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Abstract

In this paper, we aim to perform sensitivity analysis of set-valued models and,
in particular, to quantify the impact of uncertain inputs on feasible sets, which are
key elements in solving a robust optimization problem under constraints. While most
sensitivity analysis methods deal with scalar outputs, this paper introduces a novel
approach for performing sensitivity analysis with set-valued outputs. Our innovative
methodology is designed for excursion sets, but is versatile enough to be applied to
set-valued simulators, including those found in viability fields, or when working with
maps like pollutant concentration maps or flood zone maps.

We propose to use the Hilbert-Schmidt Independence Criterion (HSIC) with a
kernel designed for set-valued outputs. After proposing a probabilistic framework
for random sets, a first contribution is the proof that this kernel is characteristic,
an essential property in a kernel-based sensitivity analysis context. To measure the
contribution of each input, we then propose to use HSIC-ANOVA indices. With these
indices, we can identify which inputs should be neglected (screening) and we can rank
the others according to their influence (ranking). The estimation of these indices is
also adapted to the set-valued outputs. Finally, we test the proposed method on three
test cases of excursion sets.

Keywords: HSIC-ANOVA indices, random sets, screening, ranking
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1 Introduction

In many fields, it is essential to understand the input/output relationships of models that
simulate complex physical systems. This knowledge can be used to simplify and optimize
the model and provide valuable insights to experts. Sensitivity analysis (SA) is one response
to this challenge. It quantifies how variations in inputs translate into variations in outputs,
precisely measuring the impact of each input on the output. However, in certain domains,
models may have highly complex outputs that traditional SA methods, originally designed
for scalar outputs, may not be suitable for. Specifically, we are interested in models with
set-valued outputs, where each evaluation of the model produces a subset of a larger space.
Our interest lies in the need to quantify the influence of parameters on the excursion sets
of optimization problems, with the goal of simplifying constrained robust optimization
problems. Set-valued output models are also prevalent in other domains, including image
processing, map modeling, and viability fields. Therefore, we aim to measure the impact
of each input, on a set-valued output through an adapted SA approach.

Global sensitivity analysis (GSA) is a methodology used to assess the impact of input
variations on the output of a system or model across the entire parameter space. A detailed
review of GSA methods can be found in the book Da Veiga et al. [2021] or in Iooss and
Lemaître [2015]. These methods can be distinguished into two types:

• screening-oriented SA techniques are devoted to identifying influential and non-
influential inputs;

• ranking-oriented SA aims to compute sensitivity indices or importance measures,
which are scalars representing the effect of an input or group of inputs on the output.
These indices are then used to rank the inputs by their influence.

One well-known screening technique is the Morris method (Morris [1991]), which is based
on one-at-a-time designs, i.e., where each input varies while the others are held fixed.
Regarding ranking methods, the most commonly used indices are the Sobol’ indices, which
are variance-based sensitivity measures (Sobol’ [2001]). These indices quantify the portion
of the output variance that can be attributed to one or a group of inputs. This variance
decomposition is called the ANOVA (ANalysis Of VAriance) decomposition. However,
these indices have several drawbacks. One main issue is that their estimation cost in terms
of the number of model evaluations is very high. For instance, the simulation budget
needed for the ’pick and freeze’ method (Sobol’ [1993]’) increases linearly with the input
dimension. Rank-based estimators have recently been used to circumvent this problem
(Gamboa et al. [2022]), but at the cost of not being able to estimate the total-order Sobol’
indices. Another major drawback is that Sobol’ indices quantify the input contributions
to the output variance, but not to the entire output distribution. That is why other types
of indices examine how the entire output distribution is affected by the input parameters.
This is done by comparing the input and output probability distributions. For instance,
Borgonovo indices compare the density functions (Borgonovo [2007]), Cramér von Mises
indices look at the cumulative distribution function (Gamboa et al. [2018]), and kernel-
based sensitivity indices compare the embedding of the distributions (Da Veiga [2021]).
The former method relies on embedding distributions in Reproducing Kernel Hilbert Spaces
(RKHS) using kernel functions, which makes it easier to compute distances. By embedding
the input and output distributions in the RKHS, indices based on the Hilbert-Schmidt
Independence Criterion (HSIC) (Gretton et al. [2005b]) can be defined. These indices
quantify the dependence between an input and the output and can be used for screening.
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They also have a low cost because they can be estimated using a single sample. Under
certain assumptions, an ANOVA-like decomposition of HSIC exists, as shown in Da Veiga
[2021] which makes them usable for ranking.

Several works in the literature have addressed SA adapted to complex outputs. How-
ever, to the best of our knowledge, the specific case of set-valued outputs has not yet been
studied. For instance, Higdon et al. [2008], Marrel et al. [2011], and Perrin et al. [2021]
examined spatial outputs, while De Lozzo and Marrel [2017] and Marrel et al. [2015] ex-
plored spatiotemporal outputs. These methods generate sensitivity index maps that can be
interpreted by connecting them to the underlying physical phenomena. However, there is a
strong motivation, whether due to interpretation challenges or synthesis concerns, to find
a single scalar index per input that captures its influence on the variability of the entire
complex output. This is explored and presented in Gamboa et al. [2014], which defines
aggregated Sobol’ indices for vectorial and functional outputs. In Gamboa et al. [2021] the
authors also propose an universal index that can be used in any metric space. Kernel-based
indices, in particular the HSIC, can also be used with complex outputs, as proposed in Da
Veiga [2015] and in El Amri and Marrel [2024] with functional outputs. Adaptation of
HSIC to complex output is in fact straightforward, kernel methods being known to be flex-
ible with respect to the type of data (see for example Shawe-Taylor and Cristianini [2004],
where kernel methods are used with several types of data such as vectors, texts, trees...).
The flexibility of the latter lies in the fact that they mostly rely only on defining a kernel
in the relevant space (where random elements can be defined), making them particularly
permissive in accommodating different input and output types. For this flexibility, low
cost, ability to quantify changes across the entire output distribution, and their utility for
both screening and ranking purposes, we propose to use HSIC-ANOVA indices to conduct
a SA of set-valued models.

To perform kernel-based SA on a set-valued model, there are two main requirements.
First, a framework of random sets is required. Indeed, a space of sets is not an easy space
to work in, and describing randomness in such a space can be challenging. For example,
Molchanov [2005] and Nguyen [2006] propose a complete theory of random sets. The
second key to performing kernel-based SA on set-valued outputs is to have a kernel defined
on sets. Given these two conditions, we can apply the kernel-based SA methodology to
define sensitivity indices for set-valued outputs. This is the focus of this paper.

To this end, we first recall in Section 2 the general methodology for defining kernel-based
sensitivity indices, and in particular the Hilbert-Schmidt Independence Criterion (HSIC),
in a generic measurable output space. We then present our contributions in Section 3. First,
we define the probabilistic framework for random sets. Then, we introduce a new kernel
defined on a space of sets and study it in detail. In particular, we show that our kernel
is characteristic, a crucial property for screening purposes. Finally, HSIC-ANOVA indices
for set-valued outputs are derived, but their estimation is complicated by the presence of
sets. Therefore, a nested Monte Carlo estimator is proposed to estimate the indices and its
statistical properties are studied. Finally, numerical results obtained from two test cases
related to excursion sets and from an industrial test case for electrical machine design are
given in Section 4. Proofs of the results of section 3 and some additional numerical results
are given in the appendix.
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2 Kernel-based SA in a generic space Z
In this section, we explain how HSIC-ANOVA indices can be derived from kernel theory

in a generic space. For a complete kernel theory, the reader can refer to the book Support
Vector Machine of Steinwart and Christmann [2008].

2.1 Kernel Embedding, MMD and HSIC

Let (Z,A) be a measurable space on which kZ is a kernel, i.e., a symmetric and positive
definite function kZ : Z×Z → R. As stated in Theorem 4.21 of Steinwart and Christmann
[2008], there exists a unique Reproducing Kernel Hilbert Space (RKHS) HkZ of reproducing
kernel kZ , i.e a kernel such that

• ∀z ∈ Z, kZ(·, z) ∈ HkZ

• ∀z ∈ Z, ∀f ∈ HkZ , ⟨f, kZ(·, z)⟩HkZ
= f(z).

