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Abstract
Global temperature is projected to increase, which impacts the ecological process in northern mid-
and high-latitude ecosystems, but the winter temperature change in ecosystems is among the least
understood. Rice paddy represents a significant contributor to global anthropogenic CH4

emissions and has a strong climate forcing feedback; however, the legacy effects of warming winter
on CH4 emissions in the subsequent growing season remain uncertain. Here, we conducted field
and incubation experiments to determine the effects of winter soil temperature changes on CH4

emissions in the subsequent growing season. First, in the 3 year field experiment, we continuously
measured CH4 emissions from the rice cropping system. The winter soil temperature and its
variation showed significant differences over the 3 years. In the warming-winter year, the rice
paddy accumulated less NH4

+–N and more dissolved organic carbon (DOC) in the soil during
winter, resulting in high CH4 emissions. Second, we incubated the paddy soils without flooding at
three temperatures (5 ◦C, 15 ◦C, and 25 ◦C) for 4 weeks to simulate warming winter, and
subsequently incubated at same temperature (25 ◦C) under submerged conditions for 4 weeks to
simulate growing season. The result was consistent with field experiment, increased soil
temperature significantly increased soil DOC content and decreased NH4

+–N content in ‘winter
season’. The CH4 emissions in the subsequent ‘growing season’ increased by 190% and 468% when
previous incubation temperature increased 10 ◦C and 20 ◦C. We showed strong and clear links
between warming winter and CH4 emissions in the subsequent growing season for the first time,
suggesting that CH4 related processes respond not only to warming during the growing season but
also in the previous winter. Our findings indicate that nonuniform global warming causes a
disproportionate increase in climate forcing feedback to emit more CH4.

1. Introduction

Soil C content is intimately tied to global warming.
This can be seen in the effects of temperature on
processes like carbon storage and respiration (Beier

et al 2008, Xue et al 2011). Changing temperature
has significant effects on almost all ecosystems’ func-
tions and processes. Additionally, changing temperat-
ure can cause a positive feedback that increases tem-
peratures further (Cox et al 2000, Friedlingstei 2015).
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Because of these close ties between temperature and
soil C content, it is important to understand how
these factors will interact in the future.

Warming regulates the decomposition of organic
matter by changing the functional community of
microorganisms (Bowden et al 1998, Jones and
Mulholland 1998, Cheng et al 2017), making the
retention of soil organic matter face more chal-
lenges of climate change. Warming will accelerate
the decomposition of soil organic matter (SOM), the
explanation of its mechanism focuses on the avail-
ability and accessibility of organic matter, and the
metabolic characteristics of microorganisms (David-
son and Janssens 2006, Bradford 2013, Yan et al 2017,
Alvarez et al 2018, Qin et al 2019). For example, in
wetland system, the warming induce a much stronger
C emission trend, and break the ‘latch’ of organic
matter decomposition (Fellman et al 2017, Mau et al
2017). In addition, temperature regulates the end
product of organic matter decomposition as well as
anaerobic conditions, substrate availability, and qual-
ity. In wetlands, CH4 is the main end-product and
is highly related to temperature. Warming affects
CH4 emissions from most ecosystems by altering
the soil microbial community, substrate availabil-
ity, plant growth, and consequently, CH4 production
and oxidation (Elberling et al 2008, Chowdhury and
Dick 2013, Treat et al 2015). Rice paddy is a spe-
cial wetland system that accounts for 9%–19% of the
global anthropogenic CH4 emissions (Li et al 2009).
In paddy soils, the methane formation often starts
from 15 ◦C to 20 ◦C (Nozhevnikova et al 2010), and
reaches a maximum at 37 ◦C (Yang and Chang 1998).
Furthermore, many previous studies shown greater
CH4 emissions from rice paddies under elevated tem-
peratures, with increase value ranged 10.9%–60.0%
(Cheng 2008, Tokida et al 2010). Generally, elevated
temperatures increase CH4 emissions from rice pad-
dies, indicating positive feedback (Allen et al 2003,
Tokida et al 2010).

