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Abstract

Direct numerical simulations are performed to evaluate the hydrodynamic forces and torque on

finite-length cylinders embedded in a uniform flow for a wide range of aspect ratios 2 ≤ χ ≤ 30.

Both viscous-dominated and moderately inertial regimes are investigated. We start the investiga-

tion by comparing the numerical results to the predictions of the Khayat and Cox [16] slender-body

theory. We show that this theory can predict with reasonable accuracy the drag force on the cylin-

der for a large range of aspect ratios. However, the theory is unable to predict accurately the lift

force and torque for moderately long cylinders of χ < 30. By performing a careful analysis of the

local contributions to the loads, we show that the disagreement with the theory is mainly explained

by the contribution of the cylinder ends which are not properly taken into account by the theory.

Semi-empirical models based on theoretical results for small but finite inertia are then built to

provide a better match with the numerical predictions. We show as in the slender-body theory

that the relevant Reynolds number is based on the particle length. We also derive a ready-to-use

tensorial formulation for the forces and inertial torque. Additionally, we compare the whole model

to experimental results of settling cylinder showing better agreement than the slender-body theory.

I. INTRODUCTION

Microplastic rods or fibers are one of the main classes of microplastic found in the en-

vironment due to their wide range of possible sources: synthetic fibers from clothes during

washing, fragmentation of maritime equipment, and so on [5]. Due to the large scale involved

in the environment, the surrounding flow is essentially turbulent while the microplastic size

range from a few micrometers to a few hundred. Because the fully resolved simulation of

the overall problem is very challenging from a computational point of view, the motion of

anisotropic particles in turbulent flows is most often modelled [1, 23]. Such modelling re-

quires the knowledge of the loads acting on the body. In particular, the forces and torque

acting on the body due to an incoming uniform flow are required.

The slender-body theory provides a convenient framework to estimate the loads on slender

cylinders embedded in a uniform flow. The slender-body theory for Stokes flow was initially

developed by Batchelor [2] and Cox [7] (see also the reference therein). In the Stokes flow
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regime, because of the reversibility of the governing equations, the torque on an axisymmetric

cylinder with fore-and-aft symmetry immersed in a uniform flow is zero. However, for finite

Reynolds number, a non-zero torque exists when the body is not aligned or perpendicular

to the incoming flow [6]. A major breakthrough in extending the slender-body theory to

the inertial realm was done by Khayat and Cox [16]. They extended it to small but finite

Reynolds numbers based on the body cross-section. In particular, their results allow the

computation of the loads for arbitrary Reynolds numbers based on the body length as long as

the body aspect ratio is sufficiently large. More recently, Khair and Chisholm [14] extended

the work of Khayat and Cox [16] by calculating the next order inertial term for the force on

a fiber embedded in an axisymmetric flow. Despite this progress, one of the main drawbacks

of the theory is the inherent limitation due to the slender-body assumption.

Experiments have been carried out to address the range of validity of Khayat and Cox

[16] slender-body theory for finite-length fibers and finite-Reynolds numbers. Lopez and

Guazzelli [18] studied the settling of inertial fibers in vortical flows. They found good

agreement between the Khayat and Cox [16] slender-body theory and their experimental

results for aspect ratio χ (defined as the length-to-diameter ratio) of order ten, and particle

Reynolds number based on the body half-length ReL of order 10. Roy et al. [24] considered

the settling of asymmetric fibers. They also found good agreement with Khayat and Cox

[16] torque model for χ ≥ 20 and ReL ≥ 1. More recently, Cabrera et al. [4] investigated

experimentally the settling of slender-cylinder finding good agreement with the theory but

better agreement with spheroid models. In parallel, numerical computations have been

also carried out addressing properly the inertial flow past a cylindrical particle. Vakil and

Green [30] performed direct numerical simulations mainly in the inertial regime. They

derived appropriate correlations for predicting the loads on the body. Kharrouba et al. [15]

performed direct numerical simulations from creeping flow to inertia dominated flow of the

same problem for a large range of aspect ratio 1 ≤ χ ≤ 10, but moderately inclined cylinder.

