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Abstract

This work is motivated by goal-oriented sensitivity analysis of inputs/outputs of
complex simulators. More precisely we are interested in the ranking of the uncertain
input variables that impact the most a feasible design domain. Most sensitivity anal-
ysis methods deal with scalar outputs. In this paper, we propose a way to perform
sensitivity analysis when dealing with set-valued outputs. Our new methodology
is driven by sensitivity analysis on excursion sets but can also be applied to set-
valued simulators as in viability field, or when dealing with maps such as pollutant
concentration maps or flooding zone maps.

We propose a method based on the Hilbert Schmidt Independence Criterion
(HSIC) with a kernel tailored to sets as outputs. A first contribution is the proof
that this kernel is characteristic (i.e injectivity of the embedding in the associated
Reproducing Kernel Hilbert Space), a required property for the HSIC interpretation
in a sensitivity analysis context. We propose then to compute the HSIC-ANOVA
indices which allow a decomposition of the input contributions. Using these indices,
we can identify which inputs should be neglected (screening) and we can rank the
others by influence (ranking). The estimation of these indices is also adapted to
the set-valued outputs. Finally we test the proposed method on two test cases of
excursion sets.
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1 Introduction

In many industrial applications, complex physical systems are modeled by time con-
suming numerical models. Solving associated optimization problems is thus challenging:
the dimension of the input space can be very high, the inputs can be deterministic but
also uncertain and the optimization problems must often be solved under constraints and
in presence of uncertainties. In this framework of high dimensional optimization under
constraints with uncertainties (Beyer and Sendhoff [2007]), the optimization requires too
many model evaluations to be performed directly. Simplification of the model is then
necessary prior to the optimization. It often means reducing the input dimension which
can be done by selecting the most impacting input variables through sensitivity analysis
(SA).

Global SA techniques study the influence of inputs on scalar-valued output (see Da
Veiga et al. [2021] for a general review on sensitivity analysis methods). Most known
SA methods are the screening methods with the Morris method for instance (Morris
[1991]) and the variance-based sensitivity measures. The latter, called Sobol’ indices,
have emerged with Sobol’s work in 1993, who introduced them later in Sobol [2001].
These indices quantify the part of output variance which can be attributed to one or a
group of inputs. This variance decomposition is called the Hoeffding ANOVA decom-
position. However, even if these indices are widely used, a main drawback is that they
quantify input contributions to the output variance but not to the whole output dis-
tribution. To deal with this issue, new sensitivity indices have been developed such as
the Borgonovo indices (Borgonovo [2007]) or Cramér von Mises indices (Gamboa et al.
[2017]). Instead of comparing the variance with and without conditioning, they compare
the whole distributions. However their computation require a heavier computational cost.
To circumvent this issue, kernel-based sensitivity indices have been more recently intro-
duced. Their computational cost is lightened by the kernel trick. The idea is to use a
kernel function which embeds distributions in Reproducing Kernel Hilbert Space (RKHS)
on which distances are easier to compute. By embedding the output distribution in the
RKHS, it is then possible to quantify the influence of an input by measuring its impact
on the embedded distributions (Gretton et al. [2005b]). An ANOVA-like decomposition
also exists for kernel-based indices as shown in Da Veiga [2021]. Kernel-based methods
also enable to easily deal with vector-valued outputs. Such extension is also possible with
variance-based indices but requires more work (Gamboa et al. [2013]).

In the context of optimization, the aforementioned SA methods have been goal ori-
ented in order to identify which inputs are influential on reaching the optimal point or
area (Marrel and Chabridon [2021], Spagnol [2020]). However they only consider the op-
timization without uncertainties and aim at reducing the dimension of the design space.
In the presence of uncertain inputs, we also want to reduce the dimension of the uncertain
space. To do so, we propose to study the impact of the uncertain inputs on the feasible
sets. This, however, mean that we now deal with sets as output on which we aim at
conducting a sensitivity analysis.

In literature, several works on SA adapted to complex outputs exist. For example,
in El Amri and Marrel [2021], the case of functional output is studied. [Fort et al.
2021] also proposed indices that only require the output space to have a metric. In
the previously introduced list of standard sensitivity indices, kernel-based approaches are
the least dependent on the type of output. Indeed they only rely on the definition of
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an appropriate kernel. Thus the extension of kernel-based SA for more complex outputs
seems easier. In this article we introduce a new kernel-based SA adapted to the particular
case of set-valued output. The key ingredient to perform SA for set-valued output is to
have a kernel on sets. In Section 2 we introduce a particular kernel kset which is the
adaptation of the Euclidean Gaussian kernel to a space of sets. We show that it is
characteristic which is needed for screening purposes. Using kset, we propose a kernel-
based index, that we call Hset, which is the adaptation of HSIC-ANOVA indices to set-
valued output. An efficient estimation of this index is given in Section 3. Numerical
results obtained from two test cases related to excursion sets are then given in Section 4.
Some proofs and numerical results are given in appendix.
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2 Kernel-based sensitivity analysis for sets

Let X ⊂ R
d be a compact space. Without loss of generality, we suppose X = [0, 1]d.

