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A B S T R A C T

Transport processes in the subsurface are coupled with the heterogeneity of the porous structure. Obtaining
an accurate description of mass transport in such media at all time scales remains a crucial task, as the
subsurface is strongly impacted by human activity. Spreading of pollutants in the transient but also in the
asymptotic regime, as well as the time to reach a critical location (e.g. aquifer, well) significantly depend on
the underlying heterogeneity of the permeability field. Moreover, in the case of solute retention, transport
is also characterized by local exchange kinetics that depend on the local aquifer properties. Consequently,
exchange (retention) times are expected to be spatially heterogeneous. In this work we focus on the influence
of spatially heterogeneous permeability and exchange times on the transient and asymptotic transport regimes
and provide a parametric study. To this goal, we simulate in a first part the transport in a two-dimensional
heterogeneous medium under spatially varying permeability and mobile–immobile mass transfer parameters.
Equations are solved using a Lattice-Boltzmann two-relaxation-time (TRT) algorithm. We assume the following
relation between the local permeability 𝐾 and the local exchange time: 𝜏 ∝ 𝐾𝛾 . Taking into account this
relation, we investigate the impact of the Damköhler number (𝐷𝑎, ratio of the advection and exchange time
scales), the disorder of the permeability field and the value of the exponent of the coupling function (𝛾) on
the spatial evolution of the concentration field and breakthrough curve. We show that, depending on the
parameters (𝐷𝑎, 𝛾, etc.), we can observe transient, non-Fickian dispersion, which is characterized by non-
exponential tails of the solute breakthrough curves and a non-linear evolution of the spatial variance of the
solute distribution.

In a second part, we present a new continuous time random walk (CTRW) model to upscale these transport
behaviors. The model is based on a spatial Markov model for particle velocities that couples advective–
dispersive transport and heterogeneous mass transfer through a compound Poisson process. The upscaled
model can be fully parameterized by the statistics of permeability and the hydraulic gradient (with no
fitting parameter), that is, in terms of medium and flow characteristics. The results of the CTRW model fully
capture the non-Fickian transient transport regimes both for the breakthrough curves and spatial concentration
variance. In the longtime limit, as expected from the central limit theorem, the CTRW model predicts normal,
Fickian behavior. Finally we show, that the time to reach the asymptotic regimes in heterogeneous media (e.g.
heterogeneous exchange times) is parameter dependent and in average is two orders of magnitude larger than
for the respective homogeneous case. To summarize, the coupling between the heterogeneous permeability
field and the local mass transfer properties can strongly influence transient and asymptotic transport regimes
and potentially explain experimentally observed non-Gaussian behaviors.
1. Introduction

Pollutant transport in the subsurface is coupled to the water con-
tent and the heterogeneity of the porous medium. As the subsurface
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is strongly influenced by human activity, an accurate description of
pollutant transport at all time scales still remains a crucial task. Indeed,
for example, the knowledge of such transport is required for efficient
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water remediation and for providing access to safe drinking water. For
many pollutants (nuclear waste, pharmaceuticals, etc.), contamination
remains critical at very low concentrations and cannot be ignored.
For this type of pollutants, long-lasting low concentrations represent
therefore a major issue in aquifer and soil remediation. Further compre-
hension on these transient, long-lasting regimes and their dependence
on the porous structure is therefore crucial in the actual environmental
context.

Transport in porous media has been treated in the literature for a
long time but still remains an actual topic. While much research focused
mainly on the asymptotic regimes, further attention should be paid
to the transient and often long-lasting pre-asymptotic regimes. Indeed,
experimental field and laboratory observations report that solute trans-
port may not obey classical Fickian dispersion. Non-Fickian transport
can be attributed to the heterogeneity of the permeability field, but also
to sorption phenomena, that may be space dependent.

A typical example is the reactive transport experiment performed
at Cape Cod, where reactive tracer exhibit non-Fickian transport be-
havior (Brusseau and Srivastava, 1999) . Despite the fact that the
heterogeneity of the permeability field was rather small 𝜎2𝑙𝑜𝑔𝜅 ≃ 0.24,
the velocity of the tracer front was decreasing over time and the
variance of the plume spread more rapidly than linearly. Brusseau and
Srivastava investigated various mechanism to model this anomalous
behavior. They tried different model scenarios where permeability was
considered to be either homogeneous or heterogeneous, sorption could
be linear or not with either instantaneous or rate limited kinetics.
Results of the study show that the early time behavior of the experiment
could be reasonably well fitted. However, in contrary, the later times
could be fitted only by significantly increasing the heterogeneity of the
sorption kinetic coefficient in the second half of the domain. The latter
result points out the importance of the choice of the model parameters
to describe the long time transport behaviors but also the need to carry
out a parametric study.

Dynamics of spreading and the spatio-temporal extension of the
pollutants in the transient but also in the asymptotic regime as well as
the time to reach a critical location (e.g. aquifer, well, housing) strongly
depend on the underlying heterogeneity of the porous medium. This
dependence has been pointed out by Dai et al. (2004), Ren et al. (2022)
by performing transport simulations in porous media characterized
by different criteria (anisotropy, correlation length, scales). However,
transport also depends on the spatial variability of exchange kinetics
between mobile and immobile solute phases. First-order exchange ki-
netics have been used to quantify diffusive mass transfer between high
and low velocity zones, as well as linear kinetic sorption–desorption
reactions (Haggerty and Gorelick, 1995), as most pollutants are subject
to sorption phenomena.

The impact of heterogeneity on large scale transport has been
largely treated in the literature and quantified in the framework of
stochastic modeling for the spatially fluctuating exchange parameters
and permeability (Rubin, 2003). Numerical simulations (Selroos and
Cvetkovic, 1992; Tompson, 1993; Selroos and Cvetkovic, 1994; Burr
et al., 1994) were used to determine the ensemble averaged center of
mass velocity and dispersion coefficients or temporal moments. Analyti-
cal studies have used first-order perturbation theory in the heterogene-
ity variance to investigate large scale transport under heterogeneous
conductivity and homogeneous kinetic mass transfer (Quinodoz and
Valocchi, 1993; Dagan and Cvetkovic, 1993; Massabó et al., 2008;
Soltanian et al., 2015), under heterogeneous conductivity and mass
transfer properties (Cvetkovic and Shapiro, 1990; Cvetkovic et al.,
1998; Miralles-Wilhelm and Gelhar, 1996; Rajaram, 1997; Dentz et al.,
2000), and under homogeneous conductivity and heterogeneous sorp-
tion properties (Metzger et al., 1996; Reichle et al., 1998; Attinger
et al., 1999). However, it is important to stress that all these studies
focus on the asymptotic stationary regime and aim at the quantification
of effective upscaled transport parameters, such as effective dispersion
2
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coefficients and effective retardation coefficients. Note that these trans-
port parameters are only applicable when the average concentration
follows a Fickian equation, which is theoretically expected at very long
times. However, as we will see later, before reaching this asymptotic
limit, transport may exhibit anomalous behavior. In consequence, it
suggests that the behaviors observed, even at the longest times in
the Cape Cod experiment, correspond to transient regimes. This is
particularly supported by the fact that the velocity of the tracer front
decreases with time without reaching a constant value.

Mobile–Immobile models (Coats and Smith, 1964; van Genuchten
and Wierenga, 1976; Haggerty and Gorelick, 1995) have been used
to describe the impact of kinetic mass transfer between mobile and
immobile medium portions on the overall solute migration in saturated
and partially saturated media. Moreover, as pointed out by several
researcher (e.g., Nkedi-Kizza et al., 1984; Valocchi, 1990; Haggerty and
Gorelick, 1995) all first-order kinetic mass transfer models can also be
applied to linear sorption problems.

A large number of experiments have been performed to characterize
exchange times for transport in porous media with different degrees
of heterogeneity. Griffioen et al. (1998) provided a review of ex-
change times of a large number of laboratory experiments performed
in different column samples. Low exchange times (5 h and more) have
been observed by Rao et al. (1980) in samples consisting of porous
spheres and glass beads. In contrast, Smettem (1984) measured tracer
transport in heterogeneous soil columns and determined an average
exchange time up to 125 days. Exchange times were computed by fitting
a Mobile–Immobile model to the experimental data. However, a major
difference between the laboratory and the field scale lies in the fact that
the latter presents often spatial variations (e.g., Tompson, 1993; Burr
et al., 1994; Brusseau, 1994). Consequently, the permeability but also
the exchange time might present large spatial heterogeneity. Here, we
consider both heterogeneity in permeability and mobile–immobile mass
transfer, which manifest in spatial variability of the flow velocity 𝑣(𝑟)
and the local mass transfer times 𝜏(𝑟), where 𝑟 is the position vector.
Transport of the mobile and immobile concentrations 𝐶𝑚 and 𝐶𝑖𝑚 can
then be modeled as (e.g., Cvetkovic and Shapiro, 1990; Burr et al.,
1994; Haggerty and Gorelick, 1995; Reichle et al., 1998)

𝜃𝑚
𝜕𝐶𝑚
𝜕𝑇

+ 𝑢(𝑟) ⋅ ∇⃗𝐶𝑚 −𝐷0∇2𝐶𝑚 = − 1
𝜏(𝑟)

(𝐶𝑚 − 𝐶𝑖𝑚) (1)

𝜃𝑖𝑚
𝜕𝐶𝑖𝑚
𝜕𝑇

= 1
𝜏(𝑟)

(𝐶𝑚 − 𝐶𝑖𝑚). (2)

Here, 𝜃𝑚 represents the (constant) mobile water content and 𝜃𝑖𝑚 the
constant) immobile water content. For simplicity, we assume that
ocal scale dispersion is constant and isotropic as quantified by the
ispersion coefficient 𝐷0. Note that we assume here for simplicity that
he trapping and release rates are constant and equal to the inverse
haracteristic mass transfer time 1∕𝜏(𝑟) as in Reichle et al. (1998).