They found good agreement with Khayat and Cox [16] torque model for χ ≥ 5 and ReL ≈ 1.

A consequent amount of work has been devoted to evaluating [16] theory. However, most

of the experimental works considered sedimenting particles which has one major drawback

when being compared to the theory: the orientation of the cylinder can change with time

which may lead to unsteady effects. To compare their experimental results to the theory,

most researchers rely on the quasi-steady assumption, disregarding any unsteady terms such
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as added mass effects, history forces or torque, as well as the particle inertia. Although the

quasi-steady assumption has been discussed and justified a priori using scaling arguments

[6, 24], very little studies are dedicated to assess its range of validity [25]. Moreover, previous

works neglect the coupling between translation and rotation which leads to a non-zero lift

force [6]. Hence, there is a need for reconsidering the original configuration of Khayat and

Cox [16], i.e. the steady uniform flow past a slender cylinder.

The purpose of this paper is two-fold. First, we perform a careful numerical analysis

of the range of validity of the Khayat and Cox [16] theory. Secondly, we provide accurate

semi-empirical formulas based on the numerical simulations and slender-body theory for the

drag forces, lift forces and pitching torque for arbitrary yaw angles θ and a wide range of

aspect ratios (2 ≤ χ ≤ 30), from creeping flow regime to moderate inertial regimes (0.025 ≤
Re ≤ 10). The development of empirical models serves two main purposes. Firstly, it

addresses the practical issue of providing accurate expressions for hydrodynamic loads, which

are required for the implementation of Euler-Lagrange models. Secondly, it supports the

current research on the settling behavior of cylindrical particles, where precise expressions

for hydrodynamic loads are necessary to distinguish the effect of various contributions, such

as unsteady contributions and the coupling between translation and rotation. In section

II we describe the problem at hand and the numerical methodology. Then in section III

we review the theoretical predictions of the slender-body theory of [16] compared to the

numerical simulations. We investigate in section IV the distribution of the stress on the

surface of a cylinder of arbitrary aspect ratios to show from which part of the cylinder the

discrepancy with [16] theory comes from. In section V we propose semi-empirical formulas,

for the drag, lift and torque. We summarize our results in section VI and compare the

proposed model to experimental results for a settling cylinder.

II. COMPUTATIONAL METHODOLOGY

We consider a cylinder of length L and diameter D embedded in a stationary uniform

flow of velocity U = Uex (figure 1). The cylinder is inclined with an angle θ with respect

to the flow direction ex. The cylinder orientation is also characterized by p the unit vector

along its symmetry axis. The problem is governed by three dimensionless numbers, the

Reynolds number, based on the cylinder diameter Re = ρDU/µ, the aspect ratio of the
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FIG. 1: Scheme of the computational domain.

cylinder χ = L/D, and the angle of incidence θ. To obtain the load on the body, we solve

the steady incompressible Navier-Stokes equations which read

∇ · u = 0, (1)

∇ · (uu) = −1

ρ
∇p+

µ

ρ
∇2u, (2)

where µ is the dynamic viscosity, ρ the density, u the fluid velocity vector, p the fluid pressure.

Equations 1 and 2 are solved thanks to the simpleFOAM algorithm implemented in the open-

source library OpenFOAM R© [20]. This solver is based on the well-known SIMPLE algorithm,

which stands for Semi-Implicit Method for Pressure Linked Equations. A relaxation factor

is used on all variables to stabilize the solution at each iteration. It was found that the

most efficient relaxation factor for the range of Reynolds numbers studied here was around

0.9. The choice of the finite-volume spatial discretization schemes was obtained after a

thorough investigation of their respective accuracy. More details can be found in Fintzi [8]

and in Appendix A. In brief, the gradient operator is discretized by using a Gauss linear

scheme with second-order accuracy. The divergence operator is discretized using a Gauss

integration with linear interpolation (Gauss linear) which is also second-order accurate, while

the Laplacian term is discretized by a Gauss linear corrected scheme.