Most research on climate warming has concen-
trated on the response of ecosystem processes to
temperature fluctuations during the growing season.
However, for the past 100 years, the winter season
has been more sensitive to the increase in annual
average temperature than in other seasons (Easterling
et al 1997, Balling et al 1998). The winter and spring
warming occurred at a rate of exceed 0.30 ◦C per dec-
ade, which was faster than in summer or autumn at
mid and high latitudes (Xia and Wan 2008). Warm-
ing winters change the frequency of soil freezing and
modify microbial activity and plant growth, all of
which alter the soil conditions both in winter (Brooks
and Schmidt 1996, Blankinship and Hart 2012).
There has been little recognition of the importance of
legacy effects of winter climate change. However, in
fact, the varied changes in ecosystem processes dur-
ing the growing season not only respond to changes
in temperature and precipitation in the quarter, but

also to the legacy effects from winter (Campbell et al
2005, Groffman et al 2011). Strong and consistent
links exist between winter climate conditions and
microbial activity (Xia andWan 2008), nitrogenmin-
eralization (Durán et al 2015), and nutrient availabil-
ity (Hobbie and Chapin 1996) in the following grow-
ing season. The legacy effect of winter warming can
have many unexpected consequences; however, these
have not been thoroughly tested.

Here, we evaluated the legacy effect of winter
warming on CH4 emissions from the subsequent
rice-growing season and the mechanisms involved.
We hypothesized that (a) higher soil temperature in
winter would increase soil organic matter mineral-
ization and change the stock of soil C and N; and
(b) warming winter would accelerate the cycling of
C and N in the following growing season, which in
turn would enhance CH4 emissions from rice pad-
dies in the growing season. The key to accurately
estimating the legacy effect from winter warming is
to assess the changes in GHG emissions during the
growing season. In order to achieve our goals, we
used two different approaches: a field experiment to
explore the relationship between winter soil temper-
ature and CH4 emissions during the growing season
by continuous interannualmonitoring, and an incub-
ation experiment to set different temperature regimes
for paddy soil without flooded to simulate warming
winter and submerged under same temperature to
simulate growing season, comparing CH4 emissions
and C and N dynamics under very different ‘winter
temperature’.

2. Materials andmethods

2.1. Field experiment
The field experiment was conducted in Jinjing
Town, Changsha City, Hunan Province, China
(28◦32′46′′N, 113◦19′50′′E, elevation 81m) in
December 2012 and lasted for 3 years. The study
region is characterized by a subtropical humid mon-
soon climate with an annual average precipitation of
1150 mm yr−1. The experimental site had three adja-
cent paddy plots (15× 20m) that had been cultivated
for more than 100 years. After the harvest of rice, the
stubbles were incorporated into the soil, while straw
was transported to the outside of the field.

Soil-atmosphere trace gas (CO2, CH4, and N2O)
fluxes were monitored using the static opaque cham-
ber technique. The flux chambers covered six hills
of rice plants each in the paddy field. During the
fallow season (from November to April) and the
following growing season (from April to Novem-
ber), gas samples were collected once every 1–3 d.
When the gas flux was monitored simultaneously, the
air temperature (Ta) inside the chambers and soil
temperature (TS) were recorded with hand-carried
digital thermometers. In addition, topsoil (0–20 cm)
samples were randomly collected from five points and
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composited into one soil sample twice aweek. The soil
mixture was kept at−4 ◦C for further determination
of soil dissolved organic carbon (DOC) and mineral
N (NH4

+–N and NO3
−–N) concentrations. Daily pre-

cipitation and air temperature were recorded using an
automatic meteorological monitoring system (Inteli-
met Advantage; Dynamax Inc., USA).

2.2. Incubation experiment
The paddy soils were taken from the top layer
(0–20 cm) at the field experiment site, after the rice
harvest. Air-dried soil samples were activated at 20%
soil moisture content at 25 ◦C for 3 d, and then 15 g
samples were loaded into 145ml bottles. Based on the
change in soil temperatures during the winter, three
temperatures (5 ◦C, 15 ◦C, and 25 ◦C) were applied
in the 4 weeks aerobic incubation experiment to sim-
ulate the field conditions at different temperatures in
winter. Each treatment was replicated six times.

