau. In addition, only a limited degradation can be 

observed in the batch case if running the simulations sequentially. However, running these simulations 

simultaneously at each iteration strongly improves the results in both the simple and multi-fidelity 

processes and makes them become equivalent: the 𝑅2 increase is almost vertical with values getting 

very close to one and there is not much room for improvement at this point. The advantage of the multi-

fidelity workflow compared to the simple fidelity one thus strongly depends on the computation 

capacity, in particular on the possibility to run several simulations simultaneously. In other words, the 

multi-fidelity approach appears more appropriate with lower computation capacity. 
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The results obtained for the Brugge case lead to similar conclusions (Figure 5 and Figure 6). For this case 

study, the vectorial approach outperforms the direct one for both kriging and cokriging. However, the 

gain appears less important than for the Punq case in the multi-fidelity context as the direct approach 

already performs quite well. This is probably due to the almost linear correlation that can be observed 

between the objective function values computed on the fine and coarse levels, as shown in Figure 7(b). 

Again, the kriging-based sequential approach provides better results than fixed LHS sample. Identifying a 

set of new points at each iteration does not seem to degrade the results. As a consequence, the batch 

sequential algorithm for kriging-based meta-modeling provides very satisfying results and makes it 

possible to define on the fly a good training set. The sequential multi-level strategy outperforms fixed 

nested LHS in terms of prediction accuracy in the vectorial case and provides equivalent results in the 

direct case. No degradation can be observed in the batch case. The sequential approach with 3 points 

added per iteration then provides the best results in terms of simulation time and accuracy. They do not 

leave much room for improvement, in particular in the vectorial case. However, the simple fidelity 

sequential approach may in the end reach the same performance if increasing the number of points 

added simultaneously at each iteration.  

 

 

Figure 3 – Punq case : average R2 coefficient obtained with kriging-based (black) and cokriging-based 

(red) direct estimations of the objective function using fixed LHS (dotted line) and sequential design 

considering the identification of 1 point (plain line) or 3 points (lines with circles) per iteration. For the 

lines with filled (resp. empty) circles, we assume that, at each iteration, the 3 simulations on a given level 

are performed simultaneously (resp. sequentially). 
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Figure 4 – Punq case : average R2 coefficient with kriging-based (black) and cokriging-based (red) 

vectorial estimations of the objective function using fixed LHS (dotted lines) and sequential design 

considering the identification of 1 point (plain lines) or 3 points (lines with circles) per iteration. For the 

lines with filled (resp. empty) circles, we assume that, at each iteration, the 3 simulations on a given level 

are performed simultaneously (resp. sequentially). 

 

 

Figure 5 - Brugge case : average R2 coefficient with kriging-based (black) and cokriging-based (red) 

vectorial estimations of the objective function using fixed LHS (dotted lines) and sequential design 

considering the identification of 1 point (plain lines) or 3 points (lines with circles) per iteration. For the 

lines with filled (resp. empty) circles, we assume that, at each iteration, the 3 simulations on a given level 

are performed simultaneously (resp. sequentially). 
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Figure 6 - Brugge case: average R2 coefficient with kriging-based (black) and cokriging-based (red) 

vectorial estimations of the objective function using fixed LHS (dotted lines) and sequential design 

considering the identification of 1 point (plain lines) or 3 points (lines with circles) per iteration. For the 

lines with filled (resp. empty) circles, we assume that, at each iteration, the 3 simulations on a given level 

are performed simultaneously (resp. sequentially). 

 

Figure 7 - Coarse versus fine objective function values obtained for the test sample for the Punq (a) and 

Brugge (b) test cases 

 

5. Conclusions and perspectives 
In this paper, we developed an automated sequential workflow dedicated to the building of kriging and 

cokriging based response surfaces for scalar outputs. The proposed approach provides very satisfying 

results for the estimation of the objective function in the context of history-matching. It makes it 

possible to identify on the fly a training set leading to accurate estimations of the objective function at 

least as efficiently in terms of simulation time as fixed LHS. In addition, considering coarse level 

simulations in the training set can improve the results obtained on a single level for an equivalent 
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computational power (i.e. for the same number of simulations performed simultaneously). However, for 

a sufficiently important computation power, the gain in using the multi-fidelity approach is limited. 

These conclusions are based on the comparison of the prediction accuracy as a function of the direct 

simulation times. In practice, machine learning related computations (POD, building of the response 

surfaces, identification of the new points to be simulated) may also take a non-negligible time compared 

to direct simulations. This time increases with the number of meta-models to be built, the number of 

points in the training set. The sampling of the Voronoi cells may also be expensive. However, the 

proposed workflow is intended to reservoir models with long simulation times. In addition, as can be 

seen in Figure 4 and Figure 6, the multi-fidelity approach makes it possible to reach very good 

predictions in only a few iterations, thus limiting both simulation and computation times.    

Different leads could nevertheless be considered to decrease the computation time required at each 

iteration of the sampling strategy. For instance, we could envision to not update the POD or the 

response surfaces at each new iteration, for example for the data series with low contributions in the 

objective function or if the main basis vectors do not change a lot. We may also consider parallelizing the 

computations or building the meta-models simultaneously on several processors. In addition, it could be 

interesting to reduce the computation time required to sample Voronoi cells. 

Finally, the results obtained on the synthetic case studies considered here should be reinforced with 

application on more complex cases. In future work, it would also be interesting to refine the multi-scale 

sequential approach and not systematically perform the additional simulations on the two levels of 

resolution. This should be of interest for cases with lower correlations between the levels. 
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