In the low Reynolds numbers regime, one may expect that the velocity field disturbances

generated by a cylinder embedded in a uniform flow decrease very slowly with the distance

from its centroid. Indeed, the leading order term of the disturbance field generated by a

sphere in a uniform flow decreases as 1/r [10]. In the case of a slender-body L � D, the
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leading order term of the velocity perturbation near the body is even constant [2]. This

makes the smallest Reynolds-number simulations particularly costly because of the large

domain size [12].

Hence, special care is given to the choice of both the domain size and the boundary

conditions to avoid any spurious effects on the numerical results. In appendix A we have

compared the effect of various domain sizes and boundary conditions on the accuracy of

the results by comparing our numerical results to previous experimental results of Kasper

et al. [13]. As shown in appendix A, a cubic numerical domain of length L ≈ (100 + 5χ)D

is sufficient to avoid any effect of the boundaries for the first configuration. Also, since

almost no wake appears in the low to moderate Reynolds number limit studied here, the

cylinder is located at the middle of the domain. Dirichlet boundary conditions for the

velocity are prescribed both on the cylinder and on the inlet. On the outlet, a Dirichlet

boundary condition is imposed for the pressure while a zero-gradient is imposed for the

velocity. The choice of the side boundary condition for the first configuration is not trivial

and various boundary conditions are tested in Appendix A. The one providing the best

results is ∂p/∂n = 0, ∂u/∂n = 0, where n is the outward normal vector.

The mesh is created using the snappyHexMesh utility of OpenFOAM R©. The background

mesh is a fully hexahedral grid created by the blockMesh utility. The main criterion for

the mesh quality is the number of cells per cylinder diameter near the cylinder surface. We

have performed several simulations with increasing density of cells per diameter of cylin-

ders, and we have found a minimum requirement of cells per diameter of 30 for all the

Reynolds numbers of interest here. To reduce the computational cost, the characteristic

cell size increases as the distance from the body increases. We found out that 20 cells of

transition between the different levels of refinement (parameter nCellsBetweenLevels of

snappyHexMesh) were enough to preserve the flow structure near the surface of the cylinder.

Depending on the aspect ratio, each mesh contained approximately ten to thirty millions

cells. For more information regarding the mesh, Appendix A detailed a careful validation of

the mesh generated using snappyHexMesh compared to a fully hexahedral mesh.

In order to further validate our simulations, we have performed a comparison with pre-

vious experimental and numerical works of the literature. As shown in Figure 2 (left), our

results obtained a very good agreement for the drag force with numerical and experimen-

tal data from the literature together with the theory of [16]. Therefore, this comparison
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FIG. 2: (left) Dimensionless drag force Fx on a cylinder held perpendicular to the flow

direction for different aspect ratios χ. (right) Dimensionless torque on a fixed non-rotating

cylinder as a function of the inclination angle θ for Re = 0.15 and χ = 20. Dashed lines

(−−): experimental results of Roy et al. [24] for settling cylinder Re ≈ 0.15, solid line (−):

[16] slender-body theory (see also equation B2 and B4) at Re = 0 in (left) and Re = 0.15

in (right), the blue square (�) are the present OpenFOAM R© simulations with Re = 0.025

in (left) and Re = 0.15 in (right), (N) experimental results of [11], (•) Numerical results of

[29], (H) experimental results of Kasper et al. [13].

demonstrates that our simulations accurately describe the dynamics in low inertia regime.

Additionally, Figure 2 (right) displays the torque on a fixed non-rotating cylinder with a

varying inclination. We have compared our results to the experimental results carried out by

Roy et al. [24] for a single-cylinder settling under gravity. They measured the translational

and angular velocity on a sedimenting cylinder with a high aspect ratio at a low Reynolds

number (χ = 20 and Re = 0.156) and based on the quasi-steady assumption, they were able

to compute the inertial torque. In their original article, Roy et al. [24] provided the torque

as a function of the angle between the cylinder axis and the gravity vector noted φ here. In

the present work, the torque is a function of the angle between the incoming velocity (or

the particle velocity) and the cylinder axis. A straightforward change of coordinate is thus

needed. Roy et al. [24] provided the components of the translating velocity at each angle φ.