Experimental field and laboratory observations report that solute
ransport may not obey classical Fickian dispersion (Brusseau and
rivastava, 1999; Berkowitz et al., 2006), and may be characterized by
ate time tailing of solute breakthrough curves and a non-linear evolu-
ion of the spatial second centered moments of the solute distribution,
hich can be quantified by stochastic perturbation theory for moder-
tely heterogeneous media (Dagan, 1989). Such observations cannot be
aptured by Fickian advection–dispersion models that are based on con-
tant (asymptotic) effective transport parameters. The heterogeneity-
nduced large scale transport dynamics are in general non-Fickian,
nd converge to Fickian behaviors only asymptotically (Dentz et al.,
004; Beaudoin and de Dreuzy, 2013; Comolli et al., 2019). Such
ehaviors can often be traced back to a broad distribution of mass
ransfer time scales as a result of spatial heterogeneity in the physical
nd chemical medium properties (Berkowitz et al., 2006; Frippiat
nd Holeyman, 2008; Neuman and Tartakovsky, 2008; Dentz et al.,
011). This phenomenological picture is reflected in the multirate

ass transfer (MRMT) (Haggerty and Gorelick, 1995; Carrera et al.,



Advances in Water Resources 174 (2023) 104425L. Talon et al.

m
w
i
I
t

1998), continuous time random walk (CTRW) (Berkowitz et al., 2006)
and time-domain random walk (TDRW) (Painter and Cvetkovic, 2005;
Noetinger et al., 2016) approaches. These modeling approaches are
typically characterized by a probability distribution function of mass
transfer times, which are encoded in the memory function (MRMT),
and the transition time distribution (CTRW and TDRW). The MRMT
approach models solute transport through advection and diffusion or
dispersion in a connected mobile region and linear mass transfer be-
tween the mobile and immobile regions. The mass transfer properties
and distribution of residence times in the immobile regions are encoded
in the memory function, which relates the mobile and immobile solute
concentrations. The memory function of MRMT can in principle be
related to the geometry and distribution of immobile regions and
the underlying mass transfer processes (Haggerty and Gorelick, 1995;
Carrera et al., 1998; Zinn et al., 2004; Gouze et al., 2008; Zhang et al.,
2014; Hidalgo et al., 2020), or is fitted from observed breakthrough
curves based on a parametric form for the memory function (Willmann
et al., 2008). Similarly, the transition time distribution in the CTRW
approach is often fitted based on a suitable parametric equation (Dentz
et al., 2004; Berkowitz et al., 2006). The CTRW and TDRW frameworks
allow to distinguish between local scale mass transfer mechanisms and
to relate the transition probabilities to the heterogeneity distribution
and local scale processes such as linear kinetic mass transfer (Margolin
et al., 2003), spatially variable retardation properties (Dentz and Cas-
tro, 2009), heterogeneous advection (Fiori et al., 2007; Cvetkovic et al.,
2014; Comolli et al., 2016, 2019), matrix diffusion (Hyman and Dentz,
2021), and sorption and first-order decay (Painter et al., 2008).

In this article, we study transport in heterogeneous porous media
that are characterized by spatially variable permeability and spatially
variable kinetic mass transfer properties. In the first part, we solve
numerically the direct flow and transport model described by Eqs. (1)–
(2). We focus on the pre-asymptotic regime where anomalous behaviors
are observed, and their dependence on the system parameters.

In the second part, we use the CTRW framework to derive a new
upscaled stochastic model, that is able to predict non-Fickian pre-
asymptotic transport as well as the asymptotic behavior. Our CTRW
approach uses a compound Poisson process to model linear kinetic
exchange under spatially heterogeneous mass transfer properties. It is
parameterized by the point distributions of hydraulic permeability, the
correlation length of log-permeability, local scale dispersion and ad-
vective tortuosity, all of which are flow and medium properties, which
means that they are transport-independent. The model is predictive
without any fitting parameter.

The article is structured as follows. In Section 2, we first detail
the Mobile–Immobile model (MIM) for heterogeneous permeability and
exchange time, the generation of the permeability field, and the flow
equation. Then, in Section 3 we summarize the numerical simulation
of the direct problem using the Lattice-Boltzmann method and present
a parametric study of the transient regimes. Section 4 presents a new
upscaled transport model (CTRW) and its parameterization. The CTRW
model is then validated against the results of the direct simulations.

2. The mobile–immobile model for heterogeneous structures

In this part, we present in a first step the derivation of a generic
scaling law to relate the exchange time 𝜏 and the permeability 𝐾. Then,
we introduce the non-dimensional equations of the Mobile–Immobile
model and the dimensionless parameters for heterogeneous porous
media. Afterwards, we detail the generation of the porous medium and
present the flow equation.

2.1. Generic scaling law to relate the exchange time 𝜏 and the permeability
𝐾

The characteristic exchange time 𝜏 depends on the underlying phys-
ical or chemical process and the porous topology. Using a phenomeno-
logical argument, one might, for example, expect that the characteristic
3

diffusion time in the dead-end pore scales as Reichle et al. (1998):
𝜏 ∼ 𝑎2∕𝐷𝑚, with 𝑎 being the typical pore size and 𝐷𝑚 the molecular
diffusion coefficient. Assuming that 𝐾 ∝ 𝑎2, it follows that 𝜏 ∝ 𝐾.
The time spent in the dead end thus increases with the permeability
because the pores are larger. However, this argument holds only if
the permeability is modified by a homothetic transformation. For more
complex structures, the residence time may be a non-trivial function of
the pore scale geometry. For example, percolation disorder is known to
lead to anomalous scaling exponents (Koplik et al., 1988; De Gennes,
1983). Also, based on field measurements, Burr et al. (1994) proposed
a power-law between the permeability and the exchange time. In
order to be more general, we thus correlate the exchange time to the
permeability using a power law:

𝜏 = 𝐴𝐾𝛾 , (3)

where 𝐴 is a scaling parameter and the exponent 𝛾 ∈ [−1, 1]. We
consider also negative 𝛾, which corresponds to an increase of residence
time when the permeability decreases. Indeed, if the lower permeability
regions have dead-ends with more complex shape, one could expect
that the residence times are indeed larger.

2.2. Non-dimensional equations

The number of variables of the Mobile–Immobile model can be
reduced by changing the time scale as 𝑇 ∕𝜃𝑚 → 𝑡. Eqs. (1) and (2) can
then be written as
⎧

⎪

⎨

⎪

⎩

𝜕𝐶𝑚
𝜕𝑡 + 𝜙𝐷

𝜕𝐶𝑖𝑚
𝜕𝑡 + 𝑢.∇⃗𝐶𝑚 = 𝐷0∇2𝐶𝑚

𝜕𝐶𝑖𝑚
𝜕𝑡 = 1

𝜏𝜙𝐷
(𝐶𝑚 − 𝐶𝑖𝑚)

(4)

with 𝜙𝐷 = 𝜃𝑖𝑚
𝜃𝑚

being the ratio of the immobile volume over the
obile one. Dispersion is given by its coefficient 𝐷0 = 𝑑𝑢 + 𝐷𝑚,
here 𝑑 is the dispersivity and 𝐷𝑚 the molecular diffusion. Note that

n heterogeneous porous media the velocity 𝑢 is also heterogeneous.
n order to investigate solely the influence of heterogeneous exchange
ime 𝜏 on the transport, we simplified the problem and kept 𝐷0 = 𝑐𝑜𝑛𝑠𝑡.

As mentioned above 𝜏 is then assumed to follow Eq. (3).
Using the imposed mean flow rate 𝑢̄, Eqs. (4) can be non-

dimensionalized by introducing a characteristic length scale 𝜆 and time
scale 𝜆∕𝑢̄:

⎧

⎪

⎨

⎪

⎩

(

𝜕𝐶𝑚
𝜕𝑡′ + 𝜙𝐷

𝜕𝐶𝑖𝑚
𝜕𝑡′

)

+ 𝑢′.∇⃗′𝐶𝑚 = 1
𝑃𝑒∇

′2𝐶𝑚
𝜕𝐶𝑖𝑚
𝜕𝑡′ = 𝜆

𝑢̄𝜙𝐷𝜏
(𝐶𝑚 − 𝐶𝑖𝑚)

(5)

Two dimensionless numbers can be deduced from Eqs. (5):

• 𝑃𝑒 = 𝜆𝑢̄
𝐷0

, the Péclet number, which characterizes the ratio of the
diffusive time scale over the convective one.

• 𝐷𝑎 = 𝜆
𝑢̄𝜏𝜙𝐷

, the Damköhler number, corresponding to the ratio
of the convection and exchange time scales. Here, we introduce
the average exchange time 𝜏 = 𝐴𝐾𝛾

0 , where 𝐾0 = exp(𝑓0) is the
harmonic mean of the permeability field (see Eq. (6) in the next
section).

2.3. Porous media generation

As it is often assumed to describe the permeability field (Gelhar and
Axness, 1983; Burr et al., 1994; Rubin, 2003), 𝐾 is generated using a
correlated log-normal probability distribution function (PDF) given by:

pdf(𝑓 = ln𝐾) = 1
√

𝑒
− (𝑓−𝑓0)

2

2𝜎2𝑓 , (6)

2𝜋𝜎𝑓
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where 𝑓0 and 𝜎𝑓 are the mean and standard deviation of ln𝐾. More-
over, the field 𝑓 is spatially correlated according to a Gaussian corre-
lation function:

⟨𝑓 (𝑟0)𝑓 (𝑟0 + 𝑟)⟩𝑟0 = 𝜎2𝑓 𝑒
− 𝑥2+𝑦2

𝜆2 , (7)

where ⟨.⟩𝑟0 represents the spatial average over the whole domain. Here,
we use the fixed parameters 𝑓0 = 0 and 𝜆 = 4 LBM lattice units. The
alue 𝜎𝑓 , which quantifies the heterogeneity of the permeability field,
as been varied in the range 𝜎2𝑓 ∈ [0, 1.5], which represents moderately
eterogeneous permeability fields, but includes most values reported
n Rubin (2003).

Since exchange time and permeability are related by Eq. (3), the dis-
ribution of the exchange times also follows a log-normal distribution:

df(𝑔 = ln 𝜏) = 1
√

2𝜋𝜎𝑔
𝑒
− (𝑔−𝑔0)

2

2𝜎2𝑔 , (8)

ith 𝑔0 = 𝛾𝑓0 + ln (𝐴) and 𝜎𝑔 = |𝛾|𝜎𝑓 . The covariance function of 𝑔 is
hus given by

𝑔(𝑟0)𝑔(𝑟0 + 𝑟)⟩𝑟0 = 𝛾2𝜎2𝑓 𝑒
− 𝑥2+𝑦2

𝜆2 . (9)

2.4. Flow equation

Flow in heterogeneous porous media is obtained by solving the
Darcy–Brinkmann equation (Brinkman, 1947):
𝜌𝜈
𝐾(𝑟)

𝑢 − ∇⃗𝑃 + 𝜌𝜈∇2𝑢 = 0⃗, (10)

where 𝜈 is the kinematic viscosity, 𝜌 the density of the fluid and 𝑃
the pressure field. The Darcy–Brinkmann equation is generally used
to solve flow in very heterogeneous porous media because it allows
momentum diffusion between high and low velocity regions. It also
provides stability of the numerical scheme by preventing strong spatial
variation of the velocity (Talon et al., 2003; Ginzburg et al., 2015). To
solve this equation, we used a Two-Relaxation-Time lattice Boltzmann
method (TRT-LBM) described in Appendix A. We also provided infor-
mations on the homogeneous case and the validation of the LBM-code
against the analytical solution.