After 4 weeks of aerobic incubation, all soil
samples in the bottles were submerged in 50 ml of
deionized water. Then all bottles were finally incub-
ated at 25 ◦C for 2 weeks to simulate the growing sea-
son. The headspace gases in the bottles were sampled
twice a week for the analysis of the CO2, CH4, and
N2O concentrations. The fluxes were determined as
the change in the gas concentration in the head-
space gases within 1 h. After gas sampling, soils were
obtained to determine the DOC,mineral N, and acet-
ate contents.

2.3. Analytical techniques
Gas samples for the determination of CH4, CO2,
and N2O concentrations were analyzed using a gas
chromatograph (Agilent 7890A, Agilent Technolo-
gies, Palo Alto, California, USA). (Wang et al 2006).
Mineral N was extracted by 1 M KCl from the
paddy soils and determined using a continuous-
flow automatic analyzer (Skalar, Holland). The DOC
extracted using deionized water was measured using
a TOC analyzer (TOC-VWP, Shimadzu Corpora-
tion, Japan). The concentration of acetate extrac-
ted by deionized water was determined by HPLC
(Aminex HPX-87-H, BioRad, München, Germany)
(Krumböck and Conrad 2006).

2.4. Statistical analysis
To better understand the change in winter soil
temperature, the standard deviation of the log-
transformed observation coefficient of winter soil
temperature variation (WSTV) was used (McArdle
and Gaston 1995). Data were transformed for nor-
mality before the analysis of variance. One-way
ANOVA analysis was used to test the differences
in soil temperature, C and N contents, and atmo-
spheric trace gas emissions among treatments in the
incubation experiment and different years in the field
experiment. Linear regression analyses were used to
determine whether significant relationships existed

between the annual CO2 emissions and soil temper-
ature. Path analysis was used to evaluate the effect of
WSTV on CH4 emissions to determine the relation-
ship between winter soil temperature and CH4 emis-
sions during the growing season. Path analysis was
carried out using the lavaan package (Rosseel 2012),
an add-on package in R. Statistical analyses were per-
formed using SPSS 19.0 software for Windows (SPSS
Inc., Chicago).

3. Result

3.1. Soil temperature variables in 3 years field
experiments
There was a significant difference in the winter soil
temperature during the 3 years of the field experi-
ments (figure 1(b)). Soil temperature increased over
the years, whereas variability in soil temperature
(WSTV) decreased (figures 1(a)–(c)). The change of
mean temperature and WSTV in winter was due to
the fewer cold days and higher minimum temperat-
ures (figure 1(a)). However, the mean soil temper-
atures during the subsequent growing season were
25.44 ◦C, 25.54 ◦C and 25.15 ◦C in 2013, 2014, and
2015, respectively (figure 1(e)). No obvious differ-
ence was detected in mean soil temperature and tem-
perature variation during the growing season for the
3 years (figures 1(e) and (f)) Seasonal variations in air
temperature maintained the same seasonal pattern as
soil temperature.

During the rice-growing season, the surface water
depth ranged from 0 to 9.0 cm and remained zero
during the winter fallow season. In winter, soil water
content is mainly driven by precipitation. There was
no significant difference in the precipitation and
soil water content in winter season over the 3 years
(figure S1).

3.2. Variation of soil NH4+–N, NO3−–N, and DOC
in winter season
The concentrations of soil DOC and NH4

+–N in
the topsoil were significantly different during winter
(figures 2(a) and (b)). The mean value of DOC in
2015 (120.55 mg C kg−1) was significantly higher
(p< 0.05) compared with previous 2 years (45.40 mg
and 69.78 mg C kg−1). Soil NH4

+–N concentra-
tions decreased over the years (figure 2(b)). Aver-
age NH4

+–N was 21.69, 8.63 and 6.24 mg N kg−1

for 3 years, respectively. Variations were observed
between DOC and NH4

+–N. Soil NO3
−–N concentra-

tions were low during the study period.
Similarly, in the incubation experiment, the dif-

ferent temperatures during the aerobic incubations
significantly changed the soil DOC and inorganic N
content. At the beginning of aerobic incubation, the
soil C and N contents were at the same level, but the
DOC content was high (figure 2(c)) and the NH4