Using simple geometrical manipulations one can show that cos θ = (Uv cosφ+Uh sinφ)/|U|
where Uv and Uh are the vertical and horizontal velocity in their original paper. As shown

in figure 2, a very good agreement is found between the experimental and numerical results.

This is noteworthy since the inertial torque is a small quantity in this regime due to its

inertial nature, which thus needs an accurate description of the hydrodynamics. Besides,
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the theory of [16] happens to agree with the experimental results and the simulation for

both, the drag force and the torque. This point will be discussed further in the next section.

III. COMPARISON WITH SLENDER-BODY THEORY

In this section, we compare the numerical results to Khayat and Cox [16] slender-body

theory, which includes small but finite inertia effect. Then, we investigate in more detail the

location of the stress on the cylinder.

In their original paper, Khayat and Cox [16] assumed that the Reynolds number based on

the body diameter is small but finite (Re� 1) while the Reynolds number based on the body

length is smaller than ln(χ). They performed an asymptotic expansion in 1/ ln(χ) assuming

that χ � 1. In the following, we compare our numerical results for the drag force, the lift

force and the inertial torque to their asymptotic results, which are summarized in appendix

B 1. We consider the following range of dimensionless parameters: 0.025 ≤ Re ≤ 10,

0◦ ≤ θ ≤ 90◦ and 5 ≤ χ ≤ 30. We do not show the cases with an aspect ratio χ < 5 since

they are obviously out of the range of Khayat and Cox [16] slender-body theory hereinafter

called SBT.

Figure 3 shows the numerically obtained drag force, lift force and torque as well as the

prediction of SBT. One can observe that the loads dependency in θ follow simple trigono-

metric expressions, even in the moderately inertial regime. This point will be discussed

further in section V. Figure 3 also shows that the dimensionless drag force matches well the

predictions made by the SBT up to Re = 1, even for the lowest aspect ratios considered.

For higher Reynolds numbers, the error starts to increase (higher Re greater than 10 can be

found in Fintzi [8]).

The SBT lift force predictions, however, are much less accurate than the drag. Even

at the smallest Reynolds numbers, the predictions are more than 50% higher than the

numerical results for the smallest aspect ratio. Nevertheless, we can still observe that the

error decreases with increasing χ. The simulations results show that the dimensionless lift

force is almost constant as a function of χ, no matter the value of the Reynolds numbers

or the aspect ratio, while the dimensionless force based on SBT behaves as 1/ ln(χ) at the

lowest order. Additionally, we remark a minor asymmetry as a function of θ observed at

Re = 10. The amplitude of the asymmetry seems to grow with the aspect ratio while the
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FIG. 3: Dimensionless drag force Fx, lift force Fy and pitching torque Tz on a cylinder

versus θ for different aspect ratios and Reynolds numbers. Solid lines : [16] slender-body

theory (see appendix B 1), symbols : present OpenFOAM simulations.

local minimum of the dimensionless lift force stays at θ = 50◦. For the pitching torque at

Re = 0.025, the SBT provides a good estimation of the torque only for the highest aspect

ratio. The SBT is also found to be highly inaccurate at Re ≥ 1, and reveals asymmetric

behavior as a function of θ for χ ≥ 10, while the simulations show this phenomenon at a

much higher Reynolds number [8, 15]. As the SBT is not meant to be valid for Re > 1, it is

not surprising that the inertial terms result in wrong prediction, which is also the case for

the dimensionless drag force prediction. We can also notice that at low Reynolds numbers

the dimensionless torque increases with the aspect ratio, while for larger Reynolds numbers
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(Re ≥ 1) the dimensionless torque decreases with the aspect ratio. This phenomenon

is qualitatively well described by the SBT even if it cannot quantitatively reproduce the

numerical results.
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FIG. 4: Mean relative error between the simulations and SBT (see equations B2, B3 and

B4) with respect to ReL. The mean error is based on an average on all inclination angles

and is calculated as E(Fx) = [
∑

θ |Fx−F SBT
x |/Fx]/Nθ where Nθ is the sample of inclination

angles. The range of inclination angles is θ = 0◦ to θ = 90◦ for Fx and θ = 10◦ to θ = 80◦

for Fy and Tz.