Let M1
+(Z) be the space of probability measures on Z. By Lemma 3.1 of Muandet et

al. [2017], a bounded and measurable kernel kZ is a sufficient condition for M1
+(Z) to be

embedded in HkZ by the kernel mean embedding defined in the following definition.

Definition 2.1. The kernel mean embedding of M1
+(Z) in HkZ is defined as

M1
+(Z) → HkZ

µkZ : P 7→ µkZ (P) =
∫
Z kZ(z, ·)dP(z).

The distance between the kernel mean embedding of two distributions P and Q is called
the Maximum Mean Discrepancy (MMD) and is denoted by MMDkZ (P,Q) = ||µkZ (P) −
µkZ (Q)||HkZ

(see Figure 1). To be a distance between the distributions P and Q, the
kernel mean embedding µkZ must be injective. In this case, the kernel µkZ is said to be
characteristic. The MMD can then be used to define HSIC for the sensitivity analysis

Z

P
Q

HkZ
µkZ (P)

µkZ (Q)

MMDkZ (P,Q)

Figure 1 – Kernel mean embedding

context, as proposed in Da Veiga [2015].
Let η : U → Z be a measurable model with respect to the Borel σ algebras BU and

BZ , where U = U1 × ... × Up ⊂ Rp. Let (Ω,F ,P) be a probability space on which each
input Ui is a random variable of probability distribution PUi

. For any subset of indices
A ⊂ {1, ..., p}, UA will denote the random vector (Ui)i∈A. We are interested in knowing
how the uncertainty of Z = η(U ) can be attributed to the different inputs (or group of
inputs). To do this, kernel-based sensitivity analysis relies on measuring the dependence
between UA and Z by computing the MMD between the joint distribution PUA,Z and the
product of the marginal distributions PUA

⊗ PZ . If this distance is zero, then UA and Z
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are independent, i.e. UA has no effect on Z. This distance is called the Hilbert-Schmidt
Independence Criterion (HSIC), first defined in Gretton et al. [2005a].

Definition 2.2. For A ⊂ {1, ..., p}, let k = kA ⊗ kZ be a kernel inducing the RKHS Hk,
with kA a kernel on the space UA = ⊗i∈AUi. The Hilbert-Schmidt Independence Criterion
between UA and Z, denoted by HSIC(UA, Z), is defined as

HSIC(UA, Z) := MMD(PUA,Z ,PUA
⊗ PZ)

2 = ||µk(UA, Z)− µkA(UA)⊗ µkZ (Z)||2Hk
.

HSIC can then be used to test the independence between UA and Z. For the test
to be consistent, i.e. HSIC(UA, Z) = 0 if and only if UA and Z are independent, it is
sufficient that both kA and kZ are characteristic (which doesn’t necessarily mean that k is
characteristic). This result can be obtained by combining Theorem 3.11 in Lyons [2013]
and Proposition 29 in Sejdinovic et al. [2013] as explained in the introduction of Szabó and
B. K. Sriperumbudur [2018]. To conduct screening, an independence test is performed for
each input Ui : (Hi

0) : HSIC(Ui, Z) = 0 versus (Hi
1) : HSIC(Ui, Z) > 0.

One of the reasons HSIC has become popular is that it can be expressed very simply in
terms of kernel functions. From Lemma 1 of Gretton et al. [2005a] we have

HSIC(UA, Z) = E[kA(UA,UA
′)kZ(Z,Z

′)] (1)
+ E[kA(UA,UA

′)]E[kZ(Z,Z ′)]

− 2E[E[kA(UA,UA
′)|UA]E[kZ(Z,Z ′)|Z]],

where (UA
′, Z ′) is an independent copy of (UA, Z). This expression makes estimating the

HSIC very easy, since it can be estimated with biased or unbiased estimators based on U-
and V-statistics as introduced in Gretton et al. [2005a] and Song et al. [2007]. If the sample
size is large enough, asymptotic estimation of the p-value associated to the independence
test can be used, as suggested in Gretton et al. [2007]. For smaller samples, a permutation-
based technique can be used (see De Lozzo and Marrel [2016]).

However, HSICs are not sufficient for ranking. The values HSIC(Ui, Z) must first be
normalized in order to compare them and rank the inputs. In the context of sensitivity anal-
ysis, several normalizations have been studied, such as normalization by

∑p
i=1HSIC(Ui, Z)

(see Spagnol et al. [2019]) or by
√

HSIC(Ui, Ui)HSIC(Z,Z) (Da Veiga [2015]). These in-
dices have been used for ranking purposes, but they are not as satisfactory as the ANOVA
decomposition of Sobol’ indices. However, a recent study (Da Veiga [2021]) provides an
ANOVA-like decomposition that justifies the use of HSIC for ranking purposes.

2.2 HSIC-ANOVA indices

In Da Veiga [2021] an ANOVA-like decomposition of the HSIC is proposed, which makes
it usable to rank the inputs by influence. This decomposition requires strong assumptions,
particularly the independence between the inputs and the ANOVA property of the input
kernel.

Definition 2.3 (Orthogonal and ANOVA kernel). Let U be a measurable space. A kernel
k : U ×U → R is said to be orthogonal with respect to a probability measure ν ∈ M+

1 (U) if

∀u ∈ U ,
∫
U
k(u, z)dν(z) = 0.
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A kernel K : U × U → R is said to be ANOVA w.r.t. ν if it can be decomposed as
K = 1 + k where k is orthogonal w.r.t. ν.

Theorem 2.1 (ANOVA decomposition of HSIC). Assuming that:
i. The inputs U1, ..., Up are mutually independent;
ii. Each input has an ANOVA kernel Ki w.r.t. the input distribution PUi

. For any
group of inputs UA with A ⊂ {1, ..., p}, the associated kernel is defined by

KA =
⊗
i∈A

Ki;

iii. For any A ⊂ {1, ..., p}, E[KA(UA,UA)] < +∞ and E[kZ(Z,Z)] < +∞.
Then the ANOVA decomposition of the HSIC is given by

HSIC(U , Z) =
∑

A⊆{1,...,p}

∑
B⊆A

(−1)|A|−|B| HSIC (UB, Z) .

In addition to providing a decomposition of the HSIC, an ANOVA input kernel also
simplifies the HSIC expression of the Equation 1, which becomes

HSIC(UA, Z) = E [(KA(UA,UA
′)− 1)kZ(Z,Z

′)] .

Given an independent and identically distributed (iid) sample (U
(1)
A , Z(1)), ..., (U

(n)
A , Z(n))

of (UA, Z), the previous expression is easily estimated by a U-statistic

ĤSIC (UA, Z) =
2

n(n− 1)

n∑
i<j

(
KA

(
U

(i)
A , U

(j)
A

)
− 1
)
kZ
(
Z(i), Z(j)

)
. (2)

The decomposition given in Theorem 2.1 allows SA indices to be defined in a similar
way to Sobol’ indices.

Definition 2.4 (HSIC-ANOVA indices). The first-order and total-order HSIC-ANOVA
indices can be defined by

∀i ∈ {1, ..., p} SHSIC
i :=

HSIC(Ui, Z)

HSIC(U , Z)
and SHSIC

Ti
:= 1− HSIC(U−i, Z)

HSIC(U , Z)
,

with U−i = (U1, ..., Ui−1, Ui+1, ..., Ud). These indices can be generalized to groups of inputs.

These indices can be used to rank the inputs by influence by ranking their indices. It
is also possible to use either first-order or total-order indices for screening, as we still have

SHSIC
i = 0 ⇐⇒ SHSIC

Ti
= 0 ⇐⇒ Ui ⊥ Γ,

as shown in Sarazin et al. [2022]. The authors also propose associated independence tests
that have better statistical power than the usual tests performed with HSIC indices.

