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Abstract: This work presents an analysis of various electrolyte SAFT model approaches 10 

through a rigorous benchmarking on extensively collected and critically evaluated databases. 11 

The primitive mean spherical approximation (MSA) and the Born equation are used 12 

respectively for the long-range ion-ion and ion-solvent interactions. For the short range 13 

interactions either dispersion, or association, or both (full) are investigated. Doing so, state-of-14 

the-art parameter sets are obtained for the ePPC-SAFT model. Physical consistency is enforced 15 

for the parameters in the regression. Efforts are made to reduce the number of adjustable 16 

parameters with minimum loss of accuracy. This is done by analyzing the physical indication 17 

of the parameters, parameter sensitivity analysis, parameter trends, and trial-and-error. The 18 

model and parameter sets accurately represent the mean ionic activity coefficient (MIAC), 19 

vapor-liquid equilibria, and density, and accurately predict the osmotic coefficient extrapolated 20 

to temperature and salt composition ranges beyond the range of the MIAC data used in the 21 

regression. The ion-specific association strategies are found to be approximately as accurate as 22 

the salt-specific strategies, and are more accurate than the ion-specific dispersion and full 23 

strategies. Contributions of the model terms to the MIAC are analyzed. Temperature-24 

dependence of the MIAC is discussed. The ion-specific association strategies successfully 25 

predicts the opposite relative magnitudes of the cation and anion individual ion activity 26 

coefficient of the aqueous NaCl and KCl solutions. The information is not included in model 27 

parameterization, while all the salt-specific strategies and ion-specific dispersion and full 28 

strategies fail. We recommend including the Wertheim association for the short-range ion-ion 29 
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and ion-solvent interactions, and parameterizing SAFT models in an ion-specific manner using 30 

physically consistent parameters. 31 

Keywords: equation of state, aqueous electrolyte solutions, activity coefficient, vapor-liquid 32 

equilibria, density. 33 

1 Introduction 34 

Thermodynamics of electrolyte solutions is important in many industrial and chemical 35 

processes, e.g., carbon capture and sequestration [1], flue gas treatment [2], geochemical 36 

processes [3], desalination [4], and batteries [5,6]. When ions are present in mixtures, long-37 

range ion-ion and ion-solvent interactions occur; thermodynamic properties of the electrolyte 38 

solutions are significantly different from those of molecular systems even at low salt 39 

concentration. Modeling these properties over ranges of temperature, pressure, and 40 

composition is important for the design and improvements of the relevant processes. Over the 41 

years, experimental data have been obtained for many electrolyte solutions; activity coefficient 42 

models and equations of state have been extended to mixtures involving electrolytes. In 43 

previous works [7–9], we have extensively collected and critically evaluated experimental 44 

thermodynamic property data of alkali halides in water and mixed-solvents. The databases 45 

cover various properties, including the mean-ionic activity coefficient (MIAC), vapor pressure, 46 

osmotic coefficient (OC), density, etc. Benchmarking the thermodynamic property models to 47 

these verified databases can help identify the contribution terms that are to be included in the 48 

models, the parameters that are to be regressed, and the properties that are to be included in the 49 

objective functions. The information will be useful when the models are applied on other 50 

electrolyte systems, for which experimental data are not as extensively available as for systems 51 

that have been covered by the reference databases. 52 

Thermodynamics of electrolyte solutions has been reviewed in the literature, e.g., by 53 

Loehe and Donohue [10], Kontogeorgis et al. [11], Ahmed et al. [12], Held [13], etc. Activity 54 

coefficient models and equations of state (EoS) have been combined with electrolyte terms to 55 

account for the long-range ion-ion and ion-solvent interactions. There are a few works in which 56 

a non-primitive mean spherical approximation (MSA) model has been implemented [14–17], 57 

i.e., long-range ion-ion, ion-dipole, and dipole-dipole interactions are accounted for explicitly. 58 

The primitive MSA [18] or Debye-Hückel (DH) [19] theories are usually implemented in the 59 

EoS, in which the solvent is treated as a dielectric continuum. The ion-dipole and dipole-dipole 60 

interactions are accounted for using extra contribution terms in the EoS, e.g., the dispersion, 61 
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association, Born [20], and multipolar [21–23] terms. Maribo-Mogensen et al. [24] compared 62 

the MSA and DH theories, and concluded that they are similar within the EoS framework. In 63 

the following brief summary, a special focus would be on how the short-range interactions have 64 

been treated differently in the SAFT models, because benchmarking the short-range 65 

approaches is one of the goals of this work. The short-range interactions are modeled very 66 

differently in the literature: 67 

- Some models use dispersion approach; some use the association approach; some use both; 68 

some use neither. 69 

- In the dispersion approach, some models include like-ion dispersion; some do not include 70 

like-ion dispersion; some do not include ion-ion dispersion at all, but only include ion-71 

water dispersion. 72 

- In the association approach, some models include both cation-anion association and ion-73 

water association; some only include ion-water association; some include cation-water 74 

association, but not anion-water association. 75 

Galindo et al. [25] proposed the SAFT-VRE model, combining the SAFT-VR [26] with 76 

the MSA term. Ion-water dispersion was included, while ion-ion dispersion was not. Gil-77 

Villegas et al. [27] compared the dispersion and association approaches for the short-range ion-78 

water interaction. The Born term was added to the model as the model was applied on mixed-79 

solvent electrolyte solutions [28]. Eriksen et al. [29] replaced the square-well dispersion term 80 

with the Mie potential. They included the dispersion interaction for the ion-ion and ion-water 81 

pairs, and the association interaction for the ion-water pairs. Liu et al. [30] extended a SAFT 82 

model to electrolyte solutions using a primitive MSA term. Later, cation-water association was 83 

included in the model, improving the results [31]; the MSA term was replaced using an 84 

expansion of the non-primitive MSA theory [32]. However, Das et al. [16] commented that the 85 

ion-solvent term in the low-density expansion reduced to the Born expression in the primitive 86 

MSA model. Cameretti et al. [33] combined the PC-SAFT model [34,35] with the DH term. 87 

Ion-solvent dispersion was included. Cation-anion dispersion was shown to improve results, 88 

while no like-ion dispersion was included [36]. Later on, the model was revised, adding 89 

composition dependent relative permittivity and the Born term [37]. Rozmus et al. [38] 90 

combined the PPC-SAFT model (a PC-SAFT revision with a multipolar term) with the MSA 91 

and Born terms. Association was included for the ion-ion and ion-solvent pairs. The model was 92 

revised with a temperature-dependent water diameter parameter, significantly improving the 93 

accuracy for liquid density, and was applied on mixed-solvent electrolyte solutions [12,39]. 94 
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Roa Pinto et al. [40] investigated the temperature-dependence, short-range interactions, and 95 

relative permittivity models in the ePPC-SAFT framework. Association and dispersion 96 

approaches were compared for the short-range ion-ion and ion-solvent interactions. Like-ion 97 

dispersion was firstly included in the dispersion approach, and was removed in an attempt to 98 

reduce the number of adjustable parameters. The increasing mean ionic activity coefficient 99 

(MIAC) with temperature of the aqueous NaCl solution at low temperature was captured in the 100 

association approach. Maribo-Mogensen et al. [41] combined the CPA equation of state [42] 101 

with the DH theory. Walker et al. [43] compared the SAFT-VR Mie + DH and + MSA, and 102 

investigated the impact of the temperature-, density-, and composition-dependence of the 103 

relative permittivity model. Short-range ion-ion and ion-solvent interactions were modeled in 104 

the dispersion approach. Selam et al. [44] combined the SAFT-VR Mie model with the DH and 105 

Born terms. Both like- and unlike-ion dispersions were included. An attempt was made to 106 

capture the temperature-dependence of aqueous NaCl MIAC at low temperature using a 107 

temperature-dependent ion-water dispersion energy parameter. The model was applied on 108 

modeling gas solubility in aqueous electrolyte solutions [45]. 109 

The use of the readily available Wertheim association term for short-range ion-ion and 110 

ion-solvent interactions has been successful [28,31,40]. Wu and Prausnitz [46] stated that the 111 

Born term “gives only part of the change in Helmholtz energy due to charging neutral particles 112 

because the interaction between water and the charged particles also depends on the 113 

electrostatic states”, and introduced “additional association interactions between ions and 114 

solvent (water) molecules to represent interactions between charged ions and water”. However, 115 

when it comes to ion-ion interaction, the association decreases with temperature, contrary to 116 

the increasing trend of ion-pairing. As discussed in the last paragraph, the short-range 117 

interactions have been considered using very different assumptions, giving rise to the following 118 

questions: 119 

- It has been assumed in some works that like-ion dispersion could be neglected. One could 120 

expect the like-ions to be far from each other, reducing this contribution. However, is the 121 

model “smart” enough to exclude dispersion between like-ions? 122 

- Should dispersion, association, or both short-range interactions be used for ion-ion and 123 

ion-solvent interactions in the models? A full model would include both dispersion and 124 

association for the short-range ion-ion and ion-solvent interaction. After all, one could not 125 

assume associating ions to be free of dispersion interaction. However, the approach was 126 

rarely considered. With advanced algorithms, the increased number of parameters would 127 
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not pose difficulty in the regression. Would there be any improvements if the complete 128 

approach was considered? 129 

- Can the experimental data be represented accurately without introducing physically 130 

inconsistent parameters? 131 

- Is there any drawback in using the ion-specific parameters instead of salt-specific ones? 132 