3. Characterization of transient transport regimes by means of
detailed Lattice Boltzmann simulations

In this section, we study transport in heterogeneous porous media
under mobile–immobile mass transfer. The geological model is char-
acterized by the permeability field parameters 𝜙𝐷, 𝑓0, 𝜎𝑓 , and 𝜆, and
by the transport parameters 𝐴, 𝛾, and 𝐷0. However, we focus here

ainly on the influence of the variance of the heterogeneity 𝜎𝑓 and
he Damköhler number 𝐷𝑎 using Lattice Boltzmann simulations.

.1. Spatial moments and breakthrough curves

Transport is analyzed by means of the evolution of the longi-
udinal second centered spatial moment of the normalized mobile
oncentration

𝑚 =
𝐶𝑚

∫ 𝑑𝑟𝐶𝑚
. (11)

he second centered moment of 𝑐𝑚 is defined by

2(𝑡) = ∫ 𝑑𝑟𝑥2𝑐𝑚 −
(

∫ 𝑑𝑟𝑥𝑐𝑚

)2
(12)

where 𝑥 is the component of the position vector 𝑟 in streamwise
4

direction. 𝜎(𝑡) measures the spatial extension of the mobile solute plume e
in longitudinal direction. The rate of growth of 𝜎2(𝑡) is measured by the
macroscopic longitudinal dispersion coefficient, which is defined by

𝐷𝑚
𝐿(𝑡) =

1
2
𝑑𝜎2(𝑡)
𝑑𝑡

. (13)

urthermore, we consider the mean concentration, that is, the break-
hrough curve, slightly before the outlet boundary of the flow domain,
t 𝑥 = 𝐿 − 4𝜆. It is defined by

𝐶(𝑡) = 1
𝐻 ∫𝑦

𝑐𝑚(𝑟) 𝑑𝑦, (14)

where 𝑦 is the component of the position vector perpendicular to the
streamwise direction and 𝐻 is the height of the flow domain.

3.2. Transport in heterogeneous porous media

In this section we detail the results of the transport simulations in
heterogeneous porous media. Fig. 1 shows typical mobile and immobile
concentration fields for two different values of the Damköhler number,
𝐷𝑎 = 1∕8 and 𝐷𝑎 = 1∕40 with 𝜎𝑓 = 1. The two mobile concentration
fields are very similar, whereas important differences in the immobile
concentration fields can be observed. In the case of low 𝐷𝑎, there is a
larger number of depleted spots (dark blue) at the tracer front while
other spots of higher concentration can still be observed far behind
the front. Both effects result from the disorder in the exchange time
𝜏, where some spots are characterized by large values of 𝜏. These spots
require more time for tracer trapping but also for its release.

Fig. 2 displays the normalized second moment of the average con-
centration profile (Left) and the breakthrough curve (Right) for the
parameters 𝐷𝑎 = 1∕40, 𝜎𝑓 = 1, 𝑃𝑒 = 6.4 and 𝛾 = 1. For small times, the
normalized variance follows a power-law of 𝑡 with an exponent 𝛼𝑒𝑎𝑟𝑙𝑦
arger than 1, characteristic of anomalous transport. For larger times,
he evolution of the variance changes into a different anomalous behav-
or characterized by another power-law exponent 𝛼. The breakthrough
urve exhibits non-exponential tailing which can also be characterized
y a power-law of the following type:

𝐶(𝑡) ∝ 𝑡−𝛽 . (15)

Due to the fact that the second moment and the breakthrough curve
o not always display a power-law behavior, a criterion needs to be
efined to establish its existence. In practice, the fit is done by doing a
inear regression of the logarithmic derivative 𝑑 log 𝑓

𝑑 log 𝑡 over a decade of
the abscissa. The constant of this regression gives then the exponent.
Based on the slope, a criterion of relevance of the power-law can then
be defined. We fixed the following criterion: if the slope is greater than
0.2, the curve is not considered as a power-law. In other words, if the
exponent varies more than 0.2 over a decade, it is not considered as
constant.

In the following, we investigate the effect of the Damköhler number
𝐷𝑎, the disorder 𝜎𝑓 of the permeability field and the exponent 𝛾, on the
anomalous transport characterized by the power-law exponents 𝛼𝑒𝑎𝑟𝑙𝑦,
𝛼 and 𝛽.

Effect of the Damköhler number 𝐷𝑎. In this paragraph, we investigate
transport for different values of 𝐷𝑎 in a system characterized by the
following parameters: 𝜎𝑓 = 1, 𝑃𝑒 = 6.4 and 𝛾 = 1. Fig. 3 represents
the evolution of the normalized second moment (Left), the normalized
dispersion coefficient (Middle) and the breakthrough curve (Right) for
different 𝐷𝑎 values. As can be seen, both, the power-law of the break-
through curve (𝛽) and the second regime of the spatial moment (𝛼)
depend on 𝐷𝑎. This dependency is particularly obvious when plotting
𝐷𝑚
𝐿(𝑡)∕𝐷0. The evolution of the exponent 𝛼 as a function of 𝐷𝑎 is given

n Fig. 4 (Left). For low and high values of 𝐷𝑎, 𝛼 tends to one, sug-
esting a mere dispersive behavior if the exchange time is either very
ow or very high. For large values of 𝐷𝑎, the system is instantaneously
t equilibrium (e.g. 𝐶𝑚 = 𝐶𝑖𝑚). In contrast, for small values of 𝐷𝑎, the

xchange between the mobile and immobile regions becomes extremely
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Fig. 1. Examples of mobile (Top) and immobile (Bottom) concentration profiles in a heterogeneous porous medium. System parameters are: 𝜎𝑓 = 1, 𝑃𝑒 = 6.4 and 𝛾 = 1. Left:
𝐷𝑎 = 1∕8, Right: 𝐷𝑎 = 1∕40.
Fig. 2. Temporal evolution of the normalized second moment (Left) and the breakthrough curve (Right) for 𝐷𝑎 = 1∕40 and 𝜎𝑓 = 1, 𝑃𝑒 = 6.4 and 𝛾 = 1. The fitted exponents are:
𝛼𝑒𝑎𝑟𝑙𝑦 = 1.3, 𝛼 = 1.7 and 𝛽 = 5.2.
slow and its influence on the overall transport becomes negligible. This
case corresponds to the passive transport case studied in the literature,
where the dispersion regime is initially anomalous (𝛼𝑒𝑎𝑟𝑙𝑦 > 1) due to
the permeability heterogeneity, and becomes normal (𝛼 = 1) after a
certain time period.

In the presence of exchanges between mobile and immobile regions,
the transition time between the two regimes (power-law independent
of 𝐷𝑎 and power-law controlled by 𝐷𝑎 given in Fig. 3) is roughly
independent of 𝐷𝑎. It corresponds therefore to the end of the non-
reactive regime which dominates at early time. Above this transition,
the effect of the exchange between mobile and immobile zones on
transport becomes predominant.

Considering the breakthrough curves (Fig. 3, Right) it can be seen
that, for 𝐷𝑎 = 0, the curve takes a Gaussian shape, while breakthrough
curves with finite values of 𝐷𝑎 exhibit significant tailing. Tailing is
more pronounced for intermediate 𝐷𝑎 compared to large and small 𝐷𝑎
because in both cases the influence of the exchange on the transport is
not significant. For certain values of 𝐷𝑎, tails follow a power-law given
by 𝐵𝐶(𝑡) ∝ 𝑡−𝛽 . Fitted exponents of the latter power-law are reported
in Fig. 4 (Right). It can be seen that the exponent is increasing with
𝐷𝑎 corresponding to less significant tailing of the concentration field
at high 𝐷𝑎.

Effect of disorder of the permeability field 𝜎𝑓 . We now investigate the
influence of 𝜎𝑓 on the transport in a system characterized by 𝐷𝑎 = 1∕8,
𝑃𝑒 = 6.4 and 𝛾 = 1. The evolution of the normalized variance of
5

the concentration profile, the normalized dispersion coefficient and the
breakthrough curves are given in Fig. 5. In comparison with Fig. 3,
we can state that the early time regime depends on 𝜎𝑓 . For low
heterogeneity (𝜎𝑓 ≤ 0.25), the early time behavior is diffusive as can
be seen from the normalized dispersion coefficient in Fig. 5 (Middle).
The transport becomes anomalous for higher values of 𝜎𝑓 . When fitting
the early time data, we can state that the power-law exponent increases
with heterogeneity (see Fig. 6, Left).

As already reported in the latter section, after the early time regime
there is a transition towards the second regime at a time which is
relatively independent of 𝜎𝑓 . Above this transition, the normalized
dispersion coefficient follows different power-laws, with an exponent
that also depends on 𝜎𝑓 (see Fig. 6, Left). For this particular small value
of 𝐷𝑎 = 1∕8, the early time regime exponent 𝛼𝑒𝑎𝑟𝑙𝑦 is higher than the
exponent 𝛼 of the second regime. The opposite is however possible for
some lower values of 𝐷𝑎 as shown in Fig. 4.

In conclusion, 𝛼𝑒𝑎𝑟𝑙𝑦 increases with 𝜎𝑓 but not with 𝐷𝑎, this stands
for the fact that the early time regime is dominated by the heterogene-
ity of the permeability but not by the exchange time.