In order to address in more details the error made using the SBT as a function of the

dimensionless numbers, we have plotted the relative error for the lift, drag and pitching

torque as a function of the Reynolds number based on half of the body length ReL =

ρLU/(2µ). See figure 4. We have plotted the values averaged on all incident angles θ except

for θ = 0◦ and 90◦, since the cylinder experiences no torque nor lift force in these positions.

The relative error for the drag force increases considerably after ReL = 2 and is rather low

before. Indeed, for ReL < 2 the error is below 10% and is nearly independent of χ. This is

in agreement with the theory which stipulates that ReL can be of order unity. For the lift

force, we can notice that below ReL ≈ 3 the error is almost constant for a given aspect ratio,

and larger than 15% even for the highest aspect ratio. The error behaves non-monotonically

as a function of ReL. It decreases and then increase for growing ReL. The same qualitative

behavior is observed for the torque.

As a conclusion, to be valid within an acceptable 20% error range, the SBT must satisfy

approximately χ ≥ 30 and ReL ≤ 10 for the lift, χ ≥ 30 and ReL ≤ 2 for the torque and

χ ≥ 5 and ReL ≤ 20 for the drag force. The large χ requirement for the lift and torque
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is not surprising since Khayat and Cox [16] provide an expansion in power 1/ lnχ, up to

the second term. Moreover it is important to note that the validity of the SBT is limited

to the condition ReL � lnχ [14]. As a result, a very large aspect ratio is needed to reach

the assumption required by the theory for finite ReL. What is less explainable though, is

the accuracy of the drag force at low aspect ratios and moderate ReL. From the present

numerical results, one can also note that the agreement between the SBT for the torque and

the experimental results of Roy et al. [24] (ReL ≈ 1.62, χ = 20) as well as the numerical

results of Kharrouba et al. [15] for the highest aspect ratio (ReL ≥ 1, χ = 10) is partially

fortuitous. Indeed, their range of dimensionless parameters are located close to the error

local minima in figure 4.

IV. LOCAL CONTRIBUTION TO THE LOADS

Although the agreement of SBT with the numerical results for very large aspect ratios

is satisfying, we have shown that strong deviations are observed for moderate aspect ratios.

This disagreement with the SBT may be explained by investigating the local contribution

to the loads. More specifically, what are the load contributions arising from the cylinder

ends?

To better understand where the contribution of the total hydrodynamic loads comes from,

we investigate in detail the distribution of the stresses over the three different areas of the

cylinder surface: the lateral surface, the downstream end and the upstream end. The lateral

surface of the cylinder is denoted “lat”, the downstream end “down” and the upstream end

“up”. A representation of this decomposition is exposed Figure 5. Such decomposition

was already made in Kharrouba et al. [15] but for much larger Reynolds numbers. In this

section, we consider cylinders with a single inclination θ = 40◦, since we have shown in the

previous section that the loads’ dependency in θ follows simple trigonometric expression,

even in moderately inertial regimes. This point will also be discussed in further detail in

Section V. We can extrapolate results straightforwardly to other inclination angles, except

for the singular configurations 0 and 90 degrees. We consider aspect ratios beyond 2 and up

to 30.