+–N
content was low in the high-temperature treatment
at the end of incubation (figure 2(d)). However,

3



Environ. Res. Lett. 18 (2023) 024012 X Wu et al

Figure 1. Temporal dynamics of soil temperature (a), mean soil temperature (b) and its variation (c) in fallow season (winter),
temporal dynamics of soil temperature (d), mean soil temperature (e) and its variation (f) in growth season for 3 years field
experiment. Value of each bars in figures (b) and (c), (e) and (f) are mean with standard error. Lowercase letters indicate
significant differences between years (p< 0.05), absence of letters indicates no significant differences.

Figure 2. Soil DOC (a) and NH4
+–N (b) contents for the 2012–2013, 2013–2014 and 2014–2015 winters in field experiment. Soil

DOC (c) and NH4
+–N (d) contents at the end of incubation for 5 ◦C, 15 ◦C and 25 ◦C treatments in incubation experiment.

Value of each bars are mean with standard errors. Letters indicate significant differences between years (p< 0.05).
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Figure 3. Relationship between natural logarithms of CO2 fluxes and soil temperature for the 2012–2013, 2013–2014 and
2014–2015 winters.

NO3
−–N had the opposite trend to soil NH4

+–N at
the end of the aerobic incubation (figure S2). The
difference in soil NO3

−–N variation between the two
experiments was due to strict control of the incuba-
tion experiment.

3.3. Variation of soil trace gas exchange in winter
season
Warming during winter also affected soil trace gas
emissions. In the field experiment, the CO2 emissions
during winter significantly increased with higher soil
temperatures (figure 3), whereas the CH4 and N2O
emissions were negligible. In the incubation experi-
ment, the CO2 and N2O emissions were significantly
different among the three treatments during aerobic
incubation (figure S3). In general, the CO2 and N2O
emissions were higher in the high-temperature treat-
ment. The CH4 flux was negligible during aerobic
incubation.

3.4. Variation of soil NH4+–N, NO3−–N and DOC
in rice growing season
In the field experiment, the initial soil NH4

+–N and
DOC (before rice planting) after floodingmaintained
the same trend as in the winter. Soil NH4

+–N after
flooded was 81.04, 64.19 and 50.56 mg N kg−1 for
3 years, respectively (figure 4(b)). In contrast, soil

DOC was significantly higher in 2015 after flooding
(figure 4(a)).

During the incubation experiments. After soil
flooding, all treatments were conducted under the
same temperature conditions. In the flooded period,
soil NH4

+–N and DOC maintained the same differ-
ence between treatments as in the aerobic incubation
(figures 5(a) and (b)). Soil NH4

+–N was lower after
pre-incubation at 25 ◦C where soil DOC was higher.
In addition, the concentration of acetate showed the
same trend as soil DOC, the 15 ◦C and 25 ◦C treat-
ments had higher contents of acetate (figure 5(c)).

3.5. CH4 flux in rice growing season
In field experiment, CH4 emissions increased by
35% in 2014 and by 192% in 2015 compared to
2013 (figures 6(a) and (b)). The main difference of
CH4 emissions occurred in early rice season whereas
the late rice season had no significant difference
(figure 6(b)). In early rice season, the peak CH4 fluxes
were 23.50, 36.33 and 59.83 for 3 years, respectively.
What is more, the peak value appeared at the day 22,
35 and 44 after rice planting in 3 years, respectively.
Path analyses identified potential causal relationships
between WSTV and CH4 fluxes during the grow-
ing season by combining data from the two seasons
(figure 7). WSTV affected CH4 emissions indirectly
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Figure 4. Initial soil DOC (a) and NH4
+–N (b) contents after flooding for the 2013, 2014 and 2015 rice growing season. Value of

each bars are mean with standard errors. Letters indicate significant differences between years (p< 0.05).

Figure 5. Soil NH4
+–N (a), DOC (b) and Acetate (c) contents at 1, 4, 7, 11 and 15 d during the flooded incubation after

preincubation at 5 ◦C, 15 ◦C and 25 ◦C treatments. Value of each bars are mean with standard error.

via changes in DOC and NH4
+–N concentrations.