Let λ be the Lebesgue measure on R
d and B(X) the associated Lebesgue σ-algebra.

Let η : R
p → B(X) be a set-valued model defined as a function of p inputs u =

(u1, ..., up) ∈ R
p, with the associated output γ = η(u) ∈ B(X). As in many sensitivity

analysis framework, the inputs are assumed to be independent random variables U =
(U1, ..., Up) ∈ R

p defined on a probability space (Ω,F ,P) with known distributions PUi
.

The associated output Γ = η(U) is then a random variable which support is a subspace
of B(X). We will call it a random set.

2.1 A kernel between sets

The first requirement for applying kernel methods in our context is to define a kernel on
sets. A kernel on B(X) is by definition a positive definite function k : B(X)×B(X) → R.
Let ∆ be the symmetric difference between two sets A and B defined by A∆B = (A ∪
B)\(A∩B). Let λ(A) be the volume of a set A defined by λ(A) =

∫
X

1Adλ. We propose
the function kset defined by:

∀γ1, γ2 ∈ B(X), kset(γ1, γ2) := e−
λ(γ1∆γ2)

2σ2 , (1)

with σ a positive scalar. kset is inspired by the classical Gaussian kernel as the volume of
the symmetric difference is equal to the L2 norm of the difference between two indicator
functions.

Proposition 2.1. The function kset : B(X)× B(X) → R defined by

∀γ1, γ2 ∈ B(X), kset(γ1, γ2) = e−
λ(γ1∆γ2)

2σ2 ,

is positive definite for any positive scalars σ which mean that kset is a kernel.

Proof. The proof is the same as in Balança and Herbin [2012], Lemma 2.1., replacing the
indexing collection A by B(X).

2.2 Kernel mean embedding of random sets

In (1), the volume of the symmetric difference δ : γ1, γ2 7→ λ(γ1∆γ2) is a pseudo-
metric in B(X). Indeed, δ(γ1, γ2) = 0 only implies that γ1 = γ2 λ-almost everywhere.
By considering the quotient space B = B(X)/ ∼ for the equivalence relation γ1 ∼ γ2 iif
γ1 = γ2 λ-a.e., δ becomes a metric sometimes called Fréchet-Nikodym-Aronszajn metric
(Marczewski and Steinhaus [1958]). On this space B, kset is well defined and remains a
kernel.

Proposition 2.2. The kernel kset is bounded and measurable from B×B (with the sigma
algebra generated by the open sets generated by the open balls for the metric δ) to R.

Proof. kset is bounded by 1 and is measurable because it is continuous as exp and δ are
continuous (δ is a metric).
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Then the Moore-Aronszajn theorem (Aronszajn [1950]) gives the existence of a unique
RKHS H ⊂ BR of reproducing kernel kset. We can now embed borelian sets distributions
into the RKHS H.

Definition 2.1. Let M1
+(B) be the space of probability measures on B. The mean em-

bedding of M1
+(B) in H is defined as:

M1
+(B) → H

µ : P 7→ µP =
∫
B kset(γ, ·)dP(γ).

In the sequel, for a given random set Γ of probability distribution PΓ, we will denote µΓ

its mean embedding instead of µPΓ
.

The existence of this embedding and that µ(M1
+(B)) ⊂ H is ensured by

∫
B kset(γ, γ)dP(γ) =

1 < +∞ for any P ∈ M1
+(B) (Smola et al. [2007]).

Proposition 2.3. The kernel kset is characteristic, i.e. the embedding defined in Defini-
tion 2.1 is injective.

Proof. The proof is based on the Proposition 5.2. of Ziegel et al. [2022]. We apply the
Proposition with X = B, H = L2(X), ϕ = exp(− ·

2σ2 ) and T defined by T (γ) := x 7→ 1γ(x)
for any γ ∈ B. L2(X) is a separable Hilbert space (as X is compact so separable) and T
is injective and measurable (as δ(γ1, γ2) = ||1γ1 − 1γ2 ||22). We just need to verify that B
is a Polish space i.e. separable and complete as it is already a metric space. To do so,
we will see B as a subspace B̃ of L2(X) through the homeomorphism T : B → B̃ = {f ∈
L2(X), ∃γ ∈ B(X) s.t. f = 1γ λ-a.e.}. B̃ is separable as it is a subspace of L2(X). As
L2(X) is complete, B̃ is also complete if it is closed. Let’s then show that B̃ is closed.

Let 1γn
L2→

n→+∞
f with γn ∈ B(X) ∀n. The L2(X) convergence implies that there is a

sub-sequence 1γφ(n)
that converges a.e. pointwise to f . It means that there exists a λ-null

set N s.t. ∀x /∈ N , 1γφ(n)
(x) →

n→+∞
f(x) ∈ {0, 1} (as it is a limit of a sequence of 0 and 1).

So, f = 1f−1({1}) λ-a.e. and f−1({1}) ∈ B(X) as f is measurable. Thus kset is integrally
strictly positive definite with respect to M(B), the set of signed measure on B, which
implies that it is characteristic.