It is important to note that the three assumptions of Theorem 2.1, and especially ii.,
restrict the choice of the input kernel to be ANOVA. Few kernels are known to be ANOVA.
The best known are the Sobolev kernels (see Theorem 3.3 of Sarazin et al. [2023]), which
correspond to the reproducing kernel of some Sobolev spaces. These kernels are ANOVA
with respect to the uniform law on [0, 1] and are also characteristic (Remark 3.4 and
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Proposition 3.6 of Sarazin et al. [2023]). It is also possible to derive ANOVA kernels from
classic kernels. One of the possible transformations is suggested in Ginsbourger et al. [2016]:
for any given kernel k, its ANOVA counterpart K w.r.t. ν is defined by

K(x, y) = 1 + k(x, y)−
∫

k(x, z)dν(z)−
∫

k(z, y)dν(z) (3)

+

∫ ∫
k(z, z′)dν(z)dν(z′).

In the case of input variables uniformly distributed on [0, 1], the previous transformation
is known analytically for some classic kernels given in the appendix of Ginsbourger et al.
[2016].

Given ANOVA and characteristic input kernels Ki and a characteristic output kernel
kZ , first-order and total-order HSIC-ANOVA indices can be computed and used for both
screening and ranking. This approach has the strength of being very permissive about
the nature of the output. Indeed, once one has a measurable and bounded characteristic
kernel on an output space on which a random element can be defined, one can derive
HSIC-ANOVA sensitivity indices to perform a sensitivity analysis of the complex model.
We propose to do so in the next section dealing with an output space of sets.

3 Kernel-based Sensitivity Analysis for sets

In this section, we apply the methodology of the previous section to the case of set-
valued outputs, i.e., where Z is a space of sets. We introduce a probabilistic framework
for random sets on which we propose a customized kernel and study its property so that
it can be used to define HSIC-ANOVA indices for sets. We also introduce and study the
estimation of these new indices. Basic concepts of functional analysis and topology useful
in this section can be found, for example, in Rudin [1987].

3.1 Probabilistic framework of random sets

A general theory of random sets can be found in Molchanov [2005]. In our case, however,
we propose to define a random set as Γ = η(U), where η is a measurable function from U
to a space of sets to be defined. First, we define the space of sets we are working in, and a
corresponding σ-algebra.

Let L (X ) be the space of all Lebesgue-measurable subsets of a compact space X ⊂ Rd.
Let δ : L (X )× L (X ) → R be the Lebesgue measure of the symmetric difference defined
by δ(γ1, γ2) = λ(γ1∆γ2) where ∆ is the symmetric difference defined by γ1∆γ2 = (γ1 ∪
γ2)\(γ1 ∩ γ2) and λ is the Lebesgue measure on X . L2(X ) denotes the space of squared
Lebesgue integrable functions on X , and the L2 norm is denoted by || · ||2. δ can also
be seen in terms of the L2 norm of the indicator functions of γ1 and γ2, as given in the
following lemma.

Lemma 3.1. Let γ1, γ2 ∈ L (X ), we have

δ(γ1, γ2) = ||1γ1 − 1γ2||
2
2 ,
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and
δ(γ1, γ2) = 0 ⇔ γ1 = γ2 λ-almost everywhere.

Thus δ is a pseudo-metric in L (X), since δ(γ1, γ2) = 0 only implies that γ1 = γ2
λ-almost everywhere. To work in a metric space, we quotient L (X ) by the equivalence re-
lation δ(γ1, γ2) = 0. The resulting quotient space is called L ∗(X ). δ remains well defined on
L ⋆

2 (X ) = L ⋆(X )×L ⋆(X ) and becomes a distance sometimes called the Fréchet-Nikodym-
Aronszajn metric (see Marczewski and Steinhaus [1958]). With this distance, L ∗(X ) can
be provided with the Borel σ-algebra BΓ := B(L ∗(X ), δ) to make it a measurable space.
A random set is then simply defined as Γ = η(U ) where η : U → L ∗(X ) is measurable
with respect to BU and BΓ. The probability distribution of a random set Γ is then defined
as the push-forward probability measure of PU through η.

Examples of random set are numerous in industrial applications, especially in the con-
text of optimization or inversion, where determining the feasible set of solutions is crucial.
In the presence of uncertainties, this feasible set is random and can be called an excursion
set as given in the following definition.

Definition 3.1. Let g : X × U → R be a measurable function. The excursion set Γg

associated with the constraint g ≤ 0 is defined by

Γg = {x ∈ X, g(x,U) ≤ 0}.

3.2 A kernel between sets

Now that we have a framework of random sets, we want to follow the methodology of
Section 2 but with Z = L ∗(X ) to define HSIC indices for sets. To do this, we first need a
kernel on sets, i.e. a symmetric and positive definite function k : L ∗(X ) × L ∗(X ) → R.
We propose the function kset defined by

∀γ1, γ2 ∈ L ∗(X ), kset(γ1, γ2) := e−
λ(γ1∆γ2)

2σ2 ,

where σ is a positive scalar. kset is inspired by the classic Gaussian kernel, since the
Lebesgue measure of the symmetric difference is equal to the L2 norm of the difference
between two indicator functions, as shown in Lemma 3.1. This function was shown to
be positive definite in Balança and Herbin [2012] when the space of sets is an indexing
collection, but the proof is similar in our case. Moreover, kset is bounded and measurable.

Proposition 3.1. The function kset : L ∗(X )× L ∗(X ) → R defined by

∀γ1, γ2 ∈ L ∗(X ), kset(γ1, γ2) = e−
λ(γ1∆γ2)

2σ2 ,

is symmetric and positive definite for any positive scalar σ which means that kset is a kernel.

Proposition 3.2. The kernel kset is bounded and measurable from L ⋆
2 (X ) = L ⋆(X ) ×

L ⋆(X ) to R.

As in Definition 2.1, this allows to define the mean embedding of random set distribu-
tions µkset . We then show that it is injective, i.e. kset is characteristic.
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Proposition 3.3. The kernel kset is characteristic.

We now have all the ingredients to use HSIC-ANOVA indices for set-valued outputs.
We can now screen the inputs using independence tests and rank them by their influence
on the random set Γ using either first-order or total-order indices, that we denote SHset

i

and SHset
Ti

. HSIC-ANOVA indices applied to sets provide a solution for the screening and
ranking of the inputs of a set-valued model. However, to achieve these purposes, they must
first be estimated, but the presence of sets raises some difficulties.

3.3 Estimation of HSIC-ANOVA indices for sets

As given in Equation 2, HSIC (UA,Γ) can be estimated by

ĤSIC (UA,Γ) =
2

n(n− 1)

n∑
i<j

(
KA

(
U

(i)
A ,U

(j)
A

)
− 1
)
kset

(
Γ(i),Γ(j)

)
,

where (U
(i)
A ,Γ(i)), i = 1, ..., n is an iid sample of (UA,Γ).

For set-valued models, it is common to have access only to the knowledge of whether a
given point x ∈ X is in a set output Γ or not. In terms of estimation, this means that the
Lebesgue measure of the symmetric difference and thus kset must be estimated.

For two random sets (Γ(i),Γ(j)), kset(Γ(i),Γ(j)) = e−
λ(Γ(i)∆Γ(j))

2σ2 can be written as

kset(Γ
(i),Γ(j)) = exp

(
−λ(X )

2σ2
E[1Γ(i)∆Γ(j)(X)|(Γ(i),Γ(j))]

)
,

where X ∼ U(X ) using that λ(Γ) = λ(X )EX∼U(X )[1Γ(X)|Γ]. Then, given an iid sample
(X(1), ...,X(m)) of X, we can estimate kset(Γ

(i),Γ(j)) by

k̂set(Γ
(i),Γ(j)) = exp

(
−λ(X )

2σ2

1

m

m∑
k=1

1Γ(i)∆Γ(j)(X(k))

)
.