Following Ref [40], the ePPC-SAFT model is parameterized in this work in an ion-133 

specific approach; physical consistency of parameters is enforced in the regression. State-of-134 

the-art parameter sets are obtained to facilitate the benchmarking of the modeling approaches, 135 

based on extensively collected and critically evaluated databases. Efforts are made to reduce 136 

the number of parameters with minimum loss of accuracy. The final parameter set is 137 

determined based on analyzing the physical indication of the parameters, parameter sensitivity 138 

analysis, parameter trends, and trial-and-error. Ion-specific parameters are obtained within a 139 

series of alkali chloride aqueous solutions. Properties that are useful in practical applications 140 

are included in the objective function, i.e., MIAC, vapor-liquid equilibria (VLE), and density. 141 

In future works, the model will be extended to mixed-solvent electrolyte solutions. The osmotic 142 

coefficient is not included in the regression, but is used as a validation of the model and 143 

parameter set. Efforts are made to improve density correlation, using our previously evaluated 144 

reference database for aqueous alkali halide solutions [9]. The association, dispersion, and full 145 

approaches are compared. In the dispersion and full approaches, the effect of the like-ion 146 

dispersion is investigated. The obtained ion-specific parameter sets are tested on the qualitative 147 

behavior of cation and anion individual ion activity coefficients (IIAC) of aqueous NaCl and 148 

KCl solutions. It is observed that the respective magnitudes of the cation and anion IIAC is 149 

opposite for the 2 aqueous solutions. This phenomenon has never been successfully predicted 150 

in the literature. The manuscript is organized as follows. In Section 2, the model, database, and 151 

parameterization strategies for the short-range ion-ion and ion-solvent interactions are 152 

introduced. In Section 3, comparisons are presented for the dispersion, association, and full 153 

strategies, and for the salt- and ion-specific parameterizations. In Section 4, contributions of 154 

the terms are investigated; of the MIAC temperature dependence represented using the model 155 

and parameter sets is shown; the model is validated using the osmotic coefficient and individual 156 

ion activity coefficient, which have not been used in the parameterization, In Section 5, 157 

concluding remarks are presented. 158 
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2 Method 159 

In this section, the model, database, salt- and ion-specific parameterization strategies, and 160 

the different parameterization strategies for the short-range ion-ion and ion-solvent interactions 161 

are introduced. 162 

2.1 ePPC-SAFT 163 

In the ePPC-SAFT model [12,38–40], the residual Helmholtz energy is given as, 164 

𝐴res = 𝐴hc + 𝐴disp + 𝐴assoc + 𝐴polar + 𝐴MSA + 𝐴Born (1) 

where the superscript hc denotes hard-chain, disp denotes dispersion, assoc denotes association, 165 

polar denotes multipolar as presented by Ref [21–23]. For details about the equations for each 166 

term and the adjustable parameters (unary and binary), please refer to Ref [12,40]. Here the 167 

electrolyte terms of the model are briefly introduced. 168 

The primitive MSA is used for describing the long-range interaction between cation and 169 

anion. 170 

𝐴MSA = −
𝑁A𝑞e

2

4𝜋𝜀0𝜀r
∑

𝑛𝑖𝑍𝑖
2𝛤

1 + 𝛤σ𝑖
MSA

ions

+
𝛤3𝑅𝑇

3𝜋𝜌𝑁A
 

(2) 

𝛤2 =
𝑞e

2𝑁A
2

4𝜀0𝜀r𝑅𝑇
∑ 𝑛𝑖𝜌 [

𝑍𝑖

1 + Γσ𝑖
MSA

]

2

ions

 
(3) 

where 𝑁A is the Avogadro constant, 𝑞e is the elementary charge, 𝜀0 is the dielectric constant in 171 

the vacuum, 𝜀r is the relative permittivity, 𝑛𝑖 is the number of moles of ion i, 𝑍𝑖 is the ionic 172 

valence, σ𝑖
MSA is the MSA diameter, R is the universal gas constant, T is temperature, and 𝜌 is 173 

density. 174 

The Born term is given in the usual form: 175 

𝐴Born =
𝑁A𝑞e

2

4𝜋𝜀0𝑅𝑇
(1 −

1

𝜀r
) ∑

𝑛𝑖𝑍𝑖
2

𝜎𝑖
Born

ions

 
(4) 

where 𝜎𝑖
Born is the Born diameter. The Born diameter is calculated using the Born term and the 176 

experimental Gibbs energy of solvation obtained by Ref [47]. According to Ref [40], obtaining 177 
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the Born diameter in this way ensures accurate representation of the Gibbs energy of solvation 178 

of the ePPC-SAFT model. 179 

The relative permittivity models shown in Ref [28] and [48] are used in this work, denoted 180 

as RPM-1 and RPM-2, respectively. In RPM-1, the salt-composition dependence is accounted 181 

for only via the density: 182 

𝜀𝑟 = 1 +
𝑛solv

𝑉
𝑑𝑣 (

𝑑𝑇

𝑇
− 1) 

(5) 

where 𝑛solv is the number of moles of the solvent of volume V, 𝑑𝑣 = 0.3777 dm3/mol and 183 

𝑑𝑇 = 1403 K for water [28]. 184 

In RPM-2, an additional correction factor is applied for the salt composition dependence: 185 

𝜀𝑟 = 1 + (𝜀𝑟0 − 1)
1 − 𝜉

1 +
𝜉
2

 
(6a) 

𝜉 =
𝑁𝐴𝜋

6
∑

𝑛𝑖𝜎𝑖
HS3

𝑉
ions

 
(6b) 

where 𝜀𝑟0 is calculated using RPM-1, and 𝜎𝑖
HS is the ionic hard sphere diamter. 186 

One should note that neither of these models represents accurately the experimental salt 187 

composition dependence of the relative permittivity, as shown in Figure 1. The needed 188 

solutions density and ionic diameters are from a preliminary parameter set. In Roa Pinto et al.’s 189 

work [40], Simonin’s empirical model [49] was also investigated, with the adjustable 190 

parameters regressed along with the ionic parameters of the ePPC-SAFT model. However, the 191 

resulting relative permittivity approached the RPM-1 rather than the experimental data, 192 

indicating that the RPM that is needed in the EoS should present a much less drastic decrease 193 

compared to the experimental data. In addition, Maribo-Mogensen et al. [50] suggested that 194 

the kinetic depolarization part of the relative permittivity, which was more than half of the 195 

observed decrease (Figure 1 in Ref [50]), was a dynamic property, and should not be included 196 

in the thermodynamic modeling of electrolytes. Therefore, the observed significant 197 

overestimations via RPM-1 and -2 compared to the experimental RP data maybe partially 198 

justified. 199 
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 200 

Figure 1. Comparison of the RPMs with the experimental relative permittivity data of aqueous NaCl 201 
solution [51]. 202 

For water, the parameter set from Ref [39] is used. Unlike other implementations of the 203 

PC-SAFT models, the sphere softness was made adjustable for water rather than fixed at 0.12. 204 

Parameters were regressed over liquid densities and vapor pressure pure water from 273.15 to 205 

550 K and on the LLE of (water + n-alkane) mixtures. The abnormal behavior of water density 206 

was captured using a temperature dependent segment diameter: 207 

𝜎w,𝑇 = 𝜎w + 𝑛𝑇1
𝑒𝑛𝑇2𝑇 +

𝑛𝑇3

𝑇2
 

(7) 

Ionic parameters are regressed to thermodynamic properties of aqueous solutions of the 208 

salts, as will be explained in detail in the following sections. 209 

2.2 Objective function and reference database 210 

In this work, aqueous solutions of 4 alkali chloride salts (NaCl, KCl, RbCl, and CsCl) are 211 

investigated. Mean-ionic activity coefficient (MIAC, 𝛾±), vapor-liquid equilibria (VLE), and 212 

density are included in the objective function: 213 

OF =
1

2

∑ (
𝛾±

cal
− 𝛾±

exp

𝛾±
exp

)

2
𝑛dp

𝛾±

𝑖=1

𝑛dp
𝛾± +

1

2

∑ (
𝑝cal − 𝑝exp

𝑝exp
)

2𝑛dp
𝑝

𝑖=1

𝑛dp
𝑝

+
1

2

∑ (
𝜌cal − 𝜌exp

𝜌exp
)

2𝑛dp
𝜌

𝑖=1

𝑛dp
𝜌  

(8) 

where 𝑛dp is the number of data points of the property, p is the VLE pressure. The MIAC 214 

reference state is at infinite dilution in the aqueous solution in the molality unit. The involved 215 
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reference states and conventions, and equations for deriving them from the EoS have been 216 

explained in [7–9,40]. 217 

The data used in the regression are from the evaluated databases in our previous works 218 