2.3 Maximal Mean Discrepancy between sets

With this injective embedding, taking the distance in the RKHS induces a distance
between two elements of M1

+(B). As it coincides with the Maximum Mean Discrepancy
(MMD) taken in the RKHS H, we will call it MMDset (Borgwardt et al. [2006]).

Definition 2.2. Let Γ1, Γ2 be two random closed sets of distribution PΓ1 ,PΓ2 with mean
embeddings µΓ1 and µΓ2. The Maximum Mean Discrepancy (MMD) taken on the space H
is defined as the distance between their mean embeddings:

MMDset(PΓ1 ,PΓ2) := ||µΓ1 − µΓ2 ||H.
It can be written as a sum of expectations of the kernel kset.

Proposition 2.4. Let Γ1, Γ2 be two random sets and Γ′
1, Γ

′
2 be two independent copies

of Γ1, Γ2. The squared MMD can then be expressed as:

MMD2
set(PΓ1 ,PΓ2) = E[kset(Γ1,Γ

′
1)] + E[kset(Γ2,Γ

′
2)]− 2E[kset(Γ1,Γ2)].
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Proof. It is the same as in Gretton et al. [2006] given for scalars outputs.

MMD2
set(PΓ1 ,PΓ2) = ||µΓ1 − µΓ2||2H

= 〈µΓ1, µΓ1〉+ 〈µΓ2 , µΓ2〉 − 2〈µΓ1, µΓ2〉
= E〈kset(Γ1, ·), kset(Γ′

1, ·)〉+ E〈kset(Γ2, ·), kset(Γ′
2, ·)〉

− 2E〈kset(Γ1, ·), kset(Γ2, ·)〉
= Ekset(Γ1,Γ

′
1) + Ekset(Γ2,Γ

′
2)− 2Ekset(Γ1,Γ2).

In the case of scalar outputs, the MMD between two random variable distributions
has been used to define kernel-based sensitivity indices such as the Hilbert-Schmidt In-
dependence Criterion (HSIC). The latter is designed for screening through independence
testing. But recent works (Da Veiga [2021]) have shown that under some hypotheses,
HSIC has an ANOVA-like decomposition which makes it also suited for ranking. For
these reasons, based on the MMDset, we propose an extension of the HSIC definition to
set-valued outputs.

2.4 HSIC for random sets

From Gretton et al. [2005b], Gretton et al. [2005a], HSIC is defined as the MMD-based
distance between the distribution of the couple (input,output) and the product of their
marginal. To define this distance, a kernel on the joint space must be defined. The natural
candidate is the tensor product between the input and output kernels.

Definition 2.3. Let k = kA ⊗ kset be a kernel inducing the RKHS Hk, kA being a kernel
on the input space UA. Let UA be a group of inputs and Γ a random set output. The HSIC
between UA and Γ, denoted Hset is defined as:

Hset(UA,Γ) := MMD2
set(PUA,Γ,PUA

PΓ) = ||µ(UA,Γ) − µUA
⊗ µΓ||2Hk

.

The product kernel k is characteristic as soon as kA and kset are characteristic. kset
is characteristic (Proposition 2.3), so, assuming that kA is a characteristic kernel, k in-
herits of the characteristic property. This implies that Hset(UA,Γ) = 0 iif UA and Γ
are independent. Screening by independence testing is then possible through the test
H0 : Hset(UA,Γ) = 0 versus H1 : Hset(UA,Γ) > 0.

Using Proposition 2.4, Hset can be expressed as a sum of expectations of kernels.

Proposition 2.5 (Gretton et al. [2005a] for scalar outputs). With the same notations as
Definition 2.3, and with (UA

′,Γ′ an independent copy of (UA,Γ),

Hset(UA,Γ) =E[kA(UA, UA
′)kset(Γ,Γ

′)] + E[kA(UA, UA
′)]E[kset(Γ,Γ

′)]

− 2E[E[kA(UA, UA
′)|UA]E[kset(Γ,Γ

′)|Γ]].

This property is one of the strengths of the HSIC because it makes its estimation easy
as we will see in the next part. Another advantage of this index is that an ANOVA-like
decomposition exists (see Da Veiga [2021]). However, this requires strong assumptions
especially on the input kernel which must be an ANOVA kernel.
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Definition 2.4 (Orthogonal and ANOVA kernel). Let U be a measurable space. A kernel
k : U × U → R is said to be orthogonal with respect to a measure ν ∈ M+

1 (U) if:

∀u ∈ U ,
∫

U
k(u, z)dν(z) = 0.

A kernel K : U × U → R is said to be ANOVA w.r.t. ν if it can be decomposed as
K = 1 + k with k being orthogonal w.r.t. ν.

Theorem 2.1 (ANOVA decomposition of Hset). Assuming that:
i. The inputs U1, ..., Up are mutually independent.
ii. Each input has an ANOVA kernel Ki w.r.t. the input distribution PUi

. For any
group of inputs UA with A ⊂ {1, ..., p}, the associated kernel is defined by:

KA =
⊗

i∈A
Ki.

iii. For any A ⊂ {1, ..., p}, E[KA(UA,UA)] < +∞ and E[kset(Γ,Γ)] < +∞.
Then the ANOVA decomposition of the Hset is given by:

Hset(U ,Γ) =
∑

A⊆{1,...,p}

∑

B⊆A

(−1)|A|−|B|Hset (UB,Γ) .