We now need to plug this estimator into our previous one, resulting in a Nested Monte Carlo
(NMC) estimator. To be compatible with the framework of NMC estimator, it is necessary
for samples of X to be drawn independently for every pair of indices (i, j) within the outer
loop. Let (X(k)

i,j ) be an iid sample of X ∼ U(X ), with k ∈ {1, ...,m} and (i, j) ∈ {1, ..., n}2
s.t. i < j. Including the previous estimation of the kernel kset, the NMC estimator of
HSIC(UA,Γ) is given by

ĤSIC
nest

(UA,Γ) =
2

n(n− 1)

n∑
i<j

(
KA

(
U

(i)
A ,U

(j)
A

)
− 1
)
e−

λ(X )

2σ2
1
m

∑m
k=1 1

Γ(i)∆Γ(j) (X
(k)
i,j ). (4)

Note that this estimator is biased like any NMC estimator (see Rainforth et al. [2016]). For
each pair (Γ(i),Γ(j)), the previous estimator requires checking whether X(k)

i,j ∈ Γ(i)∆Γ(j) for
each k ∈ {1, ...,m}. Each of these requires checking whether X

(k)
i,j ∈ Γ(i) and X

(k)
i,j ∈ Γ(j),

corresponding in the example of excursion sets, to compute g(X
(k)
i,j ,U

(i)
A ). This means

n(n−1)m evaluations to estimate the index, which is not affordable. To solve this problem,
we propose to reuse the same X(k) for each (i, j). By doing so, we only need to test whether
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X(k) ∈ Γ(i) for each k and i, reducing the number of evaluations to nm. The estimator is
then given by

̂̂
HSIC (UA,Γ) =

2

n(n− 1)

n∑
i<j

(
KA

(
U

(i)
A ,U

(j)
A

)
− 1
)
e−

λ(X )

2σ2
1
m

∑m
k=1 1

Γ(i)∆Γ(j) (X
(k)).

By simulating a single m-sample of X, ̂̂HSIC (UA,Γ) is no longer a classic NMC estimator.
Nevertheless, we show that its quadratic risk goes to 0 and we give an upper bound.

Proposition 3.4. With the previous notations, we have

E
(
̂̂
HSIC (UA,Γ)− HSIC(UA,Γ)

)2

≤ 2

(
2σ2

1

n(n− 1)
+

4(n− 2)σ2
2

n(n− 1)
+

L2σ2
3

m

)
,

where
• σ2

1 = V ar ((KA (UA,UA
′)− 1) kset(Γ,Γ

′)),
• σ2

2 = V ar (E [(KA (UA,UA
′)− 1) kset(Γ,Γ

′)|(Γ,UA)]) ,

• σ2
3 = E

[
(KA (UA,UA

′)− 1)
2
Var (1Γ∆Γ′(X)|(UA,UA

′,Γ,Γ′))
]
,

• L = λ(X )
2σ2 ,

and where (UA
′,Γ′) is an independent copy of (UA,Γ).

The quadratic risk has a rate of O( 1
n
+ 1

m
), which tends to say that we should use n = m.

In the case of the classic NMC estimator (see Rainforth et al. [2018]), here without reusing
the same samples of X, the rate is O( 1

n
+ 1

m2 ) as shown in the Appendix 7.1.6. However, even
if the convergence rate is better, the number of evaluations required is (n− 1) times larger,
which makes our choice to use the same sample of X more efficient. Since the previous
result is only an upper bound, we can also hope to get closer to a O( 1

n
+ 1

m2 ) convergence
rate in the application tests. That is, we can expect to have achieved convergence of our
estimator without having to take high n and m. This will be highlighted in the numerical

results presented in the next section. By plugging the estimator ̂̂
HSIC, we denote ˆ̂

SHset
i

and ˆ̂
SHset
Ti

the estimators of the first-order and total-order HSIC ANOVA indices on sets.

4 Numerical Experiments

In this part, our goal is to quantify the influence of the inputs U on different excursion
sets Γg (defined in Definition 3.1). To do this, we will consider three test cases. We first
consider an analytically known function g defined on X ⊂ R2 and U ⊂ R2, borrowed from
El Amri et al. [2023]. In this first toy case, we will also study numerically the quadratic risk
bound given in Proposition 3.4. The second test case is related to an optimization problem
with a stationary harmonic oscillator, from Cousin et al. [2022], on which we want to quan-
tify the impact of some uncertain inputs on the feasible sets. In the last case, a sensitivity
analysis is performed in the context of a bi-objective robust optimization of a permanent
magnet-assisted synchronous reluctance machine for electrical vehicle application. For each
example, our sensitivity analysis is performed in two steps:

• Screening: We compute the p-values associated with the test HSIC(Ui,Γg) = 0
versus HSIC(Ui,Γg) > 0. We use permutation based estimation. If the p-value is
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U1 = -5
U2 = 0

U1 = -2.5
U2 = 0

U1 = 0

U2 = 0

U1 = 2.5

U2 = 0

U1 = 5

U2 = 0

U1 = 0

U2 = -5
U1 = 0

U2 = -2.5
U1 = 0

U2 = 0

U1 = 0

U2 = 2.5

U1 = 0

U2 = 5

Figure 2 – Excursion set of the constraint g ≤ 0 for U1 ∈ {−5,−2.5, 0, 2.5, 5} and U2 = 0
(first row) and for U1 = 0 and U2 ∈ {−5,−2.5, 0, 2.5, 5}. (second row)

greater than a risk α, the input is negligible, and influential otherwise. We use
α = 0.05 but this value can be changed depending on the application.

• Ranking: We compute the first-order indices ˆ̂
SHset
i and the total-order indices ˆ̂

SHset
Ti

of all inputs. The first-order indices ˆ̂
SHset
i are used to rank the inputs. With the

total-order indices ˆ̂
SHset
Ti

we can quantify the HSIC interaction effects.
The numerical implementation of the indices is done in the R language, using the sensitivity
package and in particular the sensiHSIC and testHSIC functions, which allows to compute
HSIC-ANOVA indices and p-values.

4.1 Excursion sets of a toy function

In this part, we will estimate the previous HSIC-ANOVA indices on the excursion set
Γg defined by the following function g from El Amri et al. [2023],

∀x,u ∈ [−5, 5]2 × [−5, 5]2 g(x,u) = −x2
1 + 5x2 − u1 + u2

2 − 1.

Visual conjecture (Figure 2) shows that u2 seems to induce more changes in Γg than u1.
To verify this assumption, we compute the p-values and the indices ˆ̂

SHset
i , ˆ̂

SHset
Ti

for each
input Ui ∼ U([−5, 5]) for i ∈ {1, 2, 3}, where U3 is an additional dummy input that does
not appear in the function g. We first use n = m = 100 and then n = m = 1000.
The hyperparameter σ2 of the kernel kset is chosen to be equal to the empirical mean of
λ(Γ

(i)
g ∆Γ

(j)
g ) with i > j. We compute the indices for five characteristic ANOVA kernels.

The first is the Sobolev kernel KSob of order 1, defined by:

KSob(x, y) = 1 + (x− 1

2
)(y − 1

2
) +

1

2
[(x− y)2 − |x− y|+ 1

6
].

The four others are obtained using the transformation given in (3) based on four classic
kernels: the Gaussian kernel, the Laplace kernel and the Matérn 3/2 and 5/2. For these
kernels, the previous transformation is known analytically and can be found in the Appendix
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of Ginsbourger et al. [2016]). The hyper-parameter is taken to be equal to the empirical
standard deviation of the inputs. Since the inputs are not uniformly distributed on [0, 1],
we apply the inverse of the cumulative distribution function, as suggested in Da Veiga
[2021]. We repeat the estimation 20 times over 20 independent samples. The results are
shown in Figure 3 for n = m = 100 and in Figure 4 for n = m = 1000. The acceptance
rates of the independence hypothesis are given in the table on the left side of the figure,
and the variability of the indices is visualized in the boxplots on the right side.