Figure 6 displays the dimensionless loads on each part of the cylinder for two different

Reynolds numbers. All contributions are positive for the drag force (Figure 6 (a) and
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FIG. 5: Scheme of the cylinder’s surface decomposition, relatively to the fluid velocity U.
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FIG. 6: Contributions to the dimensionless drag force, lift force and torque as a function of

χ arising from the lateral and ending surfaces. Two different Re are displayed for a

constant inclination θ = 40◦. H : upstream end, N : downstream end, • : lateral surface, �

: sum of all contributions. The dashed lines are fits based on the scaling formulas

Fup/µUL ∼ 1/χ and Flat/µUL ∼ 1 described in the text.

(d)). In the Stokes flow limit, due to the flow reversibility and the body symmetry [10],

the contributions from the downstream and upstream ends are equal. We can observe a

slight deviation between the downstream and upstream ends for Re = 1 due to the loss of
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symmetry. Also, the effect of the ends is non-negligible for moderate χ: its contribution

to the total drag is close to 25%. It becomes negligible, with respect to the lateral surface

contribution, as χ increases.

The situation for the lift force (Figure 6 (b) and (e)) is different since the ends contri-

butions and the lateral contribution have opposite signs. The contribution from the lateral

surface is negative while the ends are positive. The combination of these two effects leads to

a stronger effect of the ends on the total lift force: not including the ends induces an error

of approximately 100% on the lift force for χ = 2. This behavior is also observed for larger

Reynolds numbers even if its magnitude is slightly lower. Once again, one can observe that

due to the flow reversibility since the contributions of both ends are the same in the Stokes

limit while they become different with non-negligible inertia.

In the limit of zero inertia, the torque on a cylinder is zero due to the reversibility of

Stokes equations. This is qualitatively reproduced in Figure 6 (c) for which the lateral

contribution is almost zero while the contribution of the ends are opposite. The situation

is markedly different for Re = 1 (Figure 6 (e)). The lateral surface contribution has a non-

monotonic behavior as a function of χ. As χ increases, it increases for small χ while it starts

decreasing for moderate χ. The contribution of the downstream end is more significant

than the upstream one, and as a result, the summation of both does not cancel. One can

also observe a non-negligible effect of the ends on the overall contribution with almost 50%

contribution for the smallest χ at Re = 1. We can conclude that ends contributions are

much larger for the lift force and torque than for the drag force for moderate χ.

The contribution of each surface to the lift and drag forces as a function of χ can be

understood by scaling arguments. From the stokes equation, we can assume that the stress

σ, pressure or viscous, scale as σ ∼ µU/D. Integrating this stress over the surface of

interest, one gets the forces acting on each of the surfaces. In particular, Fdown ∼ σD2 ∼
µUD. Hence, Fdown/µUL ∼ 1/χ while following the same argument Fup/µUL ∼ 1/χ and

Flat/µUL ∼ 1. These simple scalings prove to match the numerical data for a large range of

aspect ratios (Figure 6). The scaling for the end contribution matches the numerical data

on the whole range of χ while the scaling behavior of the lateral surface is reached for large

χ. Although the sum of all contributions in the limit χ � 1 and Re � 1 should scale as

1/ ln(χ) (see SBT), these simple scaling arguments provide a fairly good estimate of the

surface force contributions.
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Although the previous results help in understanding the ending surface contribution to

the loads, which is especially important for the lift force and torque, they cannot explain on

their own why the SBT fails for moderate aspect ratio. As explained in appendix B 1, the

SBT relies on the integration over the length of the body of a specific distribution of force

per unit of length which allows to quantitatively take into account the shape of the body

as well as the singular end since this distribution may diverge. To analyze in greater detail

the departure from the SBT, we now focus on the force density distribution along the axis

of the cylinder. In order to compute this quantity numerically, we divide the cylinder into

n slices of length ∆h. The two ending surfaces of the cylinder are considered the first and

last slice. To conserve the area of each slice we choose ∆h = D/4. We define the forces and

torque per unit of length as fi = Fi/∆h and ti = Ti/∆h, where i is the index of the ith slice.