This theorem is proven in Da Veiga [2021] for scalar outputs but is also valid for other
outputs as long as the Mercer theorem holds.

An ANOVA input kernel also simplifies the HSIC expression of Proposition 2.5 which
becomes:

Hset(UA,Γ) = E [(KA(UA, UA
′)− 1)kset(Γ,Γ

′)] . (2)

Using the decomposition of Theorem 2.1, associated SA indices can be defined.

Definition 2.5 (HSIC-ANOVA indices on sets). Similarly to the ANOVA decomposition
of the Sobol indices, the HSIC-ANOVA first and total indices on sets, can be defined by:

∀i ∈ {1, ..., d} SHset

i :=
Hset(Ui,Γ)

Hset(U ,Γ)
and SHset

Ti
:= 1− Hset(U−i,Γ)

Hset(U ,Γ)
,

with U−i = (U1, ..., Ui−1, Ui+1, ..., Ud). This indices can be generalized for groups of inputs.

It is important to note that the three assumptions of Theorem 2.1, and especially ii.,
restrict the choice of kernels but only of the input kernel. Hopefully, on the input space
R

d, some kernels are known to be ANOVA. For instance, Sobolev kernels are ANOVA.
With r = 1, it is defined by:

ksob(x, y) = 1 +B1(x)B1(y) +
1

2
B2(|x− y|) (3)

= 1 + (x− 1

2
)(y − 1

2
) +

1

2
[(x− y)2 − |x− y|+ 1

6
],

with Bi the Bernoulli polynomial of degree i. This kernel is ANOVA w.r.t. the uniform
law on [0, 1]. However, it is also possible to construct ANOVA kernels from classical
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kernels. One of the possible transformations is proposed in Ginsbourger et al. [2016]. For
a given kernel k, an ANOVA kernel kANOVA w.r.t. ν is defined by:

kANOVA(x, y) = 1 + k(x, y)−
∫

k(x, z)dν(z) −
∫

k(z, y)dν(z) (4)

+

∫ ∫
k(z, z′)dν(z)dν(z′).

In the case of inputs uniformly distributed on [0, 1], the previous transformation is ana-
lytically known for some classical kernels given in Appendix of Ginsbourger et al. [2016].

Given input kernels that verify the previous assumptions, we are now able to rank the
input influence on the set-valued output Γ by ranking either their first order index SHset

i

or their total index SHset

Ti
. Before ranking the inputs, it is also possible to use this indices

for screening in order to reduce more roughly the number of inputs. Indeed, as shown in
Sarazin et al. [2022],

SHset

i = 0 ⇐⇒ SHset

Ti
= 0 ⇐⇒ Ui ⊥ Γ.

The authors also propose associated independence tests which are better in term of power
than the usual tests performed with HSIC.

Thus, HSIC-ANOVA indices on sets are an answer to screen and rank the inputs of a
set-valued model. The question of their estimation and the difficulties resulting from the
presence of sets are raised in the next part.

3 Estimation

In this section we first recall classical estimation methods of the HSIC-ANOVA index.
Then we explain how we manage our set-valued outputs and how it impacts the estimation
of the indices.

3.1 HSIC-ANOVA index estimation

Given an iid sample (U (i),Γ(i)), i = 1, ..., n, classical estimators of HSIC can be found
in Gretton et al. [2007] and Song et al. [2007]. Adapted to expression (2), the unbiased

estimator Ĥset (UA,Γ) is defined by

Ĥset (UA,Γ) =
2

n(n− 1)

n∑

i<j

(
KA

(
U

(i)
A , U

(j)
A

)
− 1
)
kset

(
Γ(i),Γ(j)

)
.

The estimator of the associated normalized index is denoted ŜHset

A .

3.2 Estimation of kset(Γ
(i),Γ(j))

In most cases, the quantity kset(Γ
(i),Γ(j)) also needs to be estimated. In practice, the

quantity λ(Γ(i)∆Γ(j)) is estimated by discretizing the space X. Using that λ(Γ(i)∆Γ(j)) =
λ(X)EX∼U(X)[1Γ(i)∆Γ(j)(X)|(Γ(i),Γ(j))], we write kset(Γ

(i),Γ(j)) as:

kset(Γ
(i),Γ(j)) = exp

(
−λ(X)

2σ2
E[1Γ(i)∆Γ(j)(X)|(Γ(i),Γ(j))]

)
,
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with X ∼ U(X). Using the previous expression and having an iid sample (X
(1)
i,j , ..., X

(m)
i,j )

of X, we can estimate kset(Γ
(i),Γ(j)) by:

k̂set(Γ
(i),Γ(j)) = exp

(
−λ(X)

2σ2

1

m

m∑

k=1

1Γ(i)∆Γ(j)(X
(k)
i,j )

)
.

We now inject this estimator in our previous estimators which gives a Nested Monte Carlo
(NMC) estimator.