Kernel U1 U2 U3

KSob 0 0 95
Kgauss 0 0 95
Kexp 0 0 95
K3/2 0 0 95
K5/2 0 0 90

(a) Acceptance rates (%)
over 20 independence tests

with a risk of 5%

SHset
i SHset

Ti

U1 U2 U3 U1 U2 U3

0.00

0.25

0.50

0.75

KSob

Kgauss

Kexp

K3/2

K5/2

(b) Estimations of ˆ̂
SHset
i and ˆ̂

SHset
Ti

Figure 3 – Acceptance rates (a) and estimation of ˆ̂
SHset
i and ˆ̂

SHset
Ti

(b) for the excursion set
Γg computed for 5 kernels with n = 100, m = 100 and repeated 20 times

With these results, we classify the inputs as influential or negligible (screening) and rank
them by influence (ranking). 100% of the p-values of U1 and U2 are below the threshold
of 0.05, so they are classified as influential. U3 has a p-value greater than 0.05 around
95% of the time, so it is correctly identified as negligible by the independence test. The
first-order and total-order indices give the expected results that U2 has a greater influence
than U1 on the excursion sets. More precisely, it shows that U2 alone explains about 70% of
HSIC(U ,Γg) (depending on the input kernel), while U1 explains about 25%. The artificial
input U3 is responsible for 0%, as expected. The rest is some kind of interaction between
U1 and U2. This is confirmed by looking at the total-order indices, whose values are a bit
greater than the first-order. However, this part of the interaction is not to be interpreted
as in the case of the Sobol’ indices. It is actually an open question to interpret what kind
of interactions are detected by the HSIC-ANOVA indices. This is studied in Sarazin et al.
[2023] in the case of Sobolev kernels. The effect of the input kernel on the HSIC-ANOVA
indices is also an open question, and in this toy case we can say that the input kernel has
a non-negligible effect on the estimates of the p-values and the indices. However, in this
case it does not change the results of the screening and the ranking. It also seems that the
Sobolev kernel behaves differently from the other four kernels.

Taking n = m = 1000 in Figure 4 reduces the variance of the indices, but was not
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Kernel U1 U2 U3

KSob 0 0 95
Kgauss 0 0 95
Kexp 0 0 100
K3/2 0 0 95
K5/2 0 0 95

(a) Acceptance rates (%)
over 20 independence tests

with a risk of 5%

SHset
i SHset

Ti

U1 U2 U3 U1 U2 U3

0.0

0.2

0.4

0.6

0.8

KSob

Kgauss

Kexp

K3/2

K5/2

(b) Estimations of ˆ̂
SHset
i and ˆ̂

SHset
Ti

Figure 4 – Acceptance rates (a) and estimation of ˆ̂
SHset
i and ˆ̂

SHset
Ti

(b) for the excursion set
Γg computed for 5 kernels with n = 1000, m = 1000 and repeated 20 times

necessary to screen and rank the inputs. To support this comment, we compute the relative

quadratic risk of the estimator ̂̂
HSIC(U1,Γg) defined by:

R(
̂̂
HSIC(U1,Γg)) = E

̂̂
HSIC (U1,Γg)− HSIC(U1,Γg)

HSIC(U1,Γg)

2

.

We also compute the associated upper bound given in Proposition 3.4 and the upper bound
for a classic NMC estimator (with independent X

(k)
i,j for all 1 ≤ i, j ≤ n, see equation 4).

The "true" value of HSIC, used to compute the quadratic risk, and the constants σ1, σ2,
and σ3 are computed for n = m = 3000. The Sobolev kernel is used as the input kernel.
We plot the risk and the two bounds in the Figure 5 from n = m = 30 to n = m = 500. We
observe, as expected, that the quadratic risk of the estimator is below the upper bound of
Proposition 3.4, but also below the NMC upper bound we would have by taking independent
X

(k)
i,j . This example confirms that we have not lost too much in terms of variance of the

estimator by reusing the same X(k). It also seems that we do not necessarily need to use
high values of n = m. Therefore, in the next example, we will only compute the indices for
n = m = 100.

4.2 Excursion sets of the optimization of an oscillator

In Cousin et al. [2022], an optimization is performed with three probabilistic constraints.
We consider the first two constraints, which are defined by the following functions :

g1(x1, x2, u1, u2, up, ur1 , ur2) = ur1 − max
t∈[0,T ]

Y ′(x1 + u1, x2 + u2, up; t),
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0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500
n = m

R(
̂̂
HSIC(U1,Γg))

NMC upper bound
Upper bound

Figure 5 – Evolution of R(
̂̂
HSIC(U1,Γg)) and of the associated upper bounds for the

excursion set Γg

Table 1 – Definition of the uncertain inputs

Uncertainty Distribution Uncertainty Distribution

U1 U [−0.3, 0.3] Ur1 N (1, 0.12)
U2 U [−1, 1] Ur2 N (2.5, 0.252)
Up U [0.5, 1.5] Ur3 N (15, 32)

g2(x1, x2, u1, u2, up, ur1 , ur2) = ur2 − max
t∈[0,T ]

Y ′′(x1 + u1, x2 + u2, up; t),

where Y(x1 + u1, x2 + u2, up; t) is the solution of the harmonic oscillator defined by:

(x1 + u1)Y ′′(t) + upY ′(t) + (x2 + u2)Y(t) = η(t).

The deterministic input domain is X = [1, 5] × [20, 50]. The uncertain input probability
distributions are given in Table 1. Ur3 is initially a random input associated with a third
constraint. In our case it will play the role of a dummy input to check if it is recognized as
negligible. We study the impact of the uncertain inputs on the excursion sets Γg1 associated
with the constraint g1 ≤ 0 and on the excursion sets Γg2 associated with g2 ≤ 0. Since
kernel-based methods are appropriate for vectorial outputs, we also consider the case where
an output is the pair of the two excursion sets (Γg1 ,Γg2), each associated with a constraint.
For each case, we compute ˆ̂

SHset
i , ˆ̂

SHset
Ti

and the associated p-values for each uncertain input
with n = 100 and m = 100. We again use the output kernel kset and kset⊗kset for the pairs
of excursion sets. Note that the kernel kset ⊗ kset may not be characteristic. The same 5
ANOVA kernels are used as in the previous example. We repeat the estimation 20 times to
again obtain the acceptance rates and boxplots of the first-order indices given in Figures 6
to 8. The total-order indices are given in Figure 12 in the Appendix 7.2.

Acceptance rates tables can be used for screening and the boxplots for ranking. For the
random set associated with the constraint g1 ≤ 0 (Figure 6), only Ur1 is always detected
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Kernel U1 U2 Up Ur1 Ur2 Ur3

KSob 15 95 55 0 100 90
Kgauss 15 100 60 0 100 95
Kexp 25 90 60 0 100 95
K3/2 15 90 60 0 100 95
K5/2 15 100 60 0 100 95

(a) Acceptance rates (%) over 20 independence
tests with a risk of 5%

SHset
i

U1 U2 Up Ur1 Ur2 Ur3

0.00

0.25

0.50

0.75

1.00

KSob

Kgauss

Kexp

K3/2

K5/2

(b) Estimations of ˆ̂
SHset
i

Figure 6 – Acceptance rates (a) and estimation of ˆ̂
SHset
i (b) for the excursion set Γg1

computed for 5 kernels with n = 100, m = 100 and repeated 20 times

Kernel U1 U2 Up Ur1 Ur2 Ur3

KSob 0 100 95 95 0 95
Kgauss 0 100 95 95 0 95
Kexp 0 100 95 100 0 95
K3/2 0 100 95 100 0 95
K5/2 0 100 95 95 0 95

(a) Acceptance rates (%) over 20 independence
tests with a risk of 5%

SHset
i

U1 U2 Up Ur1 Ur2 Ur3

0.00

0.25

0.50

0.75

1.00

KSob

Kgauss

Kexp

K3/2

K5/2

(b) Estimations of ˆ̂
SHset
i

Figure 7 – Acceptance rates (a) and estimation of ˆ̂
SHset
i (b) for the excursion set Γg2

computed for 5 kernels with n = 100, m = 100 and repeated 20 times

15



Kernel U1 U2 Up Ur1 Ur2 Ur3

KSob 0 95 60 0 0 90
Kgauss 0 100 60 0 0 90
Kexp 0 95 60 0 0 90
K3/2 0 100 60 0 0 90
K5/2 0 100 60 0 0 90

(a) Acceptance rates (%) over 20 independence
tests with a risk of 5%

SHset
i

U1 U2 Up Ur1 Ur2 Ur3

0.0

0.1

0.2

0.3

0.4

0.5

KSob

Kgauss

Kexp

K3/2

K5/2

(b) Estimations of ˆ̂
SHset
i

Figure 8 – Acceptance rates (a) and estimation of ˆ̂
SHset
i (b) for the pair of excursion sets

(Γg1 ,Γg2) computed for 5 kernels with n = 100, m = 100 and repeated 20 times

as influential. U1 is also detected as influential most of the time (with an acceptance rate
of about 20%), and Up is detected as influential only 40% of the time. Between these three
inputs, Ur1 is much more influential, since ˆ̂

SHset
r1

≈ 80%. Then U1 and Up are responsible
for about 10% and 3% of HSIC(U ,Γg1). For the second constraint g2 ≤ 0 (Figure 7), only
U1 and Ur2 are influential with their first-order index of about 10% and 80%, respectively.
If we consider the pair of the two random sets (Figure 8), we get a kind of compromise
between the two previous cases: U1, Ur1 and Ur2 are always recognized as influential. In
terms of ranking, Ur1 and Ur2 have almost the same influence, with their first-order index
around 40% and U1 remaining around 10%. It is important to note that considering pairs
of random sets is completely different from considering the random set associated with the
pair of constraints, denoted Γ(g1,g2), i.e., the intersection of the two sets. The results of the
latter are shown in Figure 11 in Appendix 7.2 and are indeed very different from the results
in Figure 8. In this test case, we observe that the choice of the input kernel has a limited
impact on the indices. Regardless of the stage of screening or ranking, the conclusions
remain the same for the five kernels.