[8,9]. In the data evaluation, datasets that contain outliers have been removed. Table 2 shows 219 

the information for each property of each aqueous electrolyte solution. The data used in the 220 

regression are: for MIAC from Ref [52–78]; for VLE from Ref [79–91]; for density from Ref 221 

[81,92–298]. The osmotic coefficient is not used in the objective function, but is used for 222 

validating the obtained model and parameter sets. The osmotic coefficient data have been 223 

evaluated in Ref [7]. 224 

Table 1. Number of datasets, number of data points, and ranges for each property of each aqueous 225 
electrolyte solution used in the parameter regression in this work. 226 

Water + Property No. datasets No. data points T (K) 𝑥ion 

NaCl MIAC 20 344 273.15~333.15 ~0.089 

 VLE 3 166 294.34~368.07 ~0.091 

 Density 129 2578 253.00~473.15 ~0.098 

KCl MIAC 4 43 273.15~298.15 ~0.056 

 VLE 8 192 298.15~374.15 ~0.095 

 Density 104 1615 273.15~473.15 ~0.11 

RbCl MIAC 1 21 298.15 ~0.076 

 VLE 3 65 303.15~368.15 ~0.10 

 Density 14 168 288.15~328.15 ~0.12 

CsCl MIAC 4 51 298.15 ~0.049 

 VLE 2 75 303.15~368.15 ~0.12 

 Density 30 351 273.85~473.15 ~0.19 

2.3 Salt-specific parameterization 227 

Both salt- and ion-specific parameterizations are investigated in this work. Here, the 228 

adjustable parameters of the ions for the salt-specific strategies are explained. The number of 229 

parameters are reduced to facilitate ion-specific parameterization in the next step, as will be 230 

explained in Section 2.4. 231 

Efforts are made to improve density accuracy by including the suitable volumetric 232 

parameters in the regression in this work. In a comparison of an electrolyte SAFT-VR model 233 

with Monte Carlo simulations, Zhao et al. [14] showed that, when the primitive MSA model 234 

was used, using the Pauling diameters as the ionic diameters resulted in systematic deviations 235 
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of density results. Therefore, the ionic hard sphere (HS) diameters are adjusted in this work. 236 

To ensure the “correct order” of the ionic HS diameters, it is assumed that they are proportional 237 

to the Pauling diameters [299]; the ratio (𝑟HS) of the HS diameter over the Pauling diameter, 238 

Eq. (9), is regressed instead of the diameters themselves. The same value is taken for the cation 239 

and anion in the salt-specific parameterization. To conveniently enforce the constraint that the 240 

MSA diameter has to be larger than the HS diameter, the ratio (𝑟MSA) of the MSA diameter 241 

over the HS diameter, Eq. (10), is regressed rather than the diameters themselves. Roa Pinto et 242 

al. [40] showed that, the ePPC-SAFT model accurately reproduced the Gibbs energy of 243 

solvation when the Born diameters were calculated based on the Born term alone. In this work, 244 

the same approach is taken for the Born diameters. Ionic Pauling diameters and Born diameters 245 

are provided in the Supplementary Material. 246 

𝑟HS =
𝜎HS

𝜎Pauling
 

(9) 

𝑟MSA =
𝜎MSA

𝜎HS
 

(10) 

As discussed in Section 1, in addition to the MSA or DH term for the long-range ion-ion 247 

interaction and the Born term for the long-range ion-solvent interaction, different approaches 248 

have been investigated for the short-range ion-ion and ion-solvent interactions. In this work, 249 

10 parameterization strategies are compared for the aqueous NaCl solution, as shown in Table 250 

2. In the following text, the abbreviations (Disp-1, Assoc-1, Full-1, etc.) are used for denoting 251 

the parameterization strategies. 𝑟HS and 𝑟MSA are regressed for all strategies. For the dispersion 252 

strategies, the dispersion term is used for describing the short-range ion-ion and ion-solvent 253 

interactions. Hence, the dispersion energy of the cation and anion (𝜀c and 𝜀a), and the binary 254 

interaction parameter between the cation and anion (𝑘c−a) are also regressed. The dispersion 255 

energy between the cation and water (𝜀c−w), between the anion and water (𝜀a−w), and between 256 

the cation and anion (𝜀c−a) are obtained using Eq. (11). No binary interaction parameter is used 257 

for the ion-water dispersion interaction. When like-ion dispersion is not included, 𝜀c−c and 258 

𝜀a−a are artificially set at 0. Naturally, when like-ion dispersion is included, 𝜀c−c = 𝜀c, and 259 

𝜀a−a = 𝜀a.  260 

𝜀i−w = √𝜀i𝜀w (11a) 
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𝜀c−a = √𝜀c𝜀a(1 − 𝑘c−a) (11b) 

For the association strategies, the Wertheim association term is used for describing the 261 

short-range ion-ion and ion-solvent interactions. The number of association sites is set to 7 for 262 

the cation, and 6 for the anion, same as in previous works [12,40]. Hence, the association 263 

energy parameters of the cation and anion (𝜀c
AB and 𝜀a

AB), and the binary interaction parameter 264 

between the anion and cation (𝑤c−a) are regressed. The association interaction is included 265 

between water and water, ion and water, and cation and anion. The cross-association energies 266 

(𝜀c−w
AB , 𝜀a−w

AB , and 𝜀c−a
AB ) are obtained using Eq. (12). The association volumes of the cation (𝛽c

AB) 267 

and anion (𝛽a
AB) are also regressed. The cross-association volume is obtained using Eq. (13). 268 

No binary interaction parameter is included for the unlike-ion association volume. 269 

𝜀i−w
AB =

(𝜀i
AB + 𝜀w

AB)
2

⁄  
(12a) 

𝜀c−a
AB =

(𝜀c
AB + 𝜀a

AB)(1 − 𝑤c−a)
2

⁄  
(12b) 

𝛽𝑖𝑗
AB = √𝛽𝑖

AB𝛽𝑗
AB 

(13) 

For the full strategies, both the dispersion and Wertheim association terms are used for 270 

describing the short-range ion-ion and ion-solvent interactions. Hence, the parameter set also 271 

includes 𝜀c , 𝜀a , 𝜀c
AB , 𝜀a

AB , 𝑤c−a , 𝛽c
AB , and 𝛽a

AB . In order to keep the number of adjustable 272 

parameters reasonable, no binary interaction parameter is included for the unlike-ion dispersion 273 

energy and association volume. We notice that there is a different sensitivity of the cation and 274 

anion energy parameters (dispersion or association). Furthermore, the solvation effect of the 275 

cation and anion are very different as reported in nuclear magnetic resonance measurements 276 

[300] and molecular simulations [301]. Liu et al. [30] included cation-solvent association, but 277 

excluded anion-solvent association in their electrolyte SAFT model. However, from an 278 

engineering perspective, we find this sensitivity to be case-specific in the parameter sensitivity 279 

analysis. Furthermore, removing one of the ionic interaction parameters would place a strong 280 

impact on the individual ion activity coefficient results. Therefore, both the cation-water and 281 

anion-water interactions are included. Regression boundaries of the parameters are provided in 282 

the Supplementary Material. 283 
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Table 2. Salt-specific parameterization strategies. 284 

 Solvent-ion Ion-ion RPM- Like-ion 

dispersion 

Parameters 

Disp-1 Dispersion, 

Born 

Dispersion, 

MSA 

1 No 5: 𝜀c, 𝜀a, 𝑘c−a, 𝑟HS, 

𝑟MSA Disp-2 2 

Disp-3 1 Yes 

Disp-4 2 

Assoc-1 Association, 

Born 

Association, 

MSA 

1 - 7: 𝜀c
AB, 𝜀a

AB, 𝛽c
AB, 𝛽a

AB, 

𝑤c−a, 𝑟HS, 𝑟MSA Assoc-2 2 

Full-1 Dispersion, 

association, 

Born 

Dispersion, 

association, 

MSA 

1 No 9: 𝜀c, 𝜀a, 𝜀c
AB, 𝜀a

AB, 

𝛽c
AB, 𝛽a

AB, 𝑤c−a, 𝑟HS, 

𝑟MSA 
Full-2 2 

Full-3 1 Yes 

Full-4 2 

One might argue that comparisons are only fair with the same number of adjustable 285 

parameters. However, the larger number of adjustable parameters and the resulting advantage 286 

of being more flexible are intrinsic in the association and full strategies. Therefore, no effort 287 

has been made to compare the strategies based on the same number of adjustable parameters. 288 

Furthermore, as will be shown in Section 3, the Full strategies do not provide better results 289 

despite using a larger number of adjustable parameters. In addition, as will be shown in Section 290 

2.4, the ion-specific strategies will be compared using the same number of adjustable 291 

parameters. 292 

Parameters are regressed using an evolutionary algorithm [302], which is helpful for 293 

avoiding local minima. In the salt-specific parameterization, different Cl- parameters are taken 294 

for each salt. The regressed salt-specific parameters for the 4 salts are provided in the 295 

Supplementary Material. The resulting deviations will be discussed in Section 3. 296 