3.3 Nested estimation of the indices

Let us have an iid sample (U (i),Γ(i)), i = 1, ..., n of (U,Γ) and independent iid samples

(X
(1)
i,j , ..., X

(m)
i,j ) of X ∼ U(X), for all i < j ∈ {1, ..., n} . Injecting the previous estimation

of the kernel kset, the NMC estimator of Hset(UA,Γ) is given by:

Ĥset

nest
(UA,Γ) =

2

n(n− 1)

n∑

i<j

(
KA

(
U

(i)
A , U

(j)
A

)
− 1
)
e−

λ(X)

2σ2
1
m

∑m
k=1 1

Γ(i)∆Γ(j)(X
(k)
i,j ). (5)

Note that this estimator is biased as any NMC estimator (Rainforth et al. [2016]). For

each couple (Γ(i),Γ(j)), the previous estimation requires to test if X
(k)
i,j ∈ Γ(i)∆Γ(j) for each

k ∈ {1, ..., m}. Each of such tests requires to check if X
(k)
i,j ∈ Γ(i) and X

(k)
i,j ∈ Γ(j) which

means n(n − 1)m tests which is not affordable. To circumvent this issue, we propose to
reuse the same X(k) for each (i, j). By doing so, we only need to test if X(k) ∈ Γ(i) for
each k and i which reduces the number of tests to nm. The estimator is then defined by

̂̂
Hset (UA,Γ) =

2

n(n− 1)

n∑

i<j

(
KA

(
U

(i)
A , U

(j)
A

)
− 1
)
e−

λ(X)

2σ2
1
m

∑m
k=1 1

Γ(i)∆Γ(j)(X
(k)).

By taking only one sample of X(k),
̂̂
Hset (UA,Γ) is no longer a classical Nested Monte

Carlo Estimator (NMC). Still, we show that its quadratic risk goes to 0 and we detail an
upper bound.

Proposition 3.1. With the previous notations, we have

E

(
̂̂
Hset (UA,Γ)− Hset(UA,Γ)

)2

≤ 2

(
2σ2

1

n(n− 1)
+

4(n− 2)σ2
2

n(n− 1)
+

L2σ2
3

m

)
,

with
— σ2

1 = V ar ((KA (UA, UA
′)− 1) kset(Γ,Γ

′)),
— σ2

2 = V ar (E [(KA (UA, UA
′)− 1) kset(Γ,Γ

′)|(Γ, UA)]) ,

— L = λ(X)
2σ2 ,

— σ2
3 = V ar((KA (UA, UA

′)− 1)E [1Γ∆Γ′(X)|(UA, UA
′,Γ,Γ′)]),

where (UA
′,Γ′) is an independent copy of (UA,Γ).

Proof. The proof is given in appendix.

9



The quadratic risk has a rate of O( 1
n
+ 1

m
) which tends to say that we should use

n = m. In the case of classical NMC (without reusing the same sample of X), the rate is
O( 1

n
+ 1

m2 ). As the previous bound is only an upper bound, we can expect to approach
this classical convergence rate. The classical HSIC estimators are also known to work
even with small n (n = 100 for instance). This comes from the fact that the constant
σ2 can be very small. This means that we can expect to have reached the convergence
of our estimator without requiring to take high n and m. This will be highlighted in the

numerical results presented in the next section. Using the estimator
̂̂
Hset we denote the

ˆ̂
SHset

i and
ˆ̂
SHset

Ti
the estimators of the first and total order HSIC-ANOVA indices on sets.
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4 Application on excursion sets

In industrial applications such as optimization or inversion, we seek for the set of
feasible solutions. In presence of uncertainties, this set is random.

Definition 4.1. Let g : X×R
p → R be measurable on X × R

p. With U a random vector
of Rp,

ΓU = {x ∈ X, g(x, U) ≤ 0} ∈ B,
is called an excursion set.

With such sets, our goal is to quantify the influence of the different inputs U on the
output ΓU . To do so, we will consider two test cases. The first one is an analytically
known function from El Amri et al. [2021] with two dimensions in both spaces X and
U (section 4.1). On this first toy case, we will also study numerically the bound of the
quadratic risk given in Proposition 3.1. The second one is associated to an optimization
problem involving a stationary harmonic oscillator, from Cousin et al. [2022] on which we
want to quantify the impact of some uncertain inputs on feasible sets (section 4.2). For
each example, our sensitivity analysis is made in two steps:

— Screening: we compute the p-values associated to the test Hset(Ui,Γ) = 0 versus
Hset(Ui,Γ) > 0. We use a permutation-based estimation. If the p-value is higher
than 0.05, the input is negligible and if it is below 0.05, the input is influential.

— Ranking: we compute the first order indices
ˆ̂
SHset

i and total indices
ˆ̂
SHset

Ti
of all

inputs. The first order indices
ˆ̂
SHset

i are used to rank the inputs. With the total

indices
ˆ̂
SHset

Ti
we can quantify the HSIC interaction effects in our examples.

4.1 Toy function 1

In this part, we will estimate the previous HSIC-ANOVA indices on the excursion set
ΓU defined through the following function g from El Amri et al. [2021]

∀x, u ∈ [−5, 5]2 × [−5, 5]2 g(x, u) = −x2
1 + 5x2 − u1 + u2

2 − 1.