4.3 Sensitivity analysis for robust conception of an electrical ma-
chine

In [Reyes Reyes et al. 2024], a sensitivity analysis is performed in the context of ro-
bust conception of an electrical machine. The studied machine is a permanent magnet
assisted synchronous reluctance motor which is one of the most used machines nowadays
in electrical vehicles. The purpose of the authors is to take into account the uncertainties
(manufactoring and assembly tolerances) on geometric and magnetic parameters of the
machine components in the optimization of the mean torque (to be maximized) and the
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(a)
(b)

Figure 9 – (a) Geometry of the permanent magnet assisted synchronous reluctance motor
- (b) Design parameters for one layer (# is the number of layer)

Input Lower bound Upper bound Manufacturing
parameters xmin xmax Tolerance U

Slot angle 2.47◦ 3.27◦ ±0.1◦

βL1P1 27.03◦ 29.66◦ ±0.33◦

βL1P2 37.03◦ 39.66◦ ±0.33◦

βL2P1 31.03◦ 33.66◦ ±0.33◦

βL2P2 47.03◦ 49.66◦ ±0.33◦

βL3P1 33.7◦ 37◦ ±0.33◦

βL3P2 59.7◦ 63◦ ±0.33◦

Airgap 0.55 mm 0.65 mm ±0.03 mm
BridgeL1 2.6 mm 2.98 mm ±0.05 mm
BridgeL2 0.9 mm 1.18 mm ±0.05 mm
BridgeL3 0.5 mm 0.62 mm ±0.03 mm
Bridgetang 0.4 mm 0.6 mm ±0.05 mm

Table 2 – Geometrical variables (see [Reyes Reyes et al. 2024] for more details)

torque ripples (to be minimized). The resulting optimization problem is the following

min
x∈X

(E [f1(x,U )] ,E [f2(x,U )])

where f1 and f2 are two real-valued objective functions defined on X ⊂ R12 (respectively
the opposite of the mean torque and the torque ripple) and U ⊂ R14. 12 of the 14 uncertain
inputs are manufacturing tolerances on each x, summarized in Table 2, where, for example,
±0.1◦ means that the slot angle uncertainty U1 follows a uniform law on [−0.1, 0.1]. The
other two, U13 and U14, describe the magnetic material properties and follow uniform
distributions on [−1, 1].

The purpose of our study is to screen and rank the uncertain parameters according to
their impact on the quantities of interest in this optimization. Since we want to minimize
an objective function, we are interested in quantifying the effect of U on sets where the
objective function takes low values. This can be done by looking at the random set of the
form Γf1 = {x ∈ X , f1(x,U) ≤ q1}, where q1 is a threshold to be selected. It quantifies the
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U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14

ΓF1 0.40 0.90 0.75 0.90 0.75 1.00 1.00 0.40 0.90 0.90 0.85 1.00 0.00 0.00
ΓF2 0.70 0.00 0.00 0.75 0.00 1.00 0.65 0.15 0.95 0.70 0.90 0.60 0.00 0.40
(ΓF1 ,ΓF2) 0.25 0.00 0.05 0.90 0.05 1.00 0.95 0.10 0.85 0.75 0.80 0.75 0.00 0.00

Table 3 – Acceptance rates (%) over 20 independence tests with a risk of 5% for the
excursion sets ΓF1 , ΓF2 and the pair (ΓF1 ,ΓF2) with −q1 = 420 N.m and q2 = 7%

computed with the Sobolev input kernel and with n = 100, m = 100.

0.0

0.2

0.4

0.6

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14

ΓF1

ΓF2

(ΓF1 ,ΓF2)

Figure 10 – Estimation of ˆ̂
SHset
i for the excursion sets ΓF1 , ΓF2 and the pair (ΓF1 ,ΓF2)

with −q1 = 420 N.m and q2 = 7% computed with the Sobolev input kernel and with
n = 100, m = 100. 20 replicates.

effect of U on the sets where f1 is below q1, but does not take into account the variations
of f1 within this low-valued region. For this reason, we propose to look at the effect of the
uncertain inputs on the set ΓF1 defined by ΓF1 = {(x, x13) ∈ X × [fmin

1 , q1], x13 ≤ f1(x,U)}
where fmin

1 is a lower bound to only consider sets of low values of f1. This also corresponds
to the excursion set associated with F1 : X × [fmin

1 , q1] × U → R defined by F1(x,u) =
x13 − f1(x−13,u). ΓF2 is defined similarly.

We study three different cases : sensitivity analysis on ΓF1 , on ΓF2 , and on the pair of
excursion sets (ΓF1 ,ΓF2). We use the thresholds −q1 = 420 N.m and q2 = 7% where lies
the Pareto front in Figure 9 of [Reyes Reyes et al. 2024]. For these three cases, we take
n = m = 100 and use only the Sobolev kernel. With 20 replicates, the acceptance rates
with a risk of 0.05% are given in Table 3 and the boxplots of the first-order indices are
plotted in Figure 10.

Table 3 shows that the inputs influencing the excursion sets ΓF1 and ΓF2 are different.
Only U13 and U14 are always tested as influential for ΓF1 and U2, U3, U5 and U13 for
ΓF2 . They correspond to the most influential inputs in Figure 10 and can be ranked. For
example, U2 has the most influence on ΓF2 , followed by U13, U3 and U5. Detected about
95% of the time as independent of the output, U2, U4, U6, U7, U9, U10, U12 for ΓF1 , and U6,
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U9, U11 for ΓF2 could be removed to simplify each model. The remaining inputs have an
acceptance rate between 15% and 85%, which means that they are sometimes classified as
independent and sometimes not. They correspond to inputs that have a small effect on the
output, as can be observed in Figure 10. By taking the pair of the two sets, the influential
inputs are the one that were influential on at least one of the sets. This results in five
dominant inputs that can be ranked by their first order index: U13 ⪰ U14 ⪰ U2 ⪰ U3 ⪰ U5.
The results associated to the excursion sets of the forms Γfi = {x ∈ X , fi(x,U) ≤ qi} are
similar in this case and given in Appendix 7.2.

5 Conclusion

In this paper, we propose a method to perform sensitivity analysis on set-valued outputs
through kernel-based sensitivity analysis, which relies on the choice of a kernel between sets.
We introduce the kernel kset, which is based on the symmetric difference between two sets.
We show that it is characteristic, which is an essential property for performing screening.
We then adapt the recent HSIC-ANOVA index to set-valued outputs and introduce an
efficient estimator. Finally, we compute the indices on three test cases including a real
application for robust design of electrical motor. The proposed method allows to screen
and rank the uncertain inputs according to their impact on the excursion sets. For future
research, it could be interesting to find and study other set-valued output kernels. Other
types of approaches to perform sensitivity analysis for sets could also be investigated, such
as using universal indices from Fort et al. [2021], or by using classic random set theory from
Molchanov [2005].

In the context of robust optimization, the presented method and especially the screening
results could be used to reduce the dimension of the uncertain space by quantifying the
impact of uncertain inputs on the optimization constraints. Reducing the dimension of
the uncertain space can then be useful to reduce the computational cost of a joint space
metamodel that could be used within a Bayesian optimization.