For the aqueous NaCl solution, all 10 strategies are used. For Disp-3 and -4, the dispersion 297 

energy parameters are too large (𝜀 𝑘⁄  is approximately 1000 K for Na+ compared to 201.747 K 298 

for water), the binary interaction parameter, 𝑘c−a, is close to 1 (the upper boundary), while the 299 

accuracy is lower compared to the other strategies. Therefore, these two dispersion strategies 300 

are not further pursued for the other aqueous electrolyte solutions, while the remaining 8 301 

strategies are investigated for the other 3 salts. At this point, we have partly addressed the 302 

question posted earlier “Is the model “smart” enough to exclude dispersion between like-ions?” 303 

For the dispersion strategies, yes: 𝑘c−a = 1 indicates zero dispersion between unlike-ions, 304 

which is not reasonable with a non-zero dispersion between like-ions. However, the full 305 
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strategies with (Full-3 and -4) and without (Full-1 and -2) like-ion dispersion do not present 306 

such distinction, with Full-3 and -4 presenting slightly better trend in parameters and higher 307 

accuracy than Full-1 and -2. 308 

The parameters 𝑟HS and 𝑟MSA are the only ones that present trends with the cations in the 309 

salt-specific regressions. Figure 2 shows the regressed 𝑟HS  and 𝑟MSA  in the salt-specific 310 

strategies, Assoc-1, Assoc-2, Disp-1, Disp-2, Full-3, Full-4. 𝑟HS is approximately the same for 311 

the 4 alkali chlorides in each of the parameterization strategies. In most of the cases, 𝑟HS is 312 

smaller than 1, i.e., the HS diameter is smaller than the Pauling diameter, and is very close to 313 

1 in a few cases of the full strategies. 𝑟HS is approximately 0.8 in the dispersion strategies, and 314 

is in general between 0.93 and 1 in the association and full strategies. In Ref [40], 𝑟MSA was 315 

set at 1.5 for the aqueous NaCl solution in order to reduce the number of adjustable parameters. 316 

The value agrees with the regressed 𝑟MSA in this work. For the heavier cations, however, the 317 

regressed 𝑟MSA is smaller. For CsCl, 𝑟MSA reaches 1 (regression lower boundary) in some of 318 

the cases; deviations are larger compared to the other salts (as will be shown in Sections 3 and 319 

4), and can be reduced given a 𝑟MSA that is smaller than 1. For RbCl, 𝑟MSA is also 1 or very 320 

close to 1 in the dispersion strategies. The parameter behavior might have resulted from certain 321 

assumptions in the SAFT, MSA, and Born terms. In addition, the contributions except for that 322 

of the MSA term are all close to linear, and compensate for each other, as will be shown in 323 

Section 4.1. As will be shown in Section 3, deviations in VLE are also larger compared to the 324 

association strategies, presenting another reason for preferring the association strategies over 325 

the dispersion strategies. However, the boundary is set at 1 regardless of this potential slight 326 

accuracy improvement, to avoid the inconsistency of smaller MSA diameters than the HS 327 

diameters. The value of 𝑟HS is approximately the same for the 4 salts in each of the strategies, 328 

while 𝑟MSA is smaller for the heavier salts. Therefore, in the ion-specific parameterization, the 329 

same 𝑟HS is used for all 5 ions, while different 𝑟MSA are used for each ion, as will be discussed 330 

in the next section. 331 
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 332 

Figure 2. Regressed 𝑟HS (left) and 𝑟MSA (right) in the salt-specific strategies Assoc-1, Assoc-2, Disp-333 
1, Disp-2, Full-3, and Full-4. 334 

Furthermore, the response surface is analyzed so that the number of adjustable parameters 335 

could be reduced with minimum loss in accuracy. Figure 3 shows the response surface of the 336 

objective function, Eq. (8), over the parameters in the salt-specific strategy, Assoc-1, for the 337 

aqueous NaCl solution. Contours are plotted on the same levels over 𝑟HS and each of the other 338 

parameters. Obviously, there is parameter degeneracy. 𝑟HS , 𝑤c−a  and 𝑟MSA  are the most 339 

pronounced parameters, while the association energy and volume parameters are less 340 

pronounced. The “valleys” are almost parallel to the association volume axis, indicating that 341 

the objective function is not sensitive to these parameters. The behavior is similar for the other 342 

aqueous electrolyte solutions. Therefore, 𝛽c
AB and 𝛽a

AB are fixed to that of water in the ion-343 

specific parameterization. Although the “valley” is also parallel to the 𝜀c
AB/𝑘 axis, the situation 344 

is case-specific. Therefore, the association energy parameters are kept adjustable in the ion-345 

specific parameterization. 346 
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 347 

Figure 3. Response surface of the objective function, Eq. (8), as a function of the parameters in the 348 
salt-specific strategy , Assoc-1, for the aqueous NaCl solution: (a) 𝑟HS - 𝑤c−a, (b) 𝑟HS - 𝑟MSA, (c) 𝑟HS 349 
- 𝜀c

AB/𝑘, (d) 𝑟HS - 𝜀a
AB/𝑘, (e) 𝑟HS - 𝛽c

AB, (f) 𝑟HS - 𝛽a
AB. In all the sub-graphs, all the other parameters 350 

are fixed at their optimal values. 351 

2.4 Ion-specific parameterization 352 

Ion-specific parameterization is desirable because it facilitates simple extension to mixed-353 

salt systems, as no mixing rule is needed for the parameters of the same ion from different salts. 354 

Furthermore, it could potentially bring in information about the contributions of the cation and 355 

anion to the mean properties, even though individual ion information is not sufficiently 356 

included in the parameterization. However, obtaining these parameters requires regressing the 357 

parameters of a series of electrolyte solutions simultaneously [11]. Therefore, in this work, 358 
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efforts have been made to reduce the number of adjustable parameters with minimum loss in 359 

accuracy compared to the salt-specific parameterization, based on the findings in the salt-360 

specific parameterization. 361 

Table 3 shows the ion-specific parameterization strategies, abbreviated as Assoc-I-X, 362 

Disp-I-X, and Full-I-X, where the symbol “X” indicates the number of adjustable parameters. 363 

At first, the 15-parameter scenarios are investigated. Thus, the resulting ion-specific 364 

association strategy is Assoc-I-15, including the parameters, 𝑟HS, 5 𝑟MSA for the 5 ions, 4 𝑤c−a 365 

for the 4 salts, and 5 𝜀i
AB for the 5 ions. Similarly, for Disp-I-15, the 4 𝑘c−a and 5 𝜀i parameters 366 

are optimized instead of their association counterparts; for Full-I-15, the parameter set is the 367 

same as Assoc-I-15, the 𝜀i parameters are set at the water value, while 𝑘c−a is set at 0. Like-368 

ion dispersion is excluded in the dispersion strategies, but is included in the full strategies, 369 

according to the discussions in Section 2.3. Regression boundaries of the parameters are 370 

provided in the Supplementary Material. Rather than obtaining the parameters incrementally, 371 

i.e., starting from one of the salts and extending to the others, the 15 parameters are optimized 372 

simultaneously to the thermodynamic property data of the 4 aqueous alkali halide solutions. 373 

This facilitates a genuine ion-specific parameterization, as the contributions of the cation and 374 

anion are introduced into the regression by the difference of the mean thermodynamic property 375 

data of the 4 aqueous electrolyte solutions. In addition, compared to using salt-specific 376 

parameters of a reference system and extending to other salts that share a common ion (for 377 

instance, using the Cl- parameters from NaCl and extending to other Cl- salts), this approach 378 

avoids preferring over the accuracy of the reference system in the incremental approach while 379 

compromising that of the other systems. 380 

Table 3. Parameter sets for the ion-specific strategies, including 4 cations (Na+, K+, Rb+, and Rb+) and 381 
1 anion (Cl-). 382 

 Parameter set 

Assoc-I-15 15: 𝑟HS, 5 𝑟MSA for the 5 ions, 4 𝑤c−a for the 4 salts, and 5 𝜀i
AB for the 5 ions 

Assoc-I-12 12: 𝑟HS, 5 𝑟MSA for the 5 ions, 𝑤c−a, and 5 𝜀i
AB for the 5 ions 

Disp-I-15 15: 𝑟HS, 5 𝑟MSA for the 5 ions, 4 𝑘c−a for the 4 salts, and 5 𝜀i for the 5 ions 

Disp-I-12 12: 𝑟HS, 5 𝑟MSA for the 5 ions, 𝑘c−a, and 5 𝜀i for the 5 ions 

Full-I-15 15: 𝑟HS, 5 𝑟MSA for the 5 ions, 4 𝑤c−a for the 4 salts, and 5 𝜀i
AB for the 5 ions 