Visual tests (Figure 1) highlight that u2 seems to induce more changes in ΓU than u1.

To verify this assumption, we compute the p-values and the indices
ˆ̂
SHset

i ,
ˆ̂
SHset

Ti
for each

input Ui ∼ U([−5, 5]) for i ∈ {1, 2, 3}, U3 being an additional dummy input which does
not appear in function g. We use first n = m = 100 and then n = m = 1000. The
hyperparameter σ2 of the kernel kset is taken equal to the empirical mean of λ(Γi∆Γj) on
i > j. This is a popular choice when using the Gaussian kernel for sensitivity analysis.
We compute the indices for five characteristic ANOVA kernels. The first one is the
Sobolev kernel with r = 1 presented in (3) and the four others are obtained using the
transformation given in (4) based on the following classical kernels:

— the Gaussian kernel, kgauss(x, y) = e−
1
2(

x−y
σ )

2

with σ > 0,

— the Laplace kernel, kexp(x, y) = e−
|x−y|

h with h > 0,

— the Matérn 3/2, k3/2(x, y) =
(
1 +

√
3 |x−y|

h

)
e−

√
3 |x−y|

h with h > 0,

— the Matérn 5/2, k5/2(x, y) =
(
1 +

√
5 |x−y|

h
+ 5

3
|x−y|
h2

)
e−

√
5 |x−y|

h with h > 0.
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U1 = -5

U2 = 0

U1 = -2.5

U2 = 0

U1 = 0

U2 = 0

U1 = 2.5

U2 = 0

U1 = 5

U2 = 0

U1 = 0

U2 = -5

U1 = 0

U2 = -2.5

U1 = 0

U2 = 0

U1 = 0

U2 = 2.5

U1 = 0

U2 = 5

Figure 1 – Excursion set of the constraint g ≤ 0 for U1 ∈ {−5,−2.5, 0, 2.5, 5} and U2 = 0
(first row) and for U1 = 0 and U2 ∈ {−5,−2.5, 0, 2.5, 5}. (second row)

As the inputs are not uniformly distributed on [0, 1], we apply the inverse of the cumulative
distribution function before the calculations. We compute the indices 20 times in order to
obtain the boxplots given in Figure 2 for n = m = 100 and in Figure 3 for n = m = 1000.

With these results, we are able to class the inputs as influential or negligible (screening)
and to rank them by influence (ranking). The p-values are below 0.05 for U1 and U2

which class them as influential. However, U3 has always a p-value higher than 0.05 and
is correctly detected as negligible through independence testing. The first order and the
total effect indices give the expected results that U2 has a greater influence than U1 which
has a greater influence than U3 on the excursion sets. More precisely, it shows that
U2 alone explains around 70% of Hset(U,ΓU) (depending on the input kernel) when U1

explains around 25%. The artificial input U3 is responsible for 0% as expected. The rest
correspond then to a kind of interaction between U1 and U2. This is confirmed when
looking at the total indices which values increase a bit. However, this part of interaction
must not be interpreted as in the case of Sobol indices. It is actually an open question to
interpret what kind of interactions are detected by HSIC-ANOVA indices. The impact of
the input kernel on the HSIC-ANOVA indices is also an open question. On these results,
we can only say that the input kernel has a non-negligible impact on the values of the
p-values and of the indices. However in this case, it does not change the results of the
screening and of the ranking. It also seems that the Sobolev kernel behave differently
than the other four kernels.

Taking n = m = 1000 in Figure 3 reduces the variance of the indices, but was not
necessary to screen and rank the inputs. To support this remark, we compute the relative

quadratic risk of the estimator
̂̂
Hset(U1,Γ) defined by:

R(
̂̂
Hset(U1,Γ)) = E



̂̂
Hset (U1,Γ)−Hset(U1,Γ)

Hset(U1,Γ)




2

.

We also compute the associated upper bound given in Proposition 3.1 and the upper
bound for a classic NMC estimator (with independent X

(k)
i,j for all 1 ≤ i, j ≤ n, cf. (5)).

The "true" value of Hset, used to compute the quadratic risk, and the constants σ1, σ2

12



p-value SHset

i SHset

Ti

U1 U2 U3 U1 U2 U3 U1 U2 U3

0.00

0.25

0.50

0.75

1.00

ksob
kgauss
kexp
k3/2
k5/2

Figure 2 – Estimation of the p-values,
ˆ̂
SHset

i and
ˆ̂
SHset

Ti
for the excursion set defined by the

constraint g ≤ 0 computed for 5 kernels with n = 100, m = 100 and repeated 20 times

p-value SHset

i SHset

Ti

U1 U2 U3 U1 U2 U3 U1 U2 U3

0.00

0.25

0.50

0.75

ksob
kgauss
kexp
k3/2
k5/2

Figure 3 – Estimation of the p-values,
ˆ̂
SHset

i and
ˆ̂
SHset

Ti
for the excursion set defined by the

constraint g ≤ 0 computed for 5 kernels with n = 1000, m = 1000 and repeated 20 times
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0.50

0.75

1.00

0 100 200 300 400 500
n = m

R(
̂̂
Hset(U1,Γ))

NMC upper bound

Upper bound

Figure 4 – Evolution of R(
̂̂
Hset(U1,Γ)) and of the associated upper bounds for the

excursion set of the constraint g ≤ 0

and σ3 are computed for n = m = 3000 and for the Sobolev kernel as input kernel. We
plot the risk and the two bounds in Figure 4 from n = m = 30 to n = m = 500. We can
observe that on this toy example, the quadratic risk of the estimator is as expected below
the bound of Proposition 3.1 (in red), but also below the bound we would have by taking

independent X
(k)
i,j (in green). On this example, it confirms that in term of variance of the

estimator, we did not loose too much by reusing the same X(k). It also seems that we do
not necessary have to take high values of n = m. That is why in the next example, we
will only compute the indices for n = m = 100.