There was a statistically significant positive relation-
ship between the initial soil DOC after flooding and
mean CH4 emissions (figure 7). In contrast, the ini-
tial soil NH4

+–N during the growing season had a
significant negative relationship with CH4 emissions
(figure 7). Similarly, higher temperature during ‘fal-
low season’ in incubation experiment stimulated CH4

emissions during the following flooded period, CH4

emission increased by 190% and 468% when pre-
incubation temperature increased 10 ◦C and 20 ◦C
(figure 6(c)).

4. Discussion

Our field and incubation experiments consistently
demonstrated that warming in winter enhanced the
CH4 emissions during the growing season. These res-
ults suggest that most warming studies have ignored
the legacy effects of winter warming on seasonal CH4

emissions in rice cropping systems, considering only
the influence of temperature change during the grow-
ing season.

4.1. Winter soil temperature change
The winter temperature increases faster than in other
seasons, especially at latitudes of 30–90◦N (IPCC
2013). Most studies have focused on relatively cold
regions with long winters (such as the High Arc-
tic) relative to temperate regions (Kreyling 2010),
which may disguise some key aspects of winters. In
our field experiment, the increase in mean winter
temperature was due to the decrease in the tem-
perature variability and the minimum temperat-
ure days (figures 1(a)–(c)), whereas the soil tem-
perature remained stable during the growing season
(figures 1(d)–(f)). This result is agreed with previous
studies, the low-latitude temperate region was pre-
dicted with ‘vanishing winters’ (Kreyling and Henry
2011). Seasonal warming is a complex concept, the
increase in temperature during a season is not simply
an increase in themean temperature. In our investiga-
tion, the winter fallow period lasted 4–5 months, and
its warming came from fewer cold days and higher
minimum temperatures (figure 1(a)). Temperature is
projected to continue increasing in this region, which
will have a shorter and warmer winter (Kunkel 2004),
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Figure 6. Temporal dynamics of CH4 fluxes (a), mean CH4 emissions of early rice season and late rice season (b) in field
experiment for the 2013, 2014 and 2015 and mean CH4 emissions in incubation experiment (c) during the flooded incubation
after preincubation at 5 ◦C, 15 ◦C and 25 ◦C treatments. Value of each bars are means with standard errors. Letters indicate
significant differences between treatments (p< 0.05).

Figure 7. Path analysis based on the CH4 emissions in this study. Numbers adjacent to arrows are path coefficients. Blue and red
arrows indicate significant positive and negative relationships respectively. Width of arrows is proportional to the strength of path
coefficients. ‘w’ indicate winter season, ‘g’ indicate rice growing season (significant at +P < 0.1, ∗P < 0.05, ∗∗P < 0.01 and
∗∗∗P < 0.001).

but overall, this means that the days of minimum
temperatures have reduced (Easterling 2000, Caprio
et al 2009).

Higher temperatures and smaller temperature
variations could increase microbial activity and sub-
strate availability (Xia et al 2014), which indirectly
affects ecological processes in the following seasons.

Although field experiments provided an oppor-
tunity to explore the relationships between winter
temperature change and CH4 emissions during the
growing season, the results from year-to-year com-
parisons are not completely straightforward, since
there are other factors affecting CH4 emissions except
winter temperature. However, controlled, replicated
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soil incubation experiments have provided important
confirmation from field observations. In lab experi-
ment, we created three temperature treatments (5 ◦C,
15 ◦C and 25 ◦C) to simulate different temperat-
ure segments in winter. Although the magnitude of
winter warming was weak (<2 ◦C), it was just a
change of mean temperature. The real effect of winter
warming was the duration of the different temperat-
ure segments, not the mean value (Xia et al 2014).

The results from the warming stages of rice paddy
soil (fallow season in winter and growing season in
spring and summer) strongly support the idea that
warming winter has a strong influence on microbial,
soil, and other ecosystem processes for the following
growing season (Durán et al 2013, Blanc-Betes et al
2016).