Full-I-12 12: 𝑟HS, 5 𝑟MSA for the 5 ions, 𝑤c−a, and 5 𝜀i
AB for the 5 ions 

Full-I-20 20: 𝑟HS, 5 𝑟MSA for the 5 ions, 4 𝑤c−a for the 4 salts, 5 𝜀i
AB for the 5 ions, and 5 𝜀i for 

the 5 ions 
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In a next step, efforts are made to reduce the number of adjustable parameters. First, the 383 

same 𝜀c
AB  is regressed using a single parameter for all cations, reducing the number of 384 

adjustable parameters from 15 to 12. However, even though the accuracy is as good as the 15-385 

parameter strategies, the individual ion activity coefficient (IIAC) is predicted to be smaller for 386 

cation than for anion for both the aqueous NaCl and KCl solutions, i.e., the model and 387 

parameter set fail in predicting the opposite relative magnitudes of cation and anion IIAC for 388 

aqueous NaCl and KCl solutions. To obtain the qualitatively correct behavior, different 389 

association energy parameters have to be used for Na+ and K+. Therefore, it is attempted to use 390 

the same 𝑤c−a for the 4 aqueous solutions, reducing the number of adjustable parameters from 391 

15 to 12. The 12-parameter ion-specific association strategy is denoted as Assoc-I-12. Similarly, 392 

the numbers of parameters for the dispersion and full ion-specific strategies are reduced from 393 

15 to 12; the 12-parameter strategies are denoted as Disp-I-12 and Full-I-12. 394 

Unlike the salt-specific cases, results of Full-I-15 and Full-I-12 are much worse than 395 

Assoc-I-15 and Assoc-I-12. It is suspected that the increased deviations result from the fixed 396 

dispersion energy parameter. Therefore, the dispersion energy parameters of the 5 ions are 397 

included in the ion-specific full strategy, i.e., Full-I-20. 398 

In the salt-specific cases, using RPM-1 or -2 results in only marginally different results. 399 

Therefore, RPM-1 is used in all the ion-specific cases; the impact of the relative permittivity 400 

model is not further pursued in this work. 401 

The regressed parameters of the ion-specific strategies are provided in the Supplementary 402 

Material. Like in the salt-specific cases, 𝑟HS is smaller for the dispersion strategies than for the 403 

association and full strategies. Figure 4 shows the regressed 𝑟MSA in the ion-specific strategies, 404 

Assoc-I-15, Assoc-I-12, Disp-I-15, Disp-I-12, Full-I-15, Full-I-12, and Full-I-20. For all the 405 

strategies except for Full-I-12, 𝑟MSA decreases with ionic size within the cations. In all ion-406 

specific strategies, 𝑟MSA is 1 for Cs+. Accuracy could be improved if the constraint that the 407 

MSA diameter must be larger than the HS diameter is relaxed. However, it is decided not to do 408 

so. For Disp-I-15, Disp-I-12, Full-I-15, and Full-I-12, 𝑟MSA is also 1 for Cl-. These strategies 409 

also result in larger deviations compared to the others, as will be discussed in Section 3.2. 410 
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 411 

Figure 4. Regressed 𝑟MSA in the ion-specific strategies, Assoc-I-15, Assoc-I-12, Disp-I-15, Disp-I-12, 412 
Full-I-15, Full-I-12, and Full-I-20. 413 

3 Results 414 

In this section, we compare the salt-specific association, dispersion, and full strategies as 415 

well as the ion- and salt-specific strategies approaches. 416 

3.1 Comparison of the dispersion, association, full strategies for the short-range ion-ion 417 

and ion-solvent interactions 418 

The percentage average absolute deviations (AADs) and percentage maximum absolute 419 

deviations (MADs) of the salt-specific strategies for the 4 aqueous electrolyte solutions are 420 

shown in Table 4. For all 4 salts, the association and full strategies are more accurate than the 421 

dispersion strategies. Therefore, it appears necessary to include the association term for the 422 

short-range ion-ion and ion-solvent interactions. For the aqueous NaCl solution, Disp-3 and -423 

4, in which like-ion dispersion is included, present slightly larger MADs compared to Disp-1 424 

and Disp-2, in which like-ion dispersion is excluded. Unlike the dispersion strategies, whether 425 

the like-ion dispersion is accounted for does not significantly affect the result for the full 426 

strategies. Considering the unreasonable parameters of Disp-3 and -4, as discussed in Section 427 

2.3, we conclude here that like-ion dispersion should not be included. Considering the slightly 428 

more accurate results and better trends in parameter of Full-3 and -4 compared to Full-1 and -429 

2 (𝑟MSA of the salts, as shown in the Supplementary Material), we recommend including like-430 

ion dispersion in the full strategies. 431 
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Table 4. Percentage average absolute deviations (AADs) and percentage maximum absolute 432 
deviations (MADs) of the salt-specific strategies for the 4 aqueous electrolyte solutions. Deviations 433 
larger than 10% are marked as bold and italic. 434 

 MIAC VLE p Density 

AAD (%) MAD (%) AAD (%) MAD (%) AAD (%) MAD (%) 

NaCl       

Disp-1 1.3 6.6 1.1 2.9 0.36 2.1 

Disp-2 1.3 6.3 1.1 2.9 0.34 2.1 

Disp-3 1.3 7.7 1.2 3.4 0.80 3.9 

Disp-4 1.2 7.0 1.2 3.2 0.46 2.7 

Assoc-1 0.62 4.4 1.1 2.4 0.32 2.2 

Assoc-2 0.76 4.3 1.2 2.5 0.33 2.2 

Full-1 0.81 5.4 1.1 2.5 0.69 4.2 

Full-2 1.2 5.7 1.1 2.8 0.31 2.1 

Full-3 0.57 4.3 1.1 2.2 0.37 2.4 

Full-4 0.5 3.6 1.2 2.3 0.37 2.3 

KCl       

Disp-1 1.2 4.4 1.5 3.3 0.26 1.3 

Disp-2 1.1 3.8 1.5 3.3 0.27 1.3 

Assoc-1 0.96 2.5 1.6 3.3 0.30 1.3 

Assoc-2 0.42 2.0 1.6 3.3 0.23 1.6 

Full-1 0.29 0.58 1.6 3.3 0.27 1.3 

Full-2 0.24 0.84 1.6 3.3 0.30 1.5 

Full-3 0.88 1.8 1.6 4.2 0.30 1.4 

Full-4 0.39 1.6 1.7 3.5 0.29 1.4 

RbCl       

Disp-1 0.59 2.6 1.5 6.9 0.27 1.4 

Disp-2 0.73 2.0 1.4 7.0 0.44 2.3 

Assoc-1 0.42 0.66 1.1 4.3 0.16 0.54 

Assoc-2 0.37 0.93 1.1 4.2 0.29 1.0 

Full-1 0.56 0.89 1.3 5.4 0.39 2.1 

Full-2 1.5 4.2 1.1 2.3 2.4 11 

Full-3 0.37 1.1 1.1 4.7 0.21 0.79 

Full-4 0.51 0.95 1.2 5.8 0.62 2.9 

CsCl       

Disp-1 1.8 3.2 2.7 14 0.71 3.5 

Disp-2 2.1 3.3 2.6 15 0.24 1.3 

Assoc-1 0.86 3.7 0.94 3.7 0.47 5.0 
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 MIAC VLE p Density 

AAD (%) MAD (%) AAD (%) MAD (%) AAD (%) MAD (%) 

Assoc-2 1.1 4.7 1.1 6.0 0.61 4.1 

Full-1 0.50 0.95 1.4 7.2 0.29 2.2 

Full-2 0.73 2.3 1.5 6.9 0.32 3.2 

Full-3 1.5 5.4 1.2 6.7 0.35 2.6 

Full-4 1.1 5.4 1.6 5.7 0.40 2.2 

The strategies using RPM-1 and -2 present only marginal difference in accuracy. 435 

Figure 4 shows the deviations of the MIAC, VLE and density calculated with Assoc-1 436 

from the experimental data. For references of the experimental data, please see Section 2.2. 437 

Results for the other association and full strategies are similar. For MIAC, the data are all at 438 

0.1 MPa. Thus, the deviation of MIAC plotted against p is not shown. In general, the model 439 

agrees very well with experimental data over the entire temperature, pressure, and composition 440 

range. For the 3 properties, the model is most accurate near 300 K, in which region the data are 441 

more extensive. As temperature decreases, deviations increase slightly. Considering that the 442 

deviation is at very small 𝑥ion at low temperatures, it is much more pronounced compared to 443 

that of approximately the same magnitude at much larger 𝑥ion at high temperatures. For NaCl, 444 

MIAC deviation clearly present a temperature-dependent behavior. Details will be discussed 445 

in Section 4.2. Density data are available for the aqueous NaCl and KCl solutions at high 446 

temperature; deviations increase very slightly as pressure increases, a large part of which is 447 

attributed to the increased deviation of the model for pure water density at higher pressure. 448 

Density data are available in the databases up to very high salt composition (close to 𝑥ion =449 

0.2) for the aqueous CsCl solution; deviations increase to approximately 5% at high salt 450 

composition, in which range MIAC and VLE data are not available in the database. 451 
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 452 

Figure 5. Deviations of the MIAC, VLE and density calculated with Assoc-1 from the experimental 453 
data. For references of the experimental data, please see Section 2.2. 454 

3.2 Salt-specific vs. ion-specific parameterization 455 

The AADs and MADs of the ion-specific parameter sets for MIAC, VLE, and density are 456 

shown in Table 5. Deviations larger than 10% are marked as bold and italic. Comparing the 457 

results in Tables 4 and 5, we can see that the Assoc-I-15 and Assoc-I-12 strategies are as 458 

accurate as the salt-specific parameter sets. This is achieved with a much smaller parameter set: 459 