4.2 Toy function 2

In Cousin et al. [2022], an optimization is carried out with three probabilistic con-
straints. We consider the two first constraints defined by the following functions g1 and
g2:

g1(x1, x2, u1, u2, up, ur1, ur2) = ur1 − max
t∈[0,T ]

Y ′(x1 + u1, x2 + u2, up; t),

g2(x1, x2, u1, u2, up, ur1, ur2) = ur2 − max
t∈[0,T ]

Y ′′(x1 + u1, x2 + u2, up; t),

with Y(x1 + u1, x2 + u2, up; t) the solution of the harmonic oscillator defined by:

(x1 + u1)Y ′′(t) + upY ′(t) + (x2 + u2)Y(t) = η(t).

The deterministic input domain is X = [1, 5] × [20, 50]. The uncertain input laws are
given in Table 1. Ur3 is initially a random input associated to the third constraint. In our
case, it will play the role of a dummy input to check if it is detected as negligible. We
study the impact of the uncertain inputs on the excursion sets associated to the constraint
g1 ≤ 0 and on the excursion sets associated to g2 ≤ 0. As kernel-based methods are suited
for vectorial outputs, we also consider the case of an output being the couple of the two

excursion sets, each one associated to one constraint. For each case, we compute
ˆ̂
SHset

i ,
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Uncertainty Distribution Uncertainty Distribution
U1 U [−0.3, 0.3] Ur1 N (1, 0.12)
U2 U [−1, 1] Ur2 N (2.5, 0.252)
Up U [0.5, 1.5] Ur3 N (15, 32)

Table 1 – Definition of the uncertain inputs

p-value SHset

i SHset

Ti

U1 U2 Up Ur1 Ur2 Ur3 U1 U2 Up Ur1 Ur2 Ur3 U1 U2 Up Ur1 Ur2 Ur3

0.00

0.25

0.50

0.75

1.00

ksob
kgauss
kexp
k3/2
k5/2

Figure 5 – First order HSIC-ANOVA indices for the first constraint g1 ≤ 0 computed for
5 kernels with n = 100, m = 100 and repeated 20 times

ˆ̂
SHset

Ti
and the associated p-values for each uncertain input with n = 100 and m = 100.

We use again the output kernel kset and kset ⊗ kset for the couple of excursion sets. The
same 5 ANOVA kernels are used as in the previous example. We repeat the estimation
20 times to obtain the boxplots of Figures 5 to 7.

The analysis of the obtained boxplots makes it possible to screen the inputs and
perform ranking. For the random set associated with the constraint g1 < 0 (Figure 5),
only U1 and Ur1 are systematically detected as influential. Up is also sometimes detected

as influential. Between these three inputs, Ur1 is a lot more influential, as
ˆ̂
SHset
r1 ≈ 80%.

Then U1 and Up are responsible for approximately 10% and 3% of Hset(U,ΓU). For the
second constraint g2 ≤ 0 (Figure 6), only U1 and Ur2 are influential with their first order
index respectively around 10% and 80%. When considering the couple of the two random
sets (Figure 7), we get some kind of mixture between the two previous cases. U1, Ur1

and Ur2 are detected as influential. In term of ranking, Ur1 and Ur2 have almost the
same influence with they first order index around 40% and U1 remains around 10%. It
is important to note that considering the couple of random sets is totally different than
considering the random set associated with the couple of constraints, i.e. the intersection
of both sets. The results of the latter is given in appendix and are indeed very different
from results in Figure 7.
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p-value SHset

i SHset

Ti

U1 U2 Up Ur1 Ur2 Ur3 U1 U2 Up Ur1 Ur2 Ur3 U1 U2 Up Ur1 Ur2 Ur3
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k5/2

Figure 6 – First order HSIC-ANOVA indices for the constraint g2 ≤ 0 computed for 5
kernels with n = 100, m = 100 and repeated 20 times

p-value SHset

i SHset

Ti

U1 U2 Up Ur1 Ur2 Ur3 U1 U2 Up Ur1 Ur2 Ur3 U1 U2 Up Ur1 Ur2 Ur3

0.00

0.25

0.50

0.75

1.00

ksob
kgauss
kexp
k3/2
k5/2

Figure 7 – 1st order HSIC-ANOVA indices for the couple of random set associated with
the constraints (g1 ≤ 0 and g2 ≤ 0) computed for 5 kernels with n = 100, m = 100 and

repeated 20 times
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On this test case, we observe that the choice of the input kernel has a limited impact
on the indices. No matter what stage of screening or ranking is involved, the conclusions
remain the same for the five kernels.
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5 Conclusion

In this paper, we propose a method to conduct sensitivity analysis on set-valued
outputs through kernel-based sensitivity analysis which relies on the choice of a kernel
between sets. We introduce the kernel kset which is based on the symmetric difference
between two sets. We show that it is characteristic which is an essential property to
perform screening. Then we adapt the recent HSIC-ANOVA index to set valued-outputs
and we introduce an efficient estimator. Finally we compute the indices on two test cases.
The proposed method allows to screen and rank the uncertain inputs according to their
impact on excursion sets.