Fig. 5 (Right) represents the corresponding breakthrough curves as
a function of 𝜎𝑓 . For very small 𝜎𝑓 , the tail is similar to a Gaussian
distribution. By increasing 𝜎𝑓 , a retardation tail appears which becomes
a power-law for high heterogeneity values (𝜎𝑓 ≥ 1). Fig. 6 represents
the exponent 𝛽 of the power-law fit (with Eq. (15)) of the tail of the
breakthrough curve as function of 𝜎𝑓 . The exponent decreases with
increasing heterogeneity and tailing becomes very significant.
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o

Fig. 3. Normalized second moment (Left), normalized dispersion coefficient (Right) and breakthrough curve (Bottom) as function of the normalized time for different 𝐷𝑎 values.
The legend is common to all three figures. Other parameters are set to 𝜎𝑓 = 1, 𝛾 = 1 and 𝑃𝑒 = 6.4. At early times, the second moment follows an anomalous dispersion law with
𝐷𝑚
𝐿(𝑡)∕𝐷0 ∝ 𝑡−1+𝛼𝑒𝑎𝑟𝑙𝑦 . After a certain time, the system reaches either a normal dispersion regime at low and high 𝐷𝑎 values or another anomalous dispersion regime characterized

by 𝐷𝑚
𝐿(𝑡)∕𝐷0 ∝ 𝑡−1+𝛼 for intermediate values of 𝐷𝑎. Except for the case 𝐷𝑎 = 0 (no trapping), the breakthrough curves present a retardation tail. For intermediate values of 𝐷𝑎, the

tail follows a power-law given by 𝐵𝐶(𝑡) ∝ 𝑡−𝛽 .
Fig. 4. Exponents 𝛼𝑒𝑎𝑟𝑙𝑦 and 𝛼 obtained by the power-law fit as function of 𝐷𝑎 for the same parameters as in Fig. 3 (Left). Whereas the exponent 𝛼𝑒𝑎𝑟𝑙𝑦 is independent of 𝐷𝑎,
the later time exponent 𝛼 presents a non-monotonic behavior for intermediate 𝐷𝑎 values. Exponent 𝛽 obtained, when applicable (see text), by the power-law fit of the tail of the
breakthrough curve (Right).
d
t

Effect of 𝛾. In this section we investigate the impact of 𝛾, characterizing
the relationship between the permeability and the exchange time: 𝜏 ∝
𝐾𝛾 . Fig. 7 (Left) represents the evolution of the normalized dispersion
coefficient for 𝛾 = −1, 0 and 1 with 𝜎𝑓 = 1, 𝐷𝑎 = 1∕8 and 𝑃𝑒 = 6.4. For
better comparison we set the logarithmic average of the permeability
field exp (𝑓0) equal to one so that the average exchange time is inde-
pendent of 𝛾. From Fig. 7 (Left) it can be seen, that in the late time
regime, dispersion is anomalous for |𝛾| ≠ 0 but is normal for 𝛾 = 0.
The latter is characterized by 𝐷𝑚

𝐿(𝑡)∕𝐷0 ≃ 𝑐𝑜𝑛𝑠𝑡 and corresponds to
case where the permeability is heterogeneous but the exchange time is
homogeneous. For the two cases 𝛾 = ±1, the evolution is characteristic
6

f anomalous dispersion and the breakthrough curve (Fig. 7, Middle)
presents a power-law tailing effect. We note that both, 𝐷𝑚
𝐿(𝑡)∕𝐷0 and

the breakthrough curve, are very similar for 𝛾 = ±1.
Fig. 7 (Right) displays the evolution of the anomalous exponent 𝛼

as function of 𝛾 obtained from the second moment of this data set.
We observe that data points are relatively symmetric with respect to
𝛾 = 0 and increase with |𝛾|. Due to the fact, that the exchange time
istribution is log-normal, exchange time distributions corresponding
o 𝛾 and −𝛾 have the same standard deviation and are thus statistically

equivalent. For 𝛾 > 0 high permeabilities correspond to high exchange
times, whereas in the case of 𝛾 < 0, high permeabilities correspond
to low exchange times. The fact that the curves are very similar, indi-
cates therefore that the anomalous second regime originates from the
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Fig. 5. Normalized variance (Left) and normalized dispersion coefficient(Right) as function of the normalized time for different values of 𝜎𝑓 . Other parameters are set to 𝐷𝑎 = 1∕8,
𝛾 = 1 and 𝑃𝑒 = 6.4. Breakthrough curves for the same parameters (Bottom).

Fig. 6. Exponents 𝛼𝑒𝑎𝑟𝑙𝑦 and 𝛼 as function of the 𝜎𝑓 for the same parameters as in Fig. 5 (Left). Both, 𝛼𝑒𝑎𝑟𝑙𝑦 and 𝛼 vary with 𝜎𝑓 . Exponent 𝛽 of the power-law fit, when applicable
(see text), of the tail of the breakthrough curve (Right).

Fig. 7. Normalized dispersion coefficient for different values of 𝛾 (Left), corresponding breakthrough curves (Middle) and exponents of the power-law fit of the second moment
(Right). Simulations were performed with the following system parameters: 𝛾 = −1, 0, 1 and 𝜎𝑓 = 1, 𝐷𝑎 = 1∕8 and 𝑃𝑒 = 6.4.
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presence of a broad range of characteristic exchange times. However,
this does not depend on whether higher exchange times correspond to
regions of higher or lower permeability. This behavior will be discussed
later by means of the CTRW model.

4. Stochastic transport model

To better understand the physical mechanism at work in this prob-
lem, we derive a stochastic transport model based on the continuous
time random walk (CTRW) approach. The novelty of our approach
lies in the combined modeling of linear kinetic exchange processes
under spatially heterogeneous mass transfer properties and heteroge-
neous hydraulic properties. The derived model is fully predictive in the
sense that the parameters are fully constrained in terms of the system
properties, that is, there are no fitting parameters.

We focus on longitudinal solute transport, that is, in the direction
of the mean pressure gradient. The transport of solute particles in a
heterogeneous porous medium is determined by the spatial variability
of the medium and flow structure. Consequently, particle velocities
and thus particle transport evolve on a characteristic length scale. This
notion is naturally accounted for by the CTRW approach, which models
particle motion as a space time random walk, in which the average
spatial step is constant and the time increment varies according to
the local flow velocity. In the following, we define the trapping rate
𝜔 ≡ 1∕𝜏 as the inverse trapping time. Thus, the evolution of the particle
position 𝑥𝑖 and time 𝑡𝑖 after 𝑖 random walk steps can be written as,

𝑥𝑖+1 = 𝑥𝑖 +
𝛥𝓁
𝜒

+

√

2𝐷0
𝛥𝓁
𝑣𝑖
𝜉𝑖, (16)

𝑡𝑖+1 = 𝑡𝑖 + 𝜏𝑣𝑖 + 𝜃𝑠(𝜏𝑣𝑖 , 𝜔𝑖). (17)

These equations read as follows: Eq. (16) describes the particle position
after 𝑖 random walk steps. The second term on the right side of Eq. (16)
denotes an advective transition over the constant distance 𝛥𝓁∕𝜒 , where
𝛥𝓁 is an increment along a streamline, which is projected onto the
streamwise direction by the advective tortuosity 𝜒 (Comolli et al.,
019). The third term denotes the dispersive transition, which is given
y a unit Gaussian random variable 𝜉 and the amplitude

√

2𝐷0𝛥𝓁∕𝑣𝑖,
hich is the typical dispersion length during the advection time 𝛥𝓁∕𝑣𝑖
ith 𝑣𝑖 the particle speed at step 𝑖. Eq. (17) describes the particle time
fter 𝑖 steps. The second term denotes the purely advective transition,
hich is given by

𝑣𝑖 =
𝛥𝓁
𝑣𝑖
. (18)

he single point distribution of 𝜏𝑣 is denoted by 𝜓𝑣(𝑡). It is defined
elow in terms of the distribution of flow speeds. The third term 𝜃𝑠
n the right side of Eq. (17) denotes the total trapping time, where
he particle can be immobilized many times, with rate 𝜔𝑖, during an
dvective step of duration 𝜏𝑣𝑖 . The discretization length 𝛥𝓁 should be
maller than the characteristic length scales, that is, the correlation
cales of the underlying disorder.

We note that 𝜃𝑠 depends on 𝜏𝑣, as the probability to trapped many
imes increases with the advective time. In the following, we first
ummarize the modeling of the velocity transitions for a physically
eterogeneous medium. Then, we derive the stochastic representation
f spatially variable linear kinetic sorption.

.1. Velocity process

The velocity process, defined as the series of particle speeds {𝑣𝑖}, is
odeled as a stationary Markov process (Dentz et al., 2016; Morales

t al., 2017; Comolli et al., 2019) whose steady-state distribution
𝑠(𝑣) is equal to the flux-weighted Eulerian flow speed, 𝑣𝑒, distribu-
ion (Dentz et al., 2016)

𝑠(𝑣) =
𝑣𝑝𝑒(𝑣) . (19)
8

⟨𝑣𝑒⟩ p
Fig. 8. Probability distribution function for the normalized Eulerian velocity resulting
from the simulation with 𝜎𝑓 = 1.

The distribution 𝜓𝑣(𝑡) of advective transition times is given in terms of
𝑝𝑠(𝑣) and 𝑝𝑒(𝑣) as

𝑣(𝑡) =
𝛥𝓁
𝑡2
𝑝𝑠(𝛥𝓁∕𝑡) =

𝛥𝓁2

𝑡3
⟨𝑣𝑒⟩𝑝𝑒(𝛥𝓁∕𝑡). (20)

elation (19) can be understood as follows. The Eulerian speed distri-
ution 𝑝𝑒(𝑣) is equal to the steady state distribution of isochronically
ampled flow speed, which is a direct consequence of the incompress-
bility of the flow. The particle speeds in the CTRW, on the other hand,
re sampled equidistantly along trajectories, that is, low velocities are
ampled less often than for isochronic sampling, which is the reason
or the flux-weighting in relation (19). This is discussed in detail
y Comolli et al. (2019). The speed distribution 𝑝𝑒(𝑣) is approximately
og-normal,

𝑒(𝑣) =
exp

[

− (ln 𝑣−𝜇𝑒)2

2𝜎2𝑒

]

𝑣
√

2𝜋𝜎2𝑒
, (21)

nd can be seen in Fig. 8. From relation (19), we find that 𝑝𝑠(𝑣) is also
og-normal with the log-mean given by 𝜇𝑠 = 𝜇𝑒 + 𝜎2𝑒 and the same log-
ariance 𝜎2𝑒 as 𝑝𝑒(𝑣). This implies that the distribution 𝜓𝑣(𝑡) is also a
og-normal.