15 or 12 parameters for the 4 salts as compared to 7 for each one of the 4 salts. However, unlike 460 

the association strategies, the dispersion and full strategies are not as accurate as the 461 

corresponding salt-specific strategies. Large deviations in the VLE of the aqueous CsCl 462 

solution are observed for Disp-I-15, Disp-I-12, Full-I-15, and Full-I-12. The only full strategy 463 

that achieved comparable accuracy as the association strategies includes 20 parameters (Full-464 

I-20). In the following text, Assoc-I-15 is discussed as an example. Results calculated using 465 
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Assoc-I-12 are as accurate for all the properties, except for the density of the aqueous CsCl 466 

solution, which has an MAD of 4.2% (still quite good) compared to the MIAC of 2.4% of 467 

Assoc-I-15. 468 
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Table 5. AADs and MADs of MIAC, VLE, and density of the 4 aqueous alkali halide solutions 469 
calculated using the ion-specific strategies. Deviations larger than 10% are marked as bold and italic. 470 

 MIAC VLE p Density 

AAD (%) MAD (%) AAD (%) MAD (%) AAD (%) MAD (%) 

NaCl       

Disp-I-15 1.6 6.4 1.1 2.8 0.62 3.3 

Disp-I-12 1.6 6.6 1.1 2.9 0.79 4.0 

Assoc-I-15 0.84 5.4 1.1 2.1 0.64 3.4 

Assoc-I-12 1.0 5.5 1.1 2.1 0.57 3.2 

Full-I-15 1.4 5.8 1.1 2.4 0.72 3.8 

Full-I-12 2.2 10 1.2 4.0 0.38 2.6 

Full-I-20 0.76 4.6 1.1 2.3 0.74 4.2 

KCl       

Disp-I-15 1.3 4.6 1.5 3.3 0.25 1.3 

Disp-I-12 1.4 4.5 1.5 3.3 0.26 1.3 

Assoc-I-15 1.2 4.0 1.6 3.5 0.39 2.0 

Assoc-I-12 1.3 3.0 1.5 3.3 0.32 1.6 

Full-I-15 1.3 4.4 1.5 3.3 0.32 1.3 

Full-I-12 2.8 7.7 1.4 3.3 0.43 2.6 

Full-I-20 1.1 3.6 1.5 3.3 0.32 1.4 

RbCl       

Disp-I-15 0.64 1.7 1.4 6.8 0.20 1.0 

Disp-I-12 0.68 1.9 1.4 6.9 0.20 0.96 

Assoc-I-15 0.54 1.2 1.1 4.1 0.20 1.3 

Assoc-I-12 0.64 1.1 1.1 3.8 0.25 1.6 

Full-I-15 0.51 1.3 1.3 6.4 0.18 0.68 

Full-I-12 1.8 4.4 1.4 7.5 0.26 1.6 

Full-I-20 0.75 1.2 1.2 3.9 0.20 0.94 

CsCl       

Disp-I-15 1.8 3.1 2.7 14 0.89 4.1 

Disp-I-12 1.8 3.1 2.6 14 0.82 3.8 

Assoc-I-15 1.5 6.5 1.2 5.5 0.42 2.4 

Assoc-I-12 1.1 5.4 1.3 5.2 0.65 4.2 

Full-I-15 1.8 2.8 2.4 14 0.36 2.4 

Full-I-12 3.0 6.0 1.9 11 0.70 4.4 

Full-I-20 1.3 4.5 1.1 5.1 0.58 3.4 

Figures 6 and 7 show the comparison of the MIAC and density of the aqueous NaCl, KCl, 471 

RbCl, and CsCl solutions calculated using Assoc-I-15 and experimental data at 298.15 and 0.1 472 
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MPa. The experimental data are from Ref [52,57,70,107,161,242]. The model is very accurate 473 

at atmospheric conditions. Figure 8 shows the comparison of density of aqueous NaCl and KCl 474 

solutions calculated using Assoc-I-15 and experimental data at 298.15 K and elevated pressure, 475 

up to 100 MPa for NaCl and 40 MPa for KCl. The experimental data are from Ref [112,145]. 476 

The deviations are slightly larger than at 0.1 MPa, and increase with increasing pressure and 477 

salt composition, but are within 2%. At higher pressure, the deviations for pure water of the 478 

PPC-SAFT model is also slightly larger, as shown in the left side of the graphs (at 0 salt 479 

composition). For the aqueous RbCl and CsCl solutions, data are not available up to such high 480 

pressure. Figure 9 shows the vapor pressure of aqueous KCl solution calculated using Assoc-481 

I-15 and experimental data at 313.15 to 343.15 K. The experimental data are from Ref [88]. 482 

Results are similar for the other aqueous electrolyte solutions. Overall, the properties are 483 

correlated very accurately. 484 

 485 

Figure 6. Comparison of the MIAC of the aqueous NaCl, KCl, RbCl, and CsCl solutions calculated 486 
using Assoc-I-15 and experimental data at 298.15 K and 0.1 MPa. The experimental data are from Ref 487 
[52,57,70]. 488 

 489 

Figure 7. Comparison of the density of the aqueous NaCl, KCl, RbCl, and CsCl solutions calculated 490 
using Assoc-I-15 and experimental data at 298.15 K and 0.1 MPa. The experimental data are from Ref 491 
[107,161,242]. 492 
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 493 

Figure 8. Comparisons of the density of the aqueous NaCl and KCl solutions calculated using Assoc-494 
I-15 and experimental data at 298.15 K and elevated pressures. The experimental data are from Ref 495 
[112,145]. 496 

 497 

Figure 9. Comparison of the vapor pressure of the aqueous KCl solution calculated using Assoc-I-15 498 
and experimental data at 313.15 to 343.15 K. The experimental data are from Ref [88]. 499 

4 Discussion 500 

In this section, the contributions of the terms are analyzed; the model is tested on the 501 

MIAC over large temperature ranges beyond the range of the data used in the regression. The 502 

model is also tested on the osmotic coefficient and individual ion activity coefficient, which 503 

have not been included in the parameter estimation. 504 

4.1 Contributions of the terms 505 

Figure 10 shows the contributions to ln 𝛾±  of the terms (hard-chain, dispersion, 506 

association, multipolar, MSA, and Born) in the ion-specific strategies, Assoc-I-15, Disp-I-15, 507 

and Full-I-15, at 298.15 K and 0.1 MPa. The reference state of the sum of ln 𝛾± is naturally 508 

based on the molar fraction unit. The contributions of Assoc-I-12, Disp-I-12, Full-I-12, and 509 

Full-I-20 are similar to the corresponding 15-parameter cases, and are not shown here. At low 510 

salt composition, ln 𝛾± is dominated by the MSA term. The MSA term presents a curvature, 511 
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while all the other terms are close to linear in the entire ranges, counter-balancing the negative 512 

MSA term. Thus, ln 𝛾± presents an upward curvature as salt composition increases. The Born 513 

term is approximately the same in the different strategies for each aqueous electrolyte solution, 514 

because it is determined by the relative permittivity and hard sphere diameters. The multipolar 515 

term presents a very small contribution, indicating that our conclusions would also apply for a 516 

SAFT model that does not include a multipolar term. The contributions of the salt-specific 517 

parameterization strategies are provided in the Supplementary Material. The behavior is very 518 

similar for the ion- and salt-specific association strategies, and is different for the dispersion 519 

and full strategies. This could be linked to the observation that reducing the number of 520 

adjustable parameters does not have a considerable impact on the accuracy of the model for 521 

the association strategies. 522 
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 523 

Figure 10. Contributions to ln 𝛾± of the terms in the ion-specific strategies, Assoc-I-15, Disp-I-15, and 524 
Full-I-15, at 298.15 K and 0.1 MPa. 525 

For Assoc-I-15, the association term presents the largest positive contribution for the 4 526 

aqueous electrolyte solutions, while the dispersion and hard chain terms are negative and quite 527 

pronounced. Note that, in the association strategies, the dispersion contribution is a 528 

consequence of only the water-water dispersion interaction. The segment number is set at 1 for 529 

the ions. The regressed segment number for water is also close to 1. Therefore, the hard chain 530 

contribution is approximately a hard sphere contribution. 531 

For Disp-0I-15, the association term also presents the largest positive contribution, but is 532 

smaller compared to the Assoc-I-15 cases. Note that, in the dispersion strategies, the 533 

association contribution is a consequence of only the water-water association interaction. The 534 



28 

 

hard chain and dispersion terms are positive for the aqueous NaCl solution, and are smaller (in 535 

magnitude, negative) for the other aqueous solutions compared to the Assoc-I-15 cases. 536 