In the context of robust optimization, the presented method can be used to reduce
dimension of the uncertain space by quantifying the impact of uncertain inputs on opti-
mization constraints. Reducing the dimension of the uncertain space can then be useful
to reduce the computation cost of a meta-model on the joint space.

More generally, sensitivity analysis on sets can also be used when dealing with numer-
ical codes with set-valued outputs. This can appear in multiple fields : in viability field
where the outputs are sets called viability kernels or, for instance, in flooding risk where
the output is the map of flooded areas.
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7 Annex

Proposition 3.1. With the previous notations, we have

E

(
̂̂
Hset (UA,Γ)− Hset(UA,Γ)

)2

≤ 2

(
2σ2

1

n(n− 1)
+

4(n− 2)σ2
2

n(n− 1)
+

L2σ2
3

m

)
,

with
— σ2

1 = V ar ((KA (UA, UA
′)− 1) kset(Γ,Γ

′)),
— σ2

2 = V ar (E [(KA (UA, UA
′)− 1) kset(Γ,Γ

′)|(Γ, UA)]) ,

— L = λ(X)
2σ2 ,

— σ2
3 = V ar((KA (UA, UA

′)− 1)E [1Γ∆Γ′(X)|(UA, UA
′,Γ,Γ′)]),

where (UA
′,Γ′) is an independent copy of (UA,Γ).

Proof. With f(u, z) = (KA (u1, u2)− 1) e−
λ(X)

2σ2 z, and Φ(x, γ1, γ2) = 1γ1∆γ2(x), we denote

H = H(UA,Γ) = E[f(U, U ′,E[Φ(X,Γ,Γ′)|(Γ,Γ′)]],

Hn,m = Ĥu (UA,Γ) =
2

n(n− 1)

n∑

i<j

f(U
(i)
A , U

(j)
A ,

1

m

m∑

k=1

Φ(X(k),Γ(i),Γ(j)),

and

Hn =
2

n(n− 1)

n∑

i<j

f(U
(i)
A , U

(j)
A ,E[Φ(X,Γ(i),Γ(j))|(Γ(i),Γ(j))]).

First we split the risk into two terms:

E|Hn,m−H |2 ≤ 2E|Hn−H |2 + 2E|Hn −Hn,m |2

The first term is the variance of a classic U-statistic of order 2:

E|Hn −H |2 = 2σ2
1

n(n− 1)
+

4(n− 2)σ2
2

n(n− 1)
.

The second term can be developed:

E|Hn −Hnm |2 = 4

n2(n− 1)2

(
n∑

i<j

n∑

p<l

E (Eij − Eij,m) (Epl − Epl,m)

)
,

with
Eij = f(U

(i)
A , U

(j)
A ,E[Φ(X,Γ(i),Γ(j))|(Γ(i),Γ(j))])

and

Eij,m = f(U
(i)
A , U

(j)
A ,

1

m

m∑

k=1

Φ(X(k),Γ(i),Γ(j)).
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As X(1), ..., X(m) are common to each Eij,m, the terms Eij,m and Epl,m are not independent
even if i, j, p, l are pairwise distinct. We can still bound them but we will lose one order
of convergence in m. We first have

|E (Eij − Eij,m) (Epl − Epl,m)| ≤ (E |Eij − Eij,m|2 E |Epl − Epl,m|2)
1
2

=
(
E |E12 −E12,m|2

)

≤ L2

m
Var((KA (UA, UA

′)− 1)E(Φ(X,Γ,Γ′)|(Γ,Γ′))),

using that z → f(u, z) is L-lipschitz for all u. Then we have

E|Hn −Hnm |2 ≤ L2

m
Var((KA (UA, UA

′)− 1)E(Φ(X,Γ,Γ′)|(Γ,Γ′))).

Putting all results together, we get

E|Hn,m−H |2 ≤ 2

(
2σ2

1

n(n− 1)
+

4(n− 2)σ2
2

n(n− 1)
+

L2σ2
3

m

)
.

If the X(k) were drawn independently for each (i, j), we could obtain an asymptotic rate
of O( 1

n
+ 1

m2 ) by using the independence in the upper-bound of |E (Eij − Eij,m) (Epl − Epl,m)|
as done in Rainforth et al. [2018].
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Figure 8 – First order HSIC-ANOVA indices for the constraint g1 ≤ 0 and g2 ≤ 0
computed for 5 kernels with n = 100, m = 100 and repeated 20 times
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