Particle transitions between successive particle speeds are charac-
erized by the conditional probability 𝑝(𝑣, 𝛥𝓁|𝑣′), which depends on
he space increment 𝛥𝓁. That is, the particle speed 𝑣𝑛+1 is drawn from
(𝑣, 𝛥𝓁|𝑣′) given the value 𝑣′ of the particle speed 𝑣𝑛 after 𝑛 steps.
ollowing Morales et al. (2017), we model 𝑝(𝑣, 𝛥𝓁|𝑣′) by the conditional
og-normal distribution

(𝑣, 𝛥𝓁|𝑣′) =
exp

[

− (ln 𝑣−𝜇𝑠−ln 𝑣′[1−exp(−𝛥𝓁∕𝓁𝑐 )])2

2𝜎2𝑒 [1−exp(−2𝛥𝓁∕𝓁𝑐 )]

]

𝑣
√

2𝜋𝜎2𝑒 [1 − exp(−2𝛥𝓁)∕𝓁𝑐 ]
, (22)

here 𝓁𝑐 denotes the correlation length of flow speeds.
The distribution 𝑝0(𝑣) of initial particle speeds 𝑣0 depends on the

oundary or initial condition. Here, particles are injected uniformly
ver a line perpendicular to the mean flow velocity. This implies that
0(𝑣) = 𝑝𝑒(𝑣) (Comolli et al., 2019).

.2. Linear kinetic exchange process under spatially heterogeneous mass
ransfer properties

In a particle-based framework, linear kinetic mass exchange pro-
esses can be modeled as a compound Poisson process (Feller, 1968).
everal authors (Margolin et al., 2003; Benson and Meerschaert, 2009;
omolli et al., 2016; Hyman and Dentz, 2021) have used this ap-
roach to model multirate mass transfer and matrix-diffusion under
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spatially homogeneous linear mass transfer properties. Based on the
compound Poisson process, we derive here a novel CTRW approach for
heterogeneous mass transfer systems.

The trapping of particles during a random walk step occurs at rate
𝜔 = 1∕𝜏 such that the average number of trapping events during the
dvection time 𝜏𝑣 is given by 𝜔𝜏𝑣. The number 𝑛 of trapping events is

then distributed according to the Poisson distribution

𝑝𝑛(𝜏𝑣, 𝜔) =
(𝜔𝜏𝑣)𝑛 exp(−𝜔𝜏𝑣)

𝑛!
. (23)

The total trapping time 𝜃𝑠(𝜏𝑣, 𝜔) during a random walk step is given
y

𝑠(𝜏𝑣, 𝜔) =
𝑛
∑

𝑗=1
𝜗𝑗 , (24)

here 𝜗𝑗 is the trapping time for the 𝑗th sorption event. The 𝜗𝑗 are
ndependent, exponentially distributed according to

(𝜗) = 𝜔𝜙𝐷 exp(−𝜔𝜙𝐷𝜗) (25)

ith 𝜙𝐷 being the ratio of the immobile volume over the mobile one.
he total trapping time 𝜃𝑠 describes a compound Poisson distribu-
ion (Feller, 1968). Its distribution can be expressed in Laplace space
s (see Appendix D)

∗
𝑐 (𝑠|𝜏𝑣, 𝜔) = exp

[

−𝜔𝜏𝑣

(

1 −
𝜔𝜙𝐷

𝜔𝜙𝐷 + 𝑠

)]

, (26)

here 𝑠 is the Laplace parameter. The Laplace transform is defined
n Abramowitz and Stegun (1972). The inverse Laplace transform of
xpression (26) can be evaluated explicitly and is given by Bateman
1954, p. 244)

𝑐 (𝑡|𝜏𝑣, 𝜔) = exp(−𝜔𝜏𝑣)𝛿(𝑡) + exp[−𝜔(𝜏𝑣 + 𝑡𝜙𝐷)]𝜔
√

𝜏𝑣𝜙𝐷
𝑡

I1
(

2
√

𝜔𝜙𝐷𝑡𝜔𝜏𝑣
)

,

(27)

here I1(𝑡) is the modified Bessel function of the first kind. The first
erm denotes the probability that no exchange event occurs, in which
ase the trapping time is zero. Fig. 9 shows the behavior of 𝜓𝑐 (𝑡, 𝜏𝑣, 𝜔)

for 𝜔 = 1, 𝜙𝐷 = 1 and different 𝜏𝑣.
From these expressions, one can deduce several statistical proper-

ties. From the moment generating function Eq. (26), one can infer the
mean and variance of the total trapping time:

𝜃̄𝑠(𝜏𝑣, 𝜔) =
𝜏𝑣
𝜙𝐷

(28)

(𝜃𝑠 − 𝜃̄𝑠)2(𝜏𝑣, 𝜔) =
2𝜏𝑣
𝜔𝜙2

𝐷

=
2𝜏𝑣𝜏
𝜙2
𝐷

(29)

The first relation shows that the average total trapping time 𝜃𝑠, depends
only on the advective time 𝜏𝑣 and not on the exchange time 𝜏. This
counter-intuitive result can be understood from the fact that 𝜔 = 1∕𝜏
controls both the number of trapping events during the advection time
and the duration of each. The two effects compensate each other since
a higher 𝜏 means longer trapping times but also fewer trapping events.
The second relationship shows that the width of the distribution is
impacted by both the advection time and the exchange time. This can
also be understood from the fact that the total exchange time during 𝜏𝑣
is the sum of 𝑛 trapping times. The variance is thus proportional to 𝑛𝜏2
with 𝑛 = 𝜏𝑣∕𝜏.

Another important quantity is the total trapping time distribution
tail. In Eq. (27) the limit of 𝑡 ≫ (𝜔𝜙𝐷)−1, 𝜓𝑐 (𝑡|𝜏𝑣, 𝜔) becomes also
independent of 𝜔 and can be approximated by 𝜓𝑐 (𝑡|𝜏𝑣, 𝜔) = 𝛿(𝑡 −
𝜏𝑣∕𝜙𝐷), which means that 𝜃𝑠(𝜏𝑣, 𝜔) ≈ 𝜏𝑣∕𝜙𝐷 for large values. The
longest exchange times are therefore controlled by the advection time
only. Furthermore, we can infer that the tail of the distribution is a
9

log-normal.
Fig. 9. Distribution 𝜓𝑐 (𝑡|𝜏𝑣 , 𝜔) of exchange times for 𝜔 = 1, 𝜙𝐷 = 1 and 𝜏𝑣 = 1, 4, 10.

.3. Model parameterization

Here, we discuss the parameterization of the upscaled model in
erms of the statistical medium description, which is essential as our
TRW approach is not based on a fitting procedure.

.3.1. Linear kinetic mass exchange
First, we consider the exchange process. The model assumes that

he exchange rates 𝜔𝑖 are independent identically distributed random
ariables. Their distribution 𝑝𝜔(𝜔) is given in terms of the distribution
f permeability 𝑝𝐾 (𝑘) through the relation 𝜔 = 1∕𝜏 = 1∕(𝐴𝐾𝛾 ),

𝜔(𝜔) =
𝛾

𝐴1∕𝛾𝜔1∕𝛾+1
𝑝𝐾 [1∕(𝐴𝜔)1∕𝛾 ]. (30)

hat is, it is fully constrained here by the point distribution of per-
eability, and the parameter of the direct model. There is no fitting
arameter.

.3.2. Velocity process
Second, we consider the process of particle speeds, which is defined

y the conditional log-normal distribution Eq. (22) and the log-normal
istribution Eq. (21) of Eulerian flow speeds. Thus, the speed process
s parameterized by the mean 𝜇𝑒 and variance 𝜎2𝑒 of the Eulerian
low speed, as well as the correlation length 𝓁𝑐 . These parameters
an be constrained by perturbation theory in the fluctuations of ln𝐾
or low and moderate heterogeneity characterized by 𝜎2𝑓 lower than
r of the order of one. For strong heterogeneity, empirical relations
or the Eulerian speed distribution and correlation length need to be
sed (Gotovac et al., 2009; Hakoun et al., 2019; Comolli et al., 2019).

To determine the model parameters by perturbation theory, we
otice, that 𝜇𝑒 and 𝜎2𝑒 for the log-normal distribution are related to the
ean 𝑣 and variance 𝜎2𝑣 of the Eulerian flow speed by

𝜇𝑒 = ln

⎛

⎜

⎜

⎜

⎝

𝑣2
√

𝑣2 + 𝜎2𝑣

⎞

⎟

⎟

⎟

⎠

(31)

2
𝑒 = ln

(

1 +
𝜎2𝑣
𝑣2

)

(32)

The mean flow speed 𝑣 and its variance 𝜎2𝑣 can be expressed in terms
f the mean 𝑓0 and variance 𝜎2𝑓 of 𝑓 = ln𝐾 by Cvetkovic et al. (1996)

𝑣 = exp(𝑓0)∇𝑝 (33)

𝜎2𝑣 = 3
8
𝜎2𝑓 𝑣

2 (34)
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Fig. 10. Second moment as a function of time for different values of 𝐷𝑎 with 𝜎𝑓 = 1. Solid line: LB simulation, red symbols: CTRW simulations. The red dashed line represents a
linear trend 𝜎2 ∝ 𝑡.
where ∇𝑝 is the mean hydraulic gradient. Thus, expressions (31)–
34) constrain the speed distribution in terms of the 𝐾 distribution.
imilarly, we can relate the speed correlation 𝓁𝑐 to the correlation
ength of 𝜆 of 𝑓 by 𝓁𝑐 =

√

𝜋 4𝜆∕3, where 𝜆 is the correlation length
of permeability (Cvetkovic et al., 1996; Comolli et al., 2019), see also
Appendix A. The advective tortuosity 𝜒 is given by the ratio between
the mean Eulerian speed 𝑣𝑒 and the mean streamwise velocity 𝑢, 𝜒 =
𝑣𝑒∕𝑢. Thus, all parameters of the upscaled model are constrained by
low and medium properties. There are no fitting parameters. Note
hat the upscaled model does not represent the correlation between
ermeability and exchange rate expressed in the detailed model by
q. (3). Here, particle velocity on one hand, and exchange rate on the
ther are independent.