More generally, sensitivity analysis for sets can also be used when dealing with numerical
codes with set-valued outputs. This occurs in several areas: in the field of viability, where
the outputs are sets called viability kernels, or, for example, in flood risk, where the output
is the map of flooded areas.
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7 Appendix

7.1 Proofs

7.1.1 Proof of Lemma 3.1

Lemma 3.1. Let γ1, γ2 ∈ L (X ), we have

δ(γ1, γ2) = ||1γ1 − 1γ2||
2
2 ,

and
δ(γ1, γ2) = 0 ⇔ γ1 = γ2 λ-almost everywhere.

Proof.

δ(γ1, γ2) = λ(γ1∆γ2)

=

∫
X

1γ1∆γ2dλ

=

∫
X
(1γ1∪γ2 − 1γ1∩γ2)dλ

=

∫
X
(1γ1 + 1γ2 − 21γ1∩γ2)dλ

=

∫
X
(1γ1 − 1γ2)

2dλ

= ||1γ1 − 1γ2||
2
2

δ(γ1, γ2) = 0 ⇔ ||1γ1 − 1γ2||
2
2 = 0

⇔ 1γ1(x) = 1γ2(x) for λ-almost every x ∈ X
⇔ γ1 = γ2 λ-almost everywhere.

7.1.2 Proof of Proposition 3.1

Proposition 3.1. The function kset : L ∗(X )× L ∗(X ) → R defined by

∀γ1, γ2 ∈ L ∗(X ), kset(γ1, γ2) = e−
λ(γ1∆γ2)

2σ2 ,

is symmetric and positive definite for any positive scalar σ which means that kset is a kernel.

Proof. The proof is similar as the one of Lemma 2.1. in Balança and Herbin [2012] but is
recalled and adapted here.

Let α1, ..., αn ∈ R and γ1, ..., γn ∈ L ∗(X ). Let’s show that

n∑
kl

e−
λ(γk∆γl)

2σ2 αkαl ≥ 0.
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First let’s use Lemma 3.1 to write:

n∑
kl

e−
λ(γk∆γl)

2σ2 αkαl =
n∑
kl

e−
||1γk−1γl ||2L2(X )

2σ2 αkαl.

Then we use the Bochner-Milos theorem (Theorem 1.1 of Hida et al. [2013]), which says
that there exists a random variable G ∈ L2(X ) such that

∀f ∈ L2(X ), E(ei⟨f,G⟩L2(X )) = e
− 1

2
||f ||2

L2(X ) .

This allows to derive :

n∑
kl

e−
λ(γk∆γl)

2σ2 αkαl =
n∑
kl

e−
||1γk−1γl ||2L2(X )

2σ2 αkαl

=
n∑
kl

Eei⟨
1γk−1γl√

2σ
,G⟩L2(X )αkαl

= E
n∑
kl

e
i√
2σ

⟨1γk
,G⟩L2(X )αke

− i√
2σ

⟨1γl
,G⟩L2(X )αl

= E

∣∣∣∣∣
n∑
k

e
i√
2σ

⟨1γk
,G⟩L2(X )αk

∣∣∣∣∣
2

≥ 0.

7.1.3 Proof of Proposition 3.2

Proposition 3.2. The kernel kset is bounded and measurable from L ⋆
2 (X ) = L ⋆(X ) ×

L ⋆(X ) to R.

Proof. kset is clearly bounded by 1. In term of measurability, we are studying the measur-
ability of kset with respect to the two Borels σ-algebras B(L ⋆

2 (X ), δ2) and B(R, |.|) with
δ2((γ

A
1 , γ

A
1 ), (γ

B
2 , γ

B
2 )) = δ(γA

1 , γ
B
1 ) + δ(γA

2 , γ
B
2 ). As δ : L ⋆

2 (X ) → R+ is a distance on
L ⋆(X ), it is a continuous function from L ⋆

2 (X ) to R. kset is then continuous as exp is
continuous. Finally the continuity of kset implies measurability as we are working in two
Borel σ-algebras.

7.1.4 Proof of Proposition 3.3

Proposition 3.3. The kernel kset is characteristic.

Proof. The proof is based on the Proposition 5.2. of Ziegel et al. [2022] which is recalled
here with our notations.

Proposition 7.1. Let P be a Polish space, H a separable Hilbert space, T a measurable
and injective mapping from P to H, and φ the Laplace transform of a finite Borel measure
ν on [0,+∞) such that ν ̸= 0 and suppν ̸= {0}. Then, the kernel k on P × P defined by

k (x, x′) := φ
(
∥T (x)− T (x′)∥2H

)
, (x, x′) ∈ X 2
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is integrally strictly positive definite with respect to M(X ).

Using the previous Proposition, we will show that kset is integrally strictly positive
which is a sufficient condition to be characteristic (see Theorem 7 in B. K. Sriperumbudur
et al. [2011]).

To apply the Proposition, we first introduce the notation,

F ⋆
bin = {f ∈ L2(X ) : ∃γ ∈ L (X ) such that f = 1γ λ-almost everywhere}.

We want to apply the proposition with P = L ∗(X ), H = L2(X ), φ(·) = exp(− ·
2σ2 )

and T defined by
T : L ⋆(X ) −→ F ⋆

bin ⊂ H
[γ]δ 7−→ [1γ]2 ,

where [·]δ and [·]2 denote equivalence classes in L (X ) and Fbin respectively. We need
to show that L ∗(X ) is Polish, that L2(X ) is a separable Hilbert space, and that T is
measurable and injective.

• Let’s first show that is T a well-defined measurable and injective mapping from P
to H:
⋆ T is well-defined and in the same time injective as for any γ1, γ2 ∈ L (X ),

[γ1]δ = [γ2]δ ⇔ δ(γ1, γ2) = 0

⇔ λ(γ1∆γ2) = 0

⇔ ∥1γ1 − 1γ2∥2 = 0

⇔ [1γ1 ]2 = [1γ2 ]2 .

⋆ T is measurable (with respect to the Borel σ-algebras B (L ⋆(X ), δ) and B (F ⋆
bin , || · ||2))

because it is continuous as it is an isometry from
(
L ⋆(X ),

√
δ
)

to (F ⋆
bin , || · ||2).

⋆ Let us show that T is also surjective which will be useful later on. Let [f ]2 ∈ F ⋆
bin .

There exist γ ∈ L (X ) such that f = 1γ λ-almost everywhere which implies that
||f − 1γ||2 = 0 i.e. [f ]2 = [1γ]2 = T ([γ]δ).

• L2(X ) is a separable Hilbert space as X is compact so separable.
• Let us now show that L ∗(X ) is Polish i.e. a topological space homeomorphic to

a separable complete metric space. Luckily, as T is a surjective isometry, it is an
homeorphism from L ⋆(X ) to F ⋆

bin which is a metric space. Then, it only remains
to prove that F ⋆

bin is both complete and separable.
⋆ F ⋆

bin ⊂ L2(X ) which is separable so F ⋆
bin is separable.

⋆ As L2(X ) is complete, having F ⋆
bin closed is a sufficient condition for F ⋆

bin

to be complete. Let us show then that it is closed. Let 1γn
L2→

n→+∞
f with γn ∈

L (X ) ∀n. The L2 convergence implies that there is a sub-sequence (1γϕ(n)
)n that

converges almost everywhere pointwise to f (as stated in Theorem 3.13 of Rudin
[1987]). It means that there exists a λ-null set N s.t. ∀x /∈ N , 1γϕ(n)

(x) →
n→+∞

f(x). As 1γϕ(n)
(x) is a sequence of 0 and 1, we have that its limit, f(x), belong

to {0, 1}. So, f = 1f−1({1}) λ-almost everywhere and f−1({1}) ∈ L (X ) as f is
measurable. So f ∈ Fbin . F ⋆

bin is thus closed.
Thus kset is integrally strictly positive definite with respect to M(L ∗(X )), the set of

signed measure on L ∗(X ), which implies that it is characteristic.
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7.1.5 Proof of Proposition 3.4

Proposition 3.4. With the previous notations, we have

E
(
̂̂
HSIC (UA,Γ)− HSIC(UA,Γ)

)2

≤ 2

(
2σ2

1

n(n− 1)
+

4(n− 2)σ2
2

n(n− 1)
+

L2σ2
3

m

)
,

where
• σ2

1 = V ar ((KA (UA,UA
′)− 1) kset(Γ,Γ

′)),
• σ2

2 = V ar (E [(KA (UA,UA
′)− 1) kset(Γ,Γ

′)|(Γ,UA)]) ,

• σ2
3 = E

[
(KA (UA,UA

′)− 1)
2
Var (1Γ∆Γ′(X)|(UA,UA

′,Γ,Γ′))
]
,

• L = λ(X )
2σ2 ,

and where (UA
′,Γ′) is an independent copy of (UA,Γ).