4.2. Dynamic of soil C and N in winter
In the field experiment, the rice paddy was left
fallow without flooding, the higher soil temperature
increased the flux of CO2 from the SOM and resid-
ual rice stubble (figure 3). After the rice was harves-
ted, the majority of the straw was removed from the
field, SOM and little residual stubble was the primary
substrates of heterotrophic respiration in the soil.
Under the same substrate supply and water condition
(figure S4), soil temperature was the main factor con-
trolling SOM mineralization and rice straw decom-
position to CO2 (Amelung et al 1997, Peng et al 2015,
Zhang et al 2015) The main reason for the increase in
SOM mineralization with increasing temperature is
that high temperatures accelerate the rate of enzyme-
mediated reactions, especially in the cold winter
(Davidson and Janssens 2006, Lawrence et al 2009,
Wallenstein et al 2010). According to previous stud-
ies (Fang et al 2005, Davidson and Janssens 2006,
Ågren 2000), labile and resistant organic matter has
a similar response to soil warming; higher CO2 fluxes
indicate a higher accumulation of DOC from insol-
uble organicmatter (figure 2(a)). The same result was
obtained in the incubation experiment (figure 2(c)).
Additionally, SOM decomposition can serve as an
additional available N source because of the coup-
ling of soil C and N cycles (Maljanen et al 2003,
Harrison-Kirk et al 2015). However, in the field study,
the NH4

+–N content decreased with increasing tem-
perature, and the NO3

−–N content and N2O emis-
sions were negligible (figure 2(b)), indicating that the
warmer winter had less inorganic N supplies, consist-
ent with the hypothesis of Melillo et al (2011). There
was a slight difference in the incubation experiment,
and the NH4

+–N content had the same variation as
the field experiment (figures 2(b) and (d)), whereas
the NO3

−–N content and N2O fluxes increased with
increasing temperature (figures S2 and S3(b)). This
result may be due to the fact that higher temperatures
reinforce nitrification and nitrification-induced N2O
emissions (Wang et al 2010). The difference between

the two experiments was that the incubation experi-
ment was strictly controlled, and the field experiment
had many other uncontrollable factors that could
lead to other N loss pathways (Maljanen et al 2003,
Harrison-Kirk et al 2015). The result of incubation
experiment explained the accumulation of DOC and
NH4

+–N of different temperature segments during
winter in field experiment. In winter season, exten-
ded period of warmth and decreased cold days lead
to higher contents of DOC in the soil. In addition, the
smaller soil temperature variability in the field exper-
iment (figure 1(c)), due to the increase in minimum
temperature, is likely to have a significant impact on
soil biogeochemical properties (Schimel and Clein
1996, Kreyling et al 2012). The smaller soil temperat-
ure variability may have relieved the stress on micro-
bial populations, thereby increasing organic matter
decomposition (Stuanes et al 2008, Brooks et al 2011).
Moreover, the change in winter soil temperature vari-
ability may further influence the following growing
season. It is likely that microbial populations recover
more easily at the beginning of the growing season
(Brooks et al 1998).

4.3. Legacy effects of warming winter on CH4
emissions
In warm winter year, the cumulative CH4 in grow-
ing season was higher (figure 6(a)). Comparing the
CH4 emissions from two growing period of double
cropping rice, we found that the increase in CH4

emissions was mainly caused by the early rice period
(figure 6(b)). Under the same conditions of field
management, rainfall and temperature, there were
changes in the early rice period but no difference
in the late rice stage. It was clear that this effect
came from the previous fallow season. Soils from
the beginning of flooding in early rice period had
similar inorganic N and DOC concentrations with
the winter period (figures 4 and 5). The warm-
ing winter or high temperature during the previ-
ous aerobic incubation provided more DOC and
less NH4