.4. Transport predictions with the upscaled CTRW model

In this section, we compare the predictions of the upscaled CTRW
o the detailed numerical simulations for three transport scenarios
haracterized by 𝜎𝑓 = 1 and 𝐷𝑎 = 1.25×10−1, 6.25×10−2 and 2.5×10−2.
he coupling parameter 𝛾 between permeability and exchange time

s set to 𝛾 = 1. The correlation length of 𝑓 = ln𝐾 is 𝜆 = 4 in
rbitrary units, the mean of ln𝐾 is 𝑓0 = 0, and the mean pressure
radient is unity. The upscaled CTRW model is parameterized based
n these characteristics as outlined in Section 4.3. The numerical
mplementation of the upscaled model described here is efficient and
llows to achieve simulation times otherwise prohibitive for the direct
umerical LB simulations.

patial moments and breakthrough curve. The position of a mobile par-
icle in the CTRW framework is given by

(𝑡) = 𝑥𝑛𝑡 + 𝑣𝑛𝑡 (𝑡 − 𝑡𝑛𝑡 ), (35)

here 𝑛𝑡 = max(𝑛|𝑡𝑛 ≤ 𝑡). A particle is considered mobile if 𝑡−𝑡𝑛𝑡 ≤ 𝓁∕𝑣𝑛𝑡 .
he second centered longitudinal moment is then defined by
2(𝑡) = ⟨𝑥(𝑡)2⟩ − ⟨𝑥(𝑡)⟩2, (36)

here the angular brackets denote the average over all mobile particles
t time 𝑡. The breakthrough curve 𝐵𝐶𝐿(𝑡) is defined in terms of the
rrival times of a particle at distance 𝐿 from the inlet. The arrival 𝜏𝐿
s given by

𝐿 = min(𝑡|𝑥𝑛𝑡 ≥ 𝐿). (37)

he breakthrough curve is then given by the distribution of arrival
imes as

𝐶𝐿(𝑡) = ⟨𝛿[𝑡 − 𝜏𝐿(𝑥)]⟩. (38)

.4.1. Pre-asymptotic regime
Fig. 10 shows the spatial variance normalized by the square of

he correlation length for different values of 𝐷𝑎 obtained from the LB
imulations (solid line) and from the stochastic CTRW model (symbols).
ig. 11 displays the normalized dispersion coefficient and Fig. 12 the
reakthrough curve. It can bee seen that, albeit a slight offset at
10
Fig. 11. Normalized dispersion coefficient for different values of 𝐷𝑎 with 𝜎𝑓 = 1. Solid
line: LB simulation, red symbols: CTRW simulations.

the beginning, all CTRW predictions agree very well with the direct
numerical simulations. From these agreements between the LBM and
CTRW, several conclusions can be drawn.

We recall that in the CTRW model, the advection rate and exchange
time are drawn independently which is a strong assumption in contrast
to the direct simulations where permeability and exchange rate are
related by Eq. (3). The distributions of 𝐾 and 𝜏 of the CTRW model are
however related through the exponent 𝛾. The good agreement between
the two approaches indicates that the results are independent of the
correlation between 𝜏 and 𝐾. However, the results are strongly influ-
enced by the distribution shape of the two quantities (especially their
width related by 𝛾). The last two points explain the above mentioned
LBM result that the transport was not affected by the sign of 𝛾 but only
by its magnitude. Indeed, distributions with opposite signs of 𝛾 have
the same log-normal shape, but the 𝐾 and 𝜏 fields are anti-correlated.

As discussed in the introduction, anomalous dispersion is generally
related to a broad distribution of transition times used in the CTRW
approach. In our model, there are two contributions to this transition
time. The first one is the advection time whose distribution width is
directly related to the permeability heterogeneity, 𝜎𝑓 . This contribution
is responsible for the earlier anomalous behavior 𝛼𝑒𝑎𝑟𝑙𝑦 (see Fig. 2).
The second one is the waiting time due to sorption. This waiting
time distribution depends on both the velocity heterogeneity and the
exchange time heterogeneity as described by Eq. (27). Physically, this
means that in low velocity regions, particles have more time to be
trapped and untrapped. Both 𝜎𝑓 and 𝜎𝑔 then contribute to the second
anomalous behavior, which is also very well captured by the model.

Another indication from these model results is more technical. An
important issue when doing direct stochastic numerical simulations is
the size of the system which must be representative. This problem does
not exist for the CTRW as it is a 1D problem. The good agreement of
the results of the two approaches thus shows that the size used in the
LBM simulations is sufficiently large for this type of heterogeneity.
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Fig. 12. Breakthrough curves for different values of 𝐷𝑎 with 𝜎𝑓 = 1. Solid line: LB simulation, red symbols: CTRW simulations.
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4.4.2. Asymptotic regime
The stochastic CTRW model is very efficient because it depends

only on point-distributions of the statistical medium properties. Once
validated, it allows predictions on very large time scales. In particular,
it shows that at very large time the variance scales asymptotically
linearly with time, i.e., asymptotically dispersion is normal. This is
also reflected in the evolution of the normalized dispersion coefficient
𝐷𝑚
𝐿(𝑡) which converges towards a constant asymptotic value (Fig. 11).

Consequently, the power-law behavior, characterized by 𝛼, identified
in the previous section is rather a transient than a true power-law
regime. In fact, the distribution 𝜓𝑣(𝑡) of the advective transition times
is log-normal. Similarly, large exchange times can be approximated by
𝜃𝑠(𝜏𝑣, 𝜔) ≈ 𝜏𝑣∕𝜙𝐷 as outlined in Section 4.2, that is, the long-time
behavior of the exchange time distribution is also log-normal. This
implies that transport is asymptotically normal (Berkowitz et al., 2006)
with possible power-law cross-over behaviors as shown in Section 3.2.

Finally, it can be noted that the dispersion coefficient given by
𝐷𝑒𝑓𝑓 ∝ lim𝑡→∞𝐷𝑚

𝐿(𝑡)∕𝐷0 decreases with 𝐷𝑎. Indeed, as for the homo-
geneous case (see Appendix C), lower values of 𝐷𝑎 lead to stronger
spreading inducing higher values of 𝐷𝑚

𝐿(𝑡)∕𝐷0 in the asymptotic regime.
From Fig. 11 it can be seen, that convergence times to reach the asymp-
totic Gaussian regime are very long. Additionally, this time depends
moderately on the Damköhler number 𝐷𝑎.

In conclusion, our CTRW model allows robust predictions for all
cases we considered, and provides an efficient approach for transport
predictions under conditions that are prohibitive for direct numerical
simulations.

5. Conclusion

In this article, we have studied transport in a heterogeneous porous
medium with a spatially varying permeability field combined with
the exchange between mobile and immobile regions. To model the
coupling between the exchange and the local structure, we assumed
the following relation between the local permeability 𝐾 and the local
exchange time: 𝜏 ∝ 𝐾𝛾 . We performed LBM simulations in a large
two-dimensional system to study the heterogeneity-induced large-scale
transport behavior. The transport behavior is upscaled using a new
CTRW approach. The impact of spatial variations in flow velocity and
exchange times are modeled in terms of a spatial Markov process for the
particle speeds and a compound Poisson process for the mass exchange
kinetics. The upscaled model is fully determined by the statistics of
permeability and exchange parameters. It has no fitting parameter.

We investigated the influence of the Damköhler number 𝐷𝑎, the
variance 𝜎2𝑓 of 𝑓 = ln𝐾 and the value of the coupling exponent 𝛾 on
the temporal evolution of the solute distribution and the breakthrough
curves. In the short and intermediate time range, we observed transient
anomalous regimes which are characterized by power-law tails of the
solute breakthrough curves and a power-law evolution of the spatial
variance of the solute distribution. Whereas the short time power-
law regime, 𝛼𝑒𝑎𝑟𝑙𝑦, is strongly dependent on the heterogeneity of the
permeability field, the intermediate regime, 𝛼, is mostly dependent on
both the exchange time and permeability distribution. The latter regime
11

c

becomes more important for large distributions of 𝜏. In particular, we
observe an increase in the power-law exponent 𝛼 for a specific range
of 𝐷𝑎. In the asymptotic limit, the upscaled CTRW model predicts
that the transport behavior becomes Fickian. The resulting dispersion
coefficient 𝐷𝑒𝑓𝑓 decreases with increasing 𝐷𝑎. We find that the time to
ttain the asymptotic limit depends on 𝐷𝑎.

We also observe that the time to reach the asymptotic regimes in
eterogeneous porous media (for 𝜎𝑓 = 1) is two orders of magni-
ude higher than the respective time in the homogeneous case (see
ppendix C). Thus, the difference in convergence time strongly depends
n 𝜎𝑓 . Indeed, for a given average value of 𝐷𝑎, it is expected that the
onvergence time depends on the largest values of the exchange time
istribution which increase with 𝜎𝑓 .

The upscaled CTRW model provides robust predictions of the behav-
or observed in the direct numerical simulations. It relates the observed
ransport behaviors to the distribution of permeability, which controls
he distributions of the advective times and the exchange times between
obile and immobile regions. An important advantage of using the
TRW model lies in the fact that the asymptotic limit of the transport
ehavior can be reached in a very short computation time. For instance,
he computation times for the CTRW models is on the order of minutes
sing one core on a 2 GHz Quad-Core Intel Core i5 processor. In
omparison, using a similar architecture, the LBM code would require
bout 2–3 days to compute 𝐷𝐿(𝑡) and about 2 weeks to compute the
𝐶 curve.

The good agreement of the CTRW with the direct simulations re-
eals several aspects of the transport process. First, the non-Gaussian
re-asymptotic regime is determined by a broad distribution of the total
rapping times, which results from the coupling between the hetero-
eneities of the velocity field and the exchange time. This coupling is
ue to the fact that in low velocity zones, the particles have a greater
robability of being trapped many times. An interesting result is that
he correlation between the permeability field and the exchange time
as no influence on the transport because the two quantities are drawn
ndependently in the CTRW. This is also confirmed by the similarity
etween the results of 𝛾 = −1 and 𝛾 = 1.

Also, the CTRW predicts that transport is asymptotically Fickian.
he evolution of the spatial variance is characterized by a broad pre-
symptotic cross-over behavior that may be characterized by a power-
aw. Finally, long lasting pre-asymptotic regimes could potentially
xplain the experimentally observed non-Gaussian behavior. Indeed,
he experimental time is usually limited by the size of the sample.

e were able to show that even for weakly heterogeneous media, the
on-Gaussian pre-asymptotic regime could have a significant duration
ecause of the heterogeneity of the exchange time.