Proof. Let f(u, z) = g(u)h(z) with g(u) = (KA (u1,u2)− 1), h(z) = e−
λ(X )

2σ2 z, and let
Φ(x, γ1, γ2) = 1γ1∆γ2(x). Let us have iid samples (U

(i)
A ,Γ(i)), i = 1, ..., n of (UA,Γ) and

(X(1), ...,X(m)) of X ∼ U(X ). We denote

H = HSIC(UA,Γ) = E[f(U ,U ′,E[Φ(X,Γ,Γ′)|(Γ,Γ′)]],

Hn,m = ĤSICu (UA,Γ) =
2

n(n− 1)

n∑
i<j

f(U
(i)
A ,U

(j)
A ,

1

m

m∑
k=1

Φ(X(k),Γ(i),Γ(j)),

and

Hn =
2

n(n− 1)

n∑
i<j

f(U
(i)
A ,U

(j)
A ,E[Φ(X,Γ(i),Γ(j))|(Γ(i),Γ(j))]).

First we split the risk into two terms:

E|Hn,m −H |2 ≤ 2E|Hn−H |2 + 2E|Hn−Hn,m |2

The first term is the variance of a classic U-statistic of order 2:

E|Hn −H |2 = 2σ2
1

n(n− 1)
+

4(n− 2)σ2
2

n(n− 1)
.

The second term can be developed:

E|Hn −Hnm |2 = 4

n2(n− 1)2

(
n∑

i<j

n∑
p<l

E (Eij − Eij,m) (Epl − Epl,m)

)
,

with
Eij = f(U

(i)
A ,U

(j)
A ,E[Φ(X,Γ(i),Γ(j))|(Γ(i),Γ(j))])

and

Eij,m = f(U
(i)
A ,U

(j)
A ,

1

m

m∑
k=1

Φ(X(k),Γ(i),Γ(j)).
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As X(1), ...,X(m) are common to each Eij,m, the terms Eij,m and Epl,m are not inde-
pendent even if i, j, p, l are pairwise distinct. We can still bound them but we will lose one
order of convergence in m. We first have

|E (Eij − Eij,m) (Epl − Epl,m)| ≤ (E |Eij − Eij,m|2 E |Epl − Epl,m|2)
1
2 (5)

=
(
E |E12 − E12,m|2

)
(6)

≤ L2

m
E
[
(KA (UA,UA

′)− 1)
2
Var (Φ(X,Γ,Γ′)|(UA,UA

′,Γ,Γ′))
]
,

using Cauchy-Schwarz inequality in (5) and that h is L-lipschitz. Summing each term, we
obtain

E|Hn −Hnm |2 ≤ L2

m
E
[
(KA (UA,UA

′)− 1)
2
Var (Φ(X,Γ,Γ′)|(UA,UA

′,Γ,Γ′))
]
.

Putting all results together, we get

E|Hn,m −H |2 ≤ 2

(
2σ2

1

n(n− 1)
+

4(n− 2)σ2
2

n(n− 1)
+

L2σ2
3

m

)
.

7.1.6 Convergence rate in the case of Independent m sample

If an m sample X(k)
ij is drawn independently for each (i, j), we can obtain an asymptotic

rate of O( 1
n
+ 1

m2 ). Indeed in (5) we use the independence between (X
(k)
ij )k and (X

(k)
pl )k for

i, j, p, l pairwise distinct:

|E (Eij − Eij,m) (Epl − Epl,m)| = |E (Eij − Eij,m)E (Epl − Epl,m)|
= |E (E12 − E12,m)|2

Then by applying Taylor Lagrange’s formula to h with a = E(Φ(X,Γ(1),Γ(2))|(Γ(1),Γ(2)))
and b = 1

m

∑m
k=1Φ(X

(k),Γ(1),Γ(2)), we have the existence of θ ∈ R+ such that,

E12,m − E12 = (KA (UA,UA
′)− 1) (h(b)− h(a))

= (KA (UA,UA
′)− 1)

[
h′(a)(b− a) +

h′′(θ)

2
(b− a)2

]
.

Then we take the expectation and use the tower property and we use that Monte Carlo
estimators are unbiased (i.e. E(b|(Γ(1),Γ(2))) = a) which leads to

E(E12,m − E12) = E [E(E12,m − E12|UA,U
′
A,Γ,Γ

′)]

= E
[
(KA (UA,UA

′)− 1)E
(
h′′(θ)

2
(b− a)2|UA,UA

′,Γ,Γ′
)]

.
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Then, as h′′ is bounded by L,

|E(E12,m − E12)| ≤
L2

2m
E [|KA (UA,UA

′)− 1|Var (Φ(X,Γ,Γ′)|(UA,UA
′,Γ,Γ′))] ,

which finally leads to

|E (Eij − Eij,m) (Epl − Epl,m)| ≤
L4

4m2
σ4
4,

where
σ2
4 = E [|KA (UA,UA

′)− 1|Var (Φ(X,Γ,Γ′)|(UA,UA
′,Γ,Γ′))] .

If i = p or i = l or j = p or j = l, we lost the independence so we use the previous
result that

|E (Eij − Eij,m) (Epl − Epl,m)| ≤
L2

m
σ2
3.

There are n(n−1)(n−2)(n−3)
4

i, j, p, l pairwise distinct with i < j and p < l so we finally
obtain that,

E|Hn,m −H |2 ≤ 2

(
2σ2

1

n(n− 1)
+

4(n− 2)σ2
2

n(n− 1)
+

L22(2n− 3)σ2
3

n(n− 1)m
+

L4(n− 2)(n− 3)σ4
4

4n(n− 1)m2

)
= O(

1

n
+

1

m2
).

7.2 Figures

U1 U2 Up Ur1 Ur2 Ur3

KSob 5 95 55 0 75 90
KSob 5 100 60 0 75 95
KSob 15 95 55 0 65 95
KSob 10 95 55 0 65 95
KSob 5 100 55 0 70 95

(a) Acceptance rate (%) over 20 independence
tests with a risk of 5%
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(b) Estimations of ˆ̂
SHset
i

Figure 11 – Acceptance rate (a) and estimation of ˆ̂
SHset
i (b) for excursion set Γ(g1,g2)

computed for 5 kernels with n = 100, m = 100 and repeated 20 times

28



SHset
Ti

U1 U2 Up Ur1 Ur2 Ur3

0.00

0.25

0.50

0.75

1.00

KSob

Kgauss

Kexp

K3/2

K5/2

(a) Γg1

SHset
Ti

U1 U2 Up Ur1 Ur2 Ur3

0.00

0.25

0.50

0.75

1.00

KSob

Kgauss

Kexp

K3/2

K5/2

(b) Γg2

SHset
Ti

U1 U2 Up Ur1 Ur2 Ur3

0.0

0.2

0.4

KSob

Kgauss

Kexp

K3/2

K5/2

(c) (Γg1 ,Γg2)

SHset
Ti

U1 U2 Up Ur1 Ur2 Ur3

0.00

0.25

0.50

0.75

1.00

KSob

Kgauss

Kexp

K3/2

K5/2
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Figure 12 – Estimation of the total-order indices ˆ̂
SHset
Ti

for the oscillator case computed for
5 kernels with n = 100, m = 100 and repeated 20 times
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Figure 13 – Estimation of ˆ̂
SHset
i for the excursion sets Γf1 , Γf2 and the pair (Γf1 ,Γf2) with

−q1 = 420 N.m and q2 = 7% computed with the Sobolev input kernel and with n = 100,
m = 100. 20 replicates.
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