For Full-I-15, the association contribution is even smaller compared to the dispersion 537 

cases. The association, hard chain, and dispersion terms present no trend. Considering that 538 

these strategies resulted in no improvement in accuracy compared to the association strategies, 539 

the counter-balancing behavior of the close-to-linear terms shows that there is no need to 540 

account for both the association and dispersion contributions for the short-range ion-ion and 541 

ion-solvent interactions. 542 

Naturally, the total ln 𝛾± is of course approximately the same for the different strategies 543 

for each salt. However, it is also interesting to notice that the magnitudes of the separate 544 

contributions are larger for salts with heavier cations for the association and dispersion 545 

strategies. 546 

In the ePPC-SAFT model, the electrolyte contribution (MSA and Born) and the “physical” 547 

contributions (that are all approximately linear) balance each other out.; Yet, the distribution 548 

among the physical terms is sometimes very different, with, for example, sometimes positive, 549 

sometimes negative contributions from the dispersion and hard sphere. The association 550 

strategies show a logical trend when increasing the cation size in contrast to the other strategies. 551 

At this point, we don’t have a sufficiently clear vision of the true physics to comment on the 552 

meaning of these contrasting contributions, but the trend observed with the association strategy 553 

provides better ground for further work. 554 

4.2 Temperature dependence of MIAC 555 

Figure 11 shows the comparison of the MIAC of the aqueous NaCl solution calculated 556 

using Assoc-1 and experimental data from 273.15 to 383.15 K. The data used for comparison 557 

are from Ref [303], and are not used in the regression. It covers larger temperature range than 558 

the MIAC data used in the regression, which are only up to 333.15 K, and also covers larger 559 

salt composition range at low temperatures. MIAC presents an anomaly: at low temperatures, 560 

MIAC increases with increasing temperature. Figure 12 shows results calculated using the ion-561 

specific strategy, Assoc-I-15. Neither parameter set captures the temperature-dependence 562 

anomaly. As temperature increases above the range of the data used in the regression, the salt-563 

specific parameter set, Assoc-1, agrees with experimental data very well, while the ion-specific 564 

parameter set, Assoc-I-15, presents slightly larger deviations. 565 
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 566 

Figure 11. Comparison of the MIAC of the aqueous NaCl solution calculated using Assoc-1 and 567 
experimental data from 273.15 to 383.15 K. 568 

 569 

Figure 12. Comparison of the MIAC of the aqueous NaCl solution calculated using Assoc-I-15 and 570 
experimental data from 273.15 to 383.15 K. 571 

Efforts have been made in the literature to capture the temperature-anomaly of MIAC. 572 

Selam et al. [44] captured the temperature-anomaly using temperature-dependent dispersion 573 

energy parameters. Roa Pinto et al. [40] captured the temperature-dependence anomaly without 574 

introducing temperature-dependent interaction energy parameters. Specifically, the only 575 

parameter set that managed to capture the temperature-dependence is the 10-parameter 576 

association strategy, “model 2.0”. However, the regressed MSA diameter was smaller than the 577 

HS diameter for Cl-. Difference between the parameterization strategies of this work and Ref 578 

[40] are: 579 

- The parameter sets are different. In Ref [40], there are more adjustable parameters, e.g., 580 

an extra binary interaction parameter was included for association volume. 581 

- Ionic diameters were not forced to meet the physical consistency constraints in Ref [40]. 582 

The regressed anion MSA diameter was smaller than the HS diameter. In this work, the 583 

ionic diameters consistency is enforced in the regression. 584 
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- The included data are different. In Ref [40], representative datasets were used, covering 585 

larger ranges quite evenly. On the other hand, in this work, experimental data from 586 

extensively collected and evaluated databases are used. The availability of such data 587 

inevitably favors the ranges near room temperature (298.15 K). 588 

- More importantly, enthalpy data was included in the objective function of Ref [40]. The 589 

property, although only qualitatively represented, could be significantly important for the 590 

temperature dependence of the MIAC. 591 

Here we refrain from using enthalpy data for the following reasons: 592 

- In future works, the model will be extended to mixed-solvent electrolyte solutions, for 593 

which enthalpy data are very scarce. 594 

- The model has been shown to present large deviations from the experimental enthalpy 595 

data in Ref [40]. The best that could be achieved was a qualitative agreement. Including 596 

the data would jeopardize the highly accurate representation of the MIAC, VLE, and 597 

density data in this work. 598 

Enforcing the ionic diameter consistency in the regression, efforts are made to obtain the 599 

same temperature dependence as in Ref [40]. When regressed to the evenly distributed pseudo-600 

experimental MIAC dataset from Ref [303], the obtained parameter set captures a maximum, 601 

as shown in Figure 13. Only MIAC is included in this regression. This parameterization 602 

strategy is here noted as Assoc-MIAC. When VLE and density data are also included in the 603 

objective function along with the evenly distributed MIAC dataset, a maximum in MIAC is 604 

also captured, however, the isotherms are rather close to each other; the temperature-605 

dependence is not captured as well as when using Asso-MIAC. In principle, the joint effect of 606 

the decreasing Wertheim association term and increasing other terms can capture the maximum 607 

of MIAC with temperature. However, whether it is captured is a matter of parameter regression. 608 

The use of an extra binary interaction parameter for the association volume has been found to 609 

result in only marginal difference. The parameters are provided in the Supplementary Material, 610 

along with the comparisons of this parameter set and the Ref [40] with the data summarized in 611 

Table 1 for the aqueous NaCl solution. Figure 14 shows a comparison of the MIAC 612 

temperature-dependence of the modeling strategies Assoc-1, Assoc-I-15, Assoc-MIAC, and 613 

Assoc-R40 (the parameter set from Ref [40]) at 2, 4, and 6 M from 273.15 to 383.15 K. Assoc-614 

MIAC and Assoc-R40 correctly represent the temperature dependence of MIAC, while Assoc-615 

1 and Assoc-15 present monotonically decreasing trends with temperature. 616 
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 617 

Figure 13. Comparison of the MIAC of the aqueous NaCl solution calculated using Assoc-MIAC and 618 
experimental data from 273.15 to 383.15 K. 619 

 620 

Figure 14. Comparison of the MIAC temperature-dependence of the modeling strategies Assoc-1, 621 
Assoc-I-15, Assoc-MIAC, and Assoc-R40 at 2, 4, and 6 M from 273.15 to 383.15 K. 622 

An advantage of the salt- and ion-specific parameter sets in this work (Asso-1 and Asso-623 

I-15), compared to Asso-MIAC and Asso-R40, is that they are more accurate close to 298.15 624 

K, which is the region where most data are located, especially considering that the model is to 625 

be extended to mixed-solvent electrolyte solutions. Therefore, the temperature-anomaly at low 626 

temperature has not been further pursued in this work. 627 

4.3 Osmotic coefficient 628 

The model is tested on the osmotic coefficient, which is not included in the parameter 629 

estimation. The osmotic coefficient is related to the MIAC according to the Gibbs-Duhem 630 

equation. Therefore, if the MIAC is accurately represented with the model, the osmotic 631 

coefficient is also expected to be accurately predicted. Therefore, the  TherefoirExperimental 632 

osmotic coefficient data have been evaluated in Ref [7]. Because MIAC and VLE data are up 633 

to 400 K in the regression, osmotic coefficient data above 400 K are removed in our study. 634 

Furthermore, the osmotic coefficient data of the aqueous RbCl and CsCl solutions from Ref [7] 635 
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cover a much larger salt composition range compared to the MIAC data used in the regression. 636 

Therefore, the salt composition is limited to 6 M in this section (approximately 𝑥ion = 0.089, 637 

close to the solubility of NaCl in water at 298.15 K). For the aqueous KCl, RbCl, and CsCl 638 

solutions, the range is larger than the MIAC data range (as shown in Table 1). 639 

Table 6 shows the osmotic coefficient data and prediction deviations of the ion-specific 640 

parameter set, Assoc-I-15. Figure 15 shows the comparison of the osmotic coefficient of 641 

aqueous NaCl, KCl, RbCl, and CsCl solutions calculated using Assoc-I-15 and experimental 642 

data at 298.15 K and 0.1 MPa. Please note the very small scale in the graph. Overall, the model 643 

predicts the osmotic coefficient very well. For the aqueous NaCl solution, the calculated curve 644 

is in good agreement with the experimental data. For the aqueous KCl and RbCl solutions, 645 

deviations increase very slightly as salt composition exceeds the range of the MIAC data that 646 

are used in the regression; maximum deviations are within 5%. For the aqueous CsCl solution, 647 

deviation increases to more than 6% at approximately 𝑥ion = 0.05. As shown in Table 1, CsCl 648 

MIAC data are available only up to 𝑥ion = 0.049 for the mixture. Furthermore, the MIAC 649 

deviation is more than 4% at 𝑥ion = 0.049 (as shown in Figure 6), in which range the largest 650 

osmotic coefficient deviation is located. Above the MIAC data range and up to 𝑥ion = 0.089, 651 

the osmotic coefficient deviation decreases. However, outside of the range of the comparisons 652 

here, the osmotic coefficient data are available up to very high composition. The more drastic 653 

increase of the model compared to the experimental data retains as composition increases above 654 

what is shown in Figure 16, with the osmotic coefficient being 1.26 at 𝑥ion = 0.15 (larger than 655 