In future works a challenging task will be to simulate transport in
ore realistic structures. Indeed, many geological structures are more

omplex and display a higher heterogeneity. Also, investigating trans-
ort in anisotropic or stratified structure will provide crucial knowledge
or a better comprehension of pollutant transport in more complex
ubsurfaces. Moreover, in the present work, we used a constant and
sotropic dispersion tensor, independent of the local velocity. This

an be considered as a strong assumption. Indeed, if low velocity
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regions are also characterized by a low dispersion coefficient, the
residence time would increase in these regions. This coupling would
then also affect the global transport. In a future work, it could there-
fore be interesting to evaluate the influence of a heterogeneous and
velocity-dependent dispersion tensor.
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Appendix A. Correlation length of particle velocity

The correlation length of particle velocity can be determined from
perturbation theory following Cvetkovic et al. (1996) and
Dagan (1989). The longitudinal macrodispersion coefficient can be
written as

𝐷∗
𝐿 = ∫

∞

0
𝑑𝑡𝐶𝑣(𝑡), (A.1)

where 𝐶𝑣(𝑡) is the Lagrangian velocity covariance. This expression can
also be written as

𝐷∗
𝐿 = 𝜎2𝑣𝜏𝑐 , 𝜏𝑐 =

1
𝜎2𝑣 ∫

∞

0
𝑑𝑡𝐶𝑣(𝑡), (A.2)

where 𝜎2𝑣 is the velocity variance. The correlation time 𝜏𝑐 = 𝓁𝑐∕𝑢, where
𝑢 is the mean flow velocity and 𝓁𝑐 is the correlation length. Thus, we
obtain

𝓁𝑐 =
𝐷∗
𝐿𝑢

𝜎2𝑣
. (A.3)

Perturbation theory gives 𝜎2𝑣 = (3∕8)𝜎2𝑓 𝑢
2. For the Gaussian covariance

function employed in this study, the macrodispersion coefficient is

𝐷∗
𝐿 =

√

𝜋
2
𝜆𝑢𝜎2𝑓 . (A.4)

Thus, we obtain for the correlation length 𝓁𝑐

𝓁𝑐 =

√

𝜋4𝜆
3

. (A.5)

Appendix B. Numerical method: Two-relaxation-time Lattice
Boltzmann method

The Darcy–Brinkmann equation as well as the equations of the
Mobile–Immobile Model are solved using a Two-Relaxation-Time (TRT)
Lattice Boltzmann scheme, which is summarized in the following. For
more details, we refer to Ginzburg et al. (2008, 2015) considering the
resolution of the velocity field and to Ginzburg and d’Humi‘eres (2010)
for the Advection–Diffusion equation.

B.1. Darcy–Brinkmann equation

In a first step, we provide the fundamentals of LB and the numerical
scheme to solve the Darcy–Brinkmann equation given by
12

m

𝜌𝜈
𝐾(𝑟)

𝑢 − ∇⃗𝑃 + 𝜌𝜈𝛥𝑢 = 0⃗, (B.1)

here 𝜈 is the kinematic viscosity, 𝜌 the density of the fluid and 𝑃 the
ressure field.

The principle of the Lattice Boltzmann Method (LBM) lies in the
articular discretization of the Boltzmann equation. Both, space (2D in
he present work) and particle velocities are discretized on a regular
rid. The nodes of the grid are related by the velocity vectors 𝑐𝑞
ith 𝑞 ∈ [0, 𝑄] (𝑄 = 9 here) and particles can only move with
elocities 𝑐𝑞 . The population 𝑓𝑞(𝑟, 𝑡) is defined as the density of particles
aving the velocity 𝑐𝑞 at the position 𝑟. LBM schemes are based on
he decomposition of the temporal evolution of the particle density
n two specific steps. The first step is the collision, where the density
opulations 𝑓𝑞 meeting at the same position are redistributed according
o a relaxation equation: 𝑓𝑞(𝑟, 𝑡) = 𝑓𝑞(𝑟, 𝑡)−𝑠(𝑓𝑞(𝑟, 𝑡)−𝑓

𝑒𝑞
𝑞 (𝜌, 𝑢)), where 𝑓𝑞

enotes the post-collision populations. 𝑠 is a relaxation parameter and
𝑒𝑞
𝑞 designates an equilibrium state depending on the local macroscopic
ariables (density, velocity, permeability, etc.).

The second step is the ‘‘propagation’’. In this step, all populations
re displaced on the grid according to their velocity: 𝑓𝑞(𝑟 + 𝑐𝑞 , 𝑡 + 1) =
𝑞̃(𝑟, 𝑡).

The principle of the TRT scheme lies in the modification of the
ollision step by introducing two different relaxation parameters 𝑠+
nd 𝑠− for the odd and even components of the population densities.
he even and odd components are defined as: 𝑓+

𝑞 = (𝑓𝑞 + 𝑓𝑞)∕2 and
−
𝑞 = (𝑓𝑞 − 𝑓𝑞)∕2 where 𝑞 denotes the opposite velocity direction to 𝑞.
he collision becomes then:

𝑞̃(𝑟, 𝑡) = 𝑓𝑞 − 𝑠+𝑛+𝑞 − 𝑠−𝑛−𝑞 with 𝑞 = 0…4 (B.2)

̃𝑞(𝑟, 𝑡) = 𝑓𝑞 − 𝑠+𝑛+𝑞 + 𝑠−𝑛−𝑞 with 𝑞 = 0…4, (B.3)

with 𝑛±𝑞 = (𝑓±
𝑞 − 𝑒±𝑞 ). 𝑒±𝑞 are the equilibrium functions which

haracterize the physical equations to be solved.
In the case of the Darcy–Brinkmann equation the equilibrium func-

ions depend on the following local macroscopic quantities:

• Pressure:

𝑃 = 𝑐2𝑠 𝜌 = 𝑐2𝑠
∑

𝑞∈[0,𝑄]
𝑓𝑞 ,

where 𝑐𝑠 is the numerical sound speed (𝑐2𝑠 = 1∕3, here).
• Local velocity:

𝑢 = 1
𝜌0

2𝐽
2 + 𝜈

𝐾

,

with

𝐽 =
∑

𝑞∈[0,𝑄]
𝑓𝑞𝑐𝑞 .

The equilibrium functions are given by Ginzburg et al. (2015):

𝑒0 = 𝜌 − 2
4
∑

𝑞=1
𝑒+𝑞 , (B.4)

+
𝑞 = 𝑡𝑞𝑃 (𝜌), (B.5)
−
𝑞 = 𝜌0𝑡𝑞(𝑢.𝑐𝑞 − 𝛬− 𝜈

𝐾
𝑐𝑞 .𝑢), (B.6)

where 𝑡𝑞 are coefficients depending on the direction. Here, we use
𝑞 = 1∕3 for the first neighbors and 𝑡𝑞 = 1∕12 for the second neighbors

(diagonal). 𝜌0 is a fixed averaged density (𝜌0 = 1, here) and 𝛬− a
parameter depending on the odd relaxation time:

𝛬− = 1
𝑠−

− 1
2
. (B.7)

The scheme requires the determination of the two relaxation parame-
ters 𝑠+ and 𝑠−. For numerical reasons (precision, stability), it is however

ore convenient to prescribe the viscosity 𝜈 and a numerical parameter
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Fig. B.13. Examples of the permeability field (left) and velocity field (right) for the parameter 𝜎𝑓 = 1, 𝜆 = 4, 𝐾0 = 1.
𝛬 = 𝛬+𝛬−. The two-relaxation parameters are then deduced using the
relations: 𝑠+ = 2

6𝜈+1 and 𝑠− = 2
2𝛬
3𝜈 +1

.

𝛬 essentially controls the numerical error of the scheme (Ginzburg
et al., 2008, 2015), it is set to 𝛬 = 0.25 in this work.

Advection–diffusion–reaction equation (ADRE). A TRT scheme is also
used to solve the advection–diffusion–reaction equation:

𝜕𝐶𝑚
𝜕𝑡

+ 𝑢.∇⃗𝐶𝑚 = 𝐷𝛥𝐶𝑚 + 𝑅, (B.8)

where 𝑅 = − 1
𝜏 (𝐶𝑚 − 𝐶𝑖𝑚) is the source term. The principle is identical

to the TRT scheme used for the resolution of the flow equation. In this
case 𝑔𝑞(𝑟, 𝑡) represent the densities of particles having the velocity 𝑐𝑞 at
the position 𝑟. The collision step is also similar:

𝑔̃𝑞(𝑟, 𝑡) = 𝑔𝑞 − 𝑠+(𝑔+𝑞 − 𝑒+𝑞 ) − 𝑠
−(𝑔−𝑞 − 𝑒−𝑞 ) with 𝑞 = 0…4 (B.9)

𝑔̃𝑞(𝑟, 𝑡) = 𝑔𝑞 − 𝑠+(𝑔+𝑞 − 𝑒+𝑞 ) + 𝑠
−(𝑔−𝑞 − 𝑒−𝑞 ) with 𝑞 = 0…4. (B.10)

In presence of a source term, the local concentration is given by:

𝐶𝑚 =
∑

𝑞∈[0,𝑄]
𝑔𝑞 +

𝑅
2
. (B.11)

Here also, it is convenient to introduce 𝛬± = 1
𝑠± −

1
2 . The main difference

with the TRT scheme used for the resolution of the velocity field lies
in the equilibrium functions 𝑒±𝑞 :

𝑒+𝑞 = 𝐶𝑒𝑞
[

𝑡𝑞𝑐
2
𝑠 +

1
4
(𝑢2𝑥 − 𝑢

2
𝑦)𝑝

𝑥𝑥
𝑞 + 1

4
𝑢𝑥𝑢𝑦𝑝

𝑥𝑦
𝑞

+ 1
12

(𝑢2𝑥 + 𝑢
2
𝑦)

]

for 𝑞 = 1…𝑄 (B.12)

𝑒−𝑞 = 𝑡𝑞𝐶
𝑒𝑞(𝑢.𝑐) for 𝑞 = 1…𝑄 (B.13)

𝑒+0 = 𝐶𝑒𝑞 −
∑

𝑞∈[1,𝑄]
𝑒+𝑞 (B.14)

where we defined 𝐶𝑒𝑞 = 𝐶𝑚 + 𝛬+𝑅, 𝑝𝑥𝑥𝑞 = 𝑐2𝑞𝑥 − 𝑐2𝑞𝑦, 𝑝
𝑥𝑦
𝑞 = 𝑐𝑞𝑥𝑐𝑞𝑦.

The diffusion coefficient is then given by 𝐷 = 𝑐2𝑠𝛬
−. The coefficient

𝑐2𝑠 is a constant parameter and the directional coefficients 𝑡𝑞 are now
equal to 1∕4 for the first neighbors and 1∕8 for the diagonal links. The
numerical scheme thus requires the definition of the parameters 𝐷, 𝑐2𝑠
and 𝛬 = 𝛬+𝛬−. In this study, we used 𝑐2𝑠 = 0.2 and 𝛬 = 0.2.