+–N, which contributed to more CH4 emis-
sions in the submerged growing season. Especially,
the increase of CH4 emissions in early rice period
was caused by higher and earlier emission peaks
(figure 6(a)). This result can be explained by the dif-
ference in the response of methanogens and meth-
anotrophs to previous soil warming without flood-
ing. CH4 emissions from rice paddies are controlled
by coupling CH4 production and oxidation (Conrad
2007). CH4 is the terminal product of organic mat-
ter produced by methanogens under anaerobic con-
ditions, and this process is determined by C availab-
ility (Conrad 2007). It has been demonstrated that
warming could increase methanogen abundance and
CH4 emissions through more substrates (Yang et al
2015). In both experiments, more DOC stimulated
CH4 production from submerged rice paddy soil. In
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the field experiment, the earlier CH4 emission peak
of warm winter year showed soil C was the main sub-
strate for microbial processes, because there was few
available DOM from root secretion in seeding stage.
Furthermore, in the incubation experiment, not only
the DOC but also the concentration of acetate was
significantly higher in the previous high-temperature
treatment (figure 5(c)). In paddy fields, acetate fer-
mentation and H2/CO2 reduction are the main pro-
duction pathway of CH4 (Sugimoto and Wada 1993,
Conrad and Klose 1999). Notionally, more than 67%
of the total CH4 production is determined by meth-
anogenesis that uses acetate (Conrad andKlose 1999).
The results of the soil incubation experiment showed
a consistent significant relationship between previ-
ous temperature and acetate concentrations, which
improved CH4 production.

Path analysis also showed that winter soil tem-
perature variability had a positive influence on CH4

emissions during the growing season. Winter warm-
ing affected CH4 indirectly via impacts on DOC
and NH4

+–N accumulation. Although methanogen-
esis has a higher temperature sensitivity than meth-
anotrophs (Dunfield et al 1993), the warming winter
may indirectly stress methanotrophs due to the
lack of NH4

+–N. Some studies found that meth-
anogenesis and CH4 emissions were inhibited by
N fertilizer, especially ammonium fertilizers (Banik
et al 1996, Singh and Singh 1996). In addition to
the field experiment (Krüger et al 2001), micro-
cosm incubation (Eller and Frenzel 2001) suppor-
ted that more NH4

+–N increased methanotrophic
activity in rice paddy soil. Methanotrophic bac-
teria are nitrogen-hungry microorganisms (Anthony
1982), the demand for ammonium from meth-
anotrophic bacteria restricts ammonium oxidation
(Megraw and Knowles 1987). However, the mech-
anism by which ammonium stimulates CH4 oxida-
tion not only relieves the N limitation for methan-
otrophic bacteria growth but also oxidizes methane
(Chan and Parkin 2001). In the incubation experi-
ment, soil inorganicNwas the only source after flood-
ing, and the lower ammonium in the previous high-
temperature treatment (figure 5(a)) suppressed CH4

oxidation, which in turn stimulated CH4 emissions.
Although the field experiment had a large amount
of nitrogen fertilizer applied for crop growth after
flooding, the soil NH4

+–N still played an important
role, which might reduce the competition between
crops and methanotrophs. Our measurements were
limited by the absence of microbial research, but
the significant change in CH4 fluxes suggests that
future work needs to better capture the changes in
soil microbial communities associated with C and N
cycles in response to climate change. Some studies
have found thatmicrobial processes aremore suscept-
ible and may be key regulators of C and N cycles to
global warming (Gubry-Rangin et al 2011,Durán et al
2013).

5. Conclusion

Winter warming significantly increased the contri-
bution of rice paddies to CH4 emissions during the
subsequent growing season. The influence of global
warming on these ecosystems is highly uncertain, as
changes in soil carbon and nitrogen dynamics by soil
temperature affect CH4 fluxes in the growing sea-
son beyond the direct effects on winter processes. We
show strong and clear links between winter warming
and CH4 emissions in the subsequent growing sea-
son for the first time. In our study area, the change
in soil temperature may be more important than that
in other winter climate conditions. Overall, our res-
ults suggest that winter climate change may be the
key driver of CH4 release from rice paddies in low-
latitude regions and may increase uncertainties in
climate predictions. When assessing the response of
CH4 emissions from paddy soil to global warming,
special attention should be paid to the impact of sea-
sonal differences in temperature rise. The effect of
temperature change in winter fallow season on CH4

emission from paddy fields should not be ignored. It
indicates that the impact of climate warming on CH4

emission from paddy soil may be higher than the cur-
rent model prediction.
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