11 M, far beyond the MIAC data range), where the experimental osmotic coefficient is 1.02. 656 

Table 6. Osmotic coefficient data and prediction deviations of the ion-specific parameter set, Assoc-I-657 
15. 658 

Wate + T (K) p (MPa) xion Ndp References AAD (%) MAD (%) 

NaCl 298.15 ~ 398.15 0.1 ~ 0.4 ~ 0.089 73 [304–306] 1.6 3.5 

KCl 273.15 ~ 372.75 0.1 ~ 0.2 ~ 0.079 95 [74,307–310] 1.4 4.7 

RbCl 298.15 0.1 ~ 0.089 32 [304,311] 0.82 4.2 

CsCl 298.15 ~ 383.15 0.1 ~ 0.089 35 [60,312] 2.8 6.6 
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 659 

Figure 15. Comparison of the osmotic coefficient of the aqueous NaCl, KCl, RbCl, and CsCl solutions 660 
calculated using Assoc-I-15 and experimental data at 298.15 K and 0.1 MPa. 661 

Figure 16 shows the comparison of the osmotic coefficient of the aqueous NaCl solutions 662 

calculated using Assoc-I-15 and experimental data from 298.15 to 398.15 K. Unlike for the 663 

MIAC, experimental data are not available for the osmotic coefficient at lower temperatures. 664 

An overlap is observed in the experimental data at 298.15, 318.15, and 333.15 K, indicating 665 

that there is an osmotic coefficient maximum in the temperature range. The ion-specific 666 

parameter set predicts a monotonic decrease with temperature, like for the MIAC, and fails to 667 

capture the temperature maximum. Furthermore, the deviation is slightly larger at elevated 668 

temperatures. The salt-specific parameter sets, Assoc-1, Assoc-MIAC, and Assoc-R40, capture 669 

the high temperature behavior better than Assoc-I-15. 670 

 671 

Figure 16. Comparison of the osmotic coefficient of the aqueous NaCl solutions calculated using 672 
Assoc-I-15 and experimental data from 298.15 to 398.15 K. 673 

4.4 Individual ion activity coefficient (IIAC) 674 

In addition to the mean properties, IIAC is an important property that can be used for 675 

further testing the model. IIAC is important in that it appears in the Nernst equation for the 676 

electrode potential in a half-cell [313]. In the ion-specific parameterizations, the 4 aqueous 677 
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alkali chloride solutions are regressed together, introducing more information about the 678 

individual ions in the regression by the different cations and the common anion, Cl-.Although 679 

there is some debate about the validity of the experimental measurement of the activity 680 

coefficient of individual ions [314–320], recent molecular simulations [321] qualitatively 681 

agrees with the experimental data. Therefore, IIAC is used as a qualitative test here. 682 

Experimental [322,323] and molecular simulation [321] investigations presented that the 683 

relative magnitudes of the cation and anion IIAC for the aqueous NaCl and KCl solutions are 684 

opposite. In the salt-specific parameterization in this work, the only individual ion information 685 

that are introduced are: the HS diameters, which are proportional to the Pauling diameters, and 686 

the Born diameters, which are determined based on the Gibbs energy of solvation. All 10 salt-687 

specific strategies fail to correctly predict the larger IIAC for Na+. All the properties used in 688 

the objective function are mean properties, i.e., individual ion information is not introduced 689 

from the data. In the ion-specific parameterizations, the 4 aqueous alkali chloride solutions are 690 

regressed together, introducing more information about the individual ions in the regression by 691 

the different cations and the common anion, Cl-. 692 

Figure 17 compares the IIAC of the aqueous NaCl and KCl solutions calculated using the 693 

salt-specific strategy, Assoc-1, ion-specific strategies, Assoc-I-15, Disp-I-15, and Full-I-15, 694 

and experimental data. The experimental data are from Ref [322,323]. This property is not 695 

included in the regression. Thus, these results are pure predictions. Assoc-I-15 correctly 696 

predicts the opposite relative magnitudes of the cation and anion IIAC of the aqueous NaCl 697 

and KCl solutions, while the other strategies predict smaller IIAC for the cation in both cases. 698 

Results are similar for the 12-parameter ion-specific strategies: Assoc-I-12 correctly predicts 699 

the opposite relative magnitudes, while Disp-I-12 and Full-I-12 fail. Table 7 summarizes 700 

whether the opposite relative magnitudes of the cation and anion IIAC of the aqueous NaCl 701 

and KCl solutions is correctly predicted by the ion-specific strategies. In a nutshell, the ion-702 

specific association strategies present an advantage for predicting the qualitative behavior of 703 

IIAC over the ion-specific dispersion and full strategies and the salt-specific strategies. 704 
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 705 

Figure 17. Comparison of the IIAC of the aqueous NaCl and KCl solutions calculated using the salt-706 
specific strategy, Assoc-1, ion-specific strategies, Assoc-I-15, Disp-I-15, and Full-I-15, and 707 
experimental data. 708 

Table 7. Whether the opposite relative magnitudes of the cation and anion IIAC of the aqueous NaCl 709 
and KCl solutions is correctly predicted by the ion-specific strategies. 710 

Parameterization strategies Opposite relative magnitudes 

Asso-I-15  

Asso-I-12  

Disp-I-15  

Disp-I-12  

Full-I-15  

Full-I-12  

Full-I-20  

5 Conclusions 711 

In this work, the ePPC-SAFT model is parameterized in an ion-specific approach 712 

enforcing physical consistency of the ionic parameters. Properties that are useful in practical 713 

applications are included in the objective function, i.e., MIAC, VLE, and density. Reference 714 

data are taken from extensively collected and critically evaluated databases. The association, 715 

dispersion, and full (association + dispersion) approaches are compared for the short-range ion-716 

ion and ion-solvent interactions. Efforts are made to parameterize the model in an ion-specific 717 

manner with minimum loss of accuracy. The ion-specific parameter sets are compared with the 718 

salt-specific sets. The model and parameter sets are further tested on the MIAC beyond the data 719 

range of the regression, and on properties that have not been included in the regression. The 720 

major conclusions are: 721 

- For the salt-specific cases, all strategies are quite accurate in the entire temperature, 722 

pressure, and salt composition range of the experimental database; the association and full 723 

strategies are more accurate than the dispersion strategies. Like-ion dispersion should not 724 
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be included in the dispersion strategies, but is recommended to be included in the full 725 

strategies. Despite using a larger number of adjustable parameters and including more 726 

completely the physical interactions, the full strategies are not more accurate than the 727 

association strategies. Similar results are obtained both the investigated RPMs. 728 

- For the ion-specific cases, the association strategies are approximately as accurate as the 729 

salt-specific cases in terms of the average and maximum deviations, while the dispersion 730 

and full strategies are less accurate. To obtain the same accuracy as the association 731 

strategies, the full strategy has to use a larger number of adjustable parameters. This may 732 

indicate a reason not to include both dispersion and association for the short-range ion-733 

ion and ion-solvent interactions. The 12-parameter ion-specific association strategy with 734 

the same binary interaction parameter for the 4 salts is only slightly less accurate than the 735 

15-parameter case. 736 

- However, at higher temperature, the ion-specific association strategy is less accurate than 737 

the salt-association association strategy. Neither salt- or ion-specific strategy represent the 738 

MIAC temperature maximum of the aqueous NaCl solution, which was successfully 739 

represented in the literature, using temperature-dependent energy parameters or a 740 

physically inconsistent parameter set. The behavior is successfully represented here using 741 

the association approach by regressing only to an evenly distributed pseudo-experimental 742 

MIAC dataset. However, the attempt is dropped because the ion-specific association 743 

parameter set is more extendable and more accurate overall speaking for all investigated 744 

properties, with the temperature-anomaly in MIAC resulting in only slightly larger 745 

deviations. 746 

- An analysis of the contributions of the terms shows that the dispersion, association, and 747 

hard chain terms are all close to linear with salt composition, and counter-balance each 748 

other in all cases. The various terms present no trend within the alkali chloride series in 749 

the full strategies. Therefore, the association strategies are possibly more favorable 750 

compared to the dispersion and full strategies. 751 

- The model and parameter set is tested on the osmotic coefficient and individual ion 752 

activity coefficient, which are not included in the regression. The ion-specific association 753 

parameter set accurately represents the osmotic coefficient over wide temperature and salt 754 

composition ranges, beyond those of the MIAC data used in the regression. The ion-755 

specific association strategies correctly predict the opposite relative magnitudes of the 756 

cation and anion individual ion activity coefficient of the aqueous NaCl and KCl solutions, 757 

while the ion-specific dispersion and full strategies, and all the salt-specific strategies fail. 758 
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To sum up, state-of-the-art parameter sets have been obtained for the ePPC-SAFT model, 759 

facilitating benchmarking of the short-range interaction approaches, and salt- and ion-specific 760 

parameterizations. We recommend including the Wertheim association for the short-range ion-761 

ion and ion-solvent interactions, and parameterizing SAFT models in an ion-specific manner 762 

using physically consistent parameters. In the future, the model will be extended to other 763 

aqueous electrolyte solutions, and mixed-solvent and mixed-salt electrolyte solutions. 764 
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