Real time and space data are related to non-dimensional and Lattice
Boltzmann variables as follows :

𝑡𝑎𝑑𝑖𝑚 =
𝑢2𝐿𝐵
𝐷𝐿𝐵

𝑡𝐿𝐵 (B.15)

𝑡𝑟𝑒𝑎𝑙 =
𝐷𝑟𝑒𝑒𝑙
2

𝑡𝑎𝑑𝑖𝑚 (B.16)
13

𝑢𝑟𝑒𝑎𝑙
Simulation details. We used a porous medium of size 1024 × 512.
Flow in 𝑥-direction is driven by a body force and periodic boundary
conditions are applied in the 𝑥- and 𝑦-direction. We supposed 𝐾0 = 1
in the Brinkmann equation. The boundary condition for the tracer are
𝑐 = 0 at the inlet and 𝜕𝐶𝑚

𝜕𝑥 = 0 at the outlet. After reaching the steady
state for the flow, we impose a pulse of concentration at a position
slightly after the inlet: 𝑥 = 10 𝑝𝑥.

Fig. B.13 shows a zoom of the permeability field (Left) and the
velocity field (Right). Figures are given for the following parameters:
𝜎𝑓 = 1, 𝜆 = 4, 𝐾0 = 1.

Appendix C. Homogeneous porous media

In this section, we present results of transport governed by the
Mobile Immobile model in a homogeneous porous medium (𝜎𝑓 = 0).
In this case, analytical solutions of Eqs. (5) have been determined by
Goltz and Roberts (1987), showing that transport becomes Gaussian
(Fickian) for large time. By comparison, these results allow further
comprehension of transport in heterogeneous porous media but also
the validation of the Lattice Boltzmann algorithm.

For homogeneous porous media, the governing equations can be
non-dimensionalized with 𝑥′ = 𝑥 𝑢

𝐷0
and 𝑡′ = 𝑡 𝑢

2

𝐷0
. It follows:

⎧

⎪

⎨

⎪

⎩

𝜕𝐶𝑚
𝜕𝑡′ + 𝜙𝐷

𝜕𝐶𝑖𝑚
𝜕𝑡′ + ∇⃗′𝐶𝑚 = ∇2𝐶𝑚

𝜕𝐶𝑖𝑚
𝜕𝑡′ = 𝐷𝑎

𝑃𝑒 (𝐶𝑚 − 𝐶𝑖𝑚).
(C.1)

The equations are now governed by only two dimensionless parameters,
𝜙𝐷 and 𝛹 = 𝑃𝑒∕𝐷𝑎 = 𝑢2𝜏𝜙𝐷

𝐷0
.

Second spatial moment of the concentration profile and breakthrough curve.
Fig. C.14 shows the averaged concentration profiles of the mobile and

Fig. C.14. Mobile (plain) and total (dashed) concentration profiles for the
homogeneous porous medium at different times for 𝛹 = 𝑃𝑒∕𝐷𝑎 = 25 (Left).
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Fig. C.15. Evolution of the normalized dispersion coefficient 𝐷𝑚
𝐿(𝑡)∕𝐷0 as function of time (homogeneous porous medium) for different values of 𝛹 = 𝑃𝑒∕𝐷𝑎 (Left). For all

arameters, transport becomes normal after a specific time, 𝜏𝑐𝑜𝑛𝑣, which depends on 𝛹 (Right).
Fig. C.16. Normalized effective dispersion coefficient for a homogeneous porous medium as function of 𝛹 . Crosses correspond to the simulations and the red line stands for the
nalytical solution given in Eq. (C.3) (Left). Relative error of the dispersion coefficient as function of 𝛹 (Right).
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he total concentration at different times. The corresponding break-
hrough curve is given in Fig. C.14. For short times, the concentration
rofiles have a slightly asymmetrical bell shape, which is due to the
nitial condition (very sharp Gaussian distribution), but also to the fact
hat transport is dominated by molecular diffusion as the influence
f trapping events on transport is negligible. Then, for slightly larger
ime intervals, the concentration profiles become asymmetric as the
nfluence of trapping and advection on tracer transport becomes signif-
cant. Finally, in the large time limit, profiles become Gaussian again
s steady state is reached. A slight shift can be seen between the mobile
nd the total concentration, that vanishes for large times.

Fig. C.15 (Left) shows the typical curves of the normalized disper-
ion coefficient 𝐷𝑚

𝐿(𝑡)∕𝐷0 as a function of the non-dimensional time
𝑡𝑢2

𝐷0
for different values of the dimensionless system parameter 𝛹 =

𝑒∕𝐷𝑎 = 𝑢2𝐴𝐾𝛾𝜙𝐷
𝐷0

= 𝑢2𝜏𝜙𝐷
𝐷0

. For all 𝛹 , after a characteristic time
𝜏𝑐𝑜𝑛𝑣), the normalized dispersion coefficient reaches a constant value
orresponding to a Gaussian asymptotic behavior. Here, the asymptotic
ispersion coefficient 𝐷𝑒𝑓𝑓 is defined by

𝑒𝑓𝑓 = lim
𝑡→∞

𝐷𝑚
𝐿(𝑡). (C.2)

he asymptotic longitudinal dispersion coefficient 𝐷𝑒𝑓𝑓 has been de-
termined analytically by Goltz and Roberts (1987) as:

𝐷𝑒𝑓𝑓

𝐷0
= 1

1 + 𝜙𝐷
+

𝛹𝜙𝐷
(1 + 𝜙𝐷)3

. (C.3)

Fig. C.16 (Left) shows the analytical and numerical values of
𝑒𝑓𝑓∕𝐷0. Very good accordance between analytical and numerical data
as obtained. Fig. C.16 (Right) gives the dependency of the numerical
14
rror on 𝛹 . Even for low values of 𝛹 the error remains smaller than
%.

Considering the shape of 𝐷𝑚
𝐿(𝑡)∕𝐷0 (Fig. C.15, Left), two different

ehaviors can be observed. For small 𝛹 (e.g. low exchange time),
𝑚
𝐿(𝑡)∕𝐷0 decreases to reach a value below one. This can be explained
y the fact that for small values of 𝛹 the first term in Eq. (C.3)
ominates. In this case, the equilibrium is very rapidly reached due
o the small exchange time. This regime is the well-known retardation
ffect based on the assumption that 𝐶𝑚 = 𝐶𝑖𝑚 in Eqs. (4).

For larger values of 𝛹 , where either the exchange time or the
elocity is significant (𝜏𝑢2 > 𝐷0∕𝜙𝐷), 𝐷𝑚

𝐿(𝑡)∕𝐷0 takes values close to
ne for small times due to the predominance of molecular diffusion. As
rapping events start to be effective, 𝐷𝑚

𝐿(𝑡)∕𝐷0 increases significantly,
ue to the competition between advection and retention, to reach
plateau after a certain time 𝜏𝑐𝑜𝑛𝑣. Once the system has reached a

lateau, transport is Gaussian.
The limiting case 𝛹 = ∞ deserves to be discussed because it

orresponds to 𝜏 = ∞ and thus to the absence of any exchange. In
his case, the observed effective dispersion is necessarily constant and
qual to 𝐷0 but the theoretical dispersion coefficient given by Eq. (C.3)
s infinite. This inconsistency is due to the fact that the convergence
ime 𝜏𝑐𝑜𝑛𝑣 also diverges to infinity so that the system remains in the
re-asymptotic regime.

Fig. C.15 (Right) presents the normalized convergence time 𝑢2𝜏𝑐𝑜𝑛𝑣
𝐷0

as a function of 𝛹 . For low values of 𝛹 the convergence time is inde-
pendent of 𝛹 as the exchange time between mobile and immobile zones
is very short and the equilibrium is reached quasi instantaneously. For
larger 𝛹 the convergence time increases approximately according to a
power-law of 𝛹 . The power-law exponent is larger than one, but it is
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expected that for very large 𝛹 , the convergence time is proportional
o the exchange time (𝜏𝑐𝑜𝑛𝑣 ∝ 𝜏), and therefore 𝜏𝑐𝑜𝑛𝑣 ∝ 𝛹 . The latter is
ue to the fact that kinetics solely depend on the first order rate term
𝜕𝐶𝑖𝑚
𝜕𝑡′ = 1

𝛹 (𝐶𝑚 − 𝐶𝑖𝑚).

ppendix D. Compound Poisson process

We derive here the Laplace space Eq. (26) for the distribution of the
otal trapping time in the compound Poisson process. To this end, we
rite the definition of the distribution of 𝜃𝑠 as

𝑝𝑐 (𝑡|𝜏𝑣, 𝜔) =

⟨

𝛿

(

𝑡 −
𝑛
∑

𝑗=1
𝜗𝑗

)⟩

(D.1)

=
∞
∑

𝑛=0
∫ ...∫ 𝛿

(

𝑡 −
𝑛
∑

𝑗=1
𝜗𝑗

)

𝑝𝑛(𝜏𝑣, 𝜔)𝜓(𝜗1)...𝜓(𝜗𝑛)𝑑𝜗1...𝑑𝜗𝑛 (D.2)

where 𝑛 is Poisson distributed and the 𝜗𝑗 are exponential distributed
and independent. The Laplace transform of Eq. (D.1) is

𝑝∗𝑐 (𝑠|𝜏𝑣, 𝜔) = ∫

∞

0
𝑝𝑐(𝑡|𝜏𝑣, 𝜔) exp (−𝑠𝑡)𝑑𝑡 (D.3)

= ∫ ...∫

∞
∑

𝑛=0
𝑝𝑛(𝜏𝑣, 𝜔) exp (−𝑠

𝑛
∑

𝑗=1
𝜗𝑗 )𝜓(𝜗1)...𝜓(𝜗𝑛)𝑑𝜗1...𝑑𝜗𝑛 (D.4)

=
∞
∑

𝑛=0
𝑝𝑛(𝜏𝑣, 𝜔)∫ ...∫

𝑛
∏

𝑗=0

[

exp (−𝑠𝜗𝑗 )𝜓(𝜗𝑗 )𝑑𝜗𝑗
]

(D.5)

=
∞
∑

𝑛=0
𝑝𝑛(𝜏𝑣, 𝜔)

[

∫ 𝜓(𝜗) exp (−𝑠𝜗)𝑑𝜗
]𝑛

. (D.6)

Thus,

𝑝∗𝑐 (𝑠|𝜏𝑣, 𝜔) =
∞
∑

𝑛=0
(𝜔𝜏𝑣)𝑛

exp(−𝜔𝜏𝑣)
𝑛!

𝜓∗(𝑠)𝑛 = exp
{

−𝜔𝜏𝑣[1 − 𝜓∗(𝑠)]
}

, (D.7)

here we used the exponential sum. We note that the Laplace transform
r 𝜓(𝑡) given by Eq. (25) is

∗(𝑠) =
𝜔𝜙𝐷

𝜔𝜙𝐷 + 𝑠
. (D.8)

Inserting this expression into (D.7) gives Eq. (26).
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