Figure 7 shows the distribution of force and torque per unit of length. The first noticeable

feature on these plots is the upstream-downstream symmetry of the force, or mirror symme-

try for the torque, for low Reynolds number, which completely disappears as inertia comes

into play. One may also notice that SBT predicts singular behavior near this end for all the

forces and torque. On Figure 7 (a), (d), (g) and (j) we can observe that the drag force per

unit of length is remarkably close to the SBT prediction (except for Re = 1 and χ = 5). The

singular end effects are even well predicted by the SBT. The situation is markedly different

with the lift force with a strong deviation of the SBT from the numerical results near the

ends. One can notice that the two ending disks bring a non-negligible positive contribution

while the SBT predicts (except for Re = 0.025, χ = 5) a negative lift force along the body.

This is the main reason for the observed discrepancy between the numerical results and the

SBT. Note that the sign of these contributions agrees with Figure 6. Also, the lateral part

of the lift force on the body is not described accurately for χ = 5 and Re = 0.025, which

also explains the lack of accuracy of the SBT for moderate χ. The torque results from

the asymmetry between the upstream and downstream contribution of the cylinder. This

asymmetry is clearly evidenced in Figure 7 (f) and (l). As for the lift, the ends do not follow

the asymptotic behavior predicted by the SBT, even if the torque along the lateral surface

is better predicted.
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FIG. 7: Dimensionless forces and torque per unit of length for a θ = 40◦. s is the axial

coordinate along the cylinder axis whose origin is the cylinder centroid. Solid lines : SBT

(see appendix B 1), • : loads on the lateral part, • : loads on the ending surfaces of the

cylinder.
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V. SEMI-EMPIRICAL EXPRESSION FOR THE LOADS

In the previous part, we have observed that the SBT is unable to predict accurately the

loads on moderately long cylinders embedded in a uniform flow. In this section, we make

use of the numerical results and SBT as a basis to create fits for the drag force, lift force

and torque. This strategy was already proposed by Kharrouba et al. [15], but their study

was limited to a small range of θ (0◦ ≤ θ ≤ 30◦) and moderate aspect ratio (χ ≤ 10).

Since the derivation of fits that depends on the three dimensionless parameters Re, χ, θ is

complex, we apply the following strategy. From Figure 3, we have observed that the forces

and torque acting on the inclined cylinder follow simple trigonometric laws as a function of

the inclination angles. Indeed, in the Stokes regime due to the linearity of the equations

with respect to the boundary conditions, the force on the body can be linearly related to

the incoming velocity as

Fp(Re = 0, χ, θ) = 3πRp(χ)µUp(θ)L, (3)

Fq(Re = 0, χ, θ) = 3πRq(χ)µUq(θ)L, (4)

with Fp and Fq being, respectively, the hydrodynamic force along the axis of the cylinder

and the force normal to the axis of the cylinder in the (x, y) plane (see Figure 1) and Rp(χ)

and Rq(χ) being, respectively, the principal resistance coefficients in the parallel and normal

direction which are both functions of χ [17]. Since Up = U cos θ and Uq = −U sin θ the force

on an arbitrarily oriented cylinder can be related to the forces acting on the same body for

the two angles θ = 0◦ and θ = 90◦ as

Fp(Re = 0, χ, θ) = Fx(Re = 0, χ, θ = 0◦) cos θ, (5)

Fq(Re = 0, χ, θ) = −Fx(Re = 0, χ, θ = 90◦) sin θ, (6)

where Fx(Re = 0, χ, θ = 0◦) = 3πRp(χ)µUL and Fx(Re = 0, χ, θ = 90◦) = 3πRq(χ)µUL.

We take advantage of this property, which is characteristic of the Stokes regime, and assume

that the deviation of this θ profile for moderately inertial regimes is sufficiently small to be

estimated in a second step as suggested from Figure 3 and the results for small but finite

inertia presented below. Hence, at first we simply need to estimate Fx(Re, χ, θ = 0◦) and

Fx(Re, χ, θ = 90◦).
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Before proceeding further, it is interesting to introduce a generalization of the notation

as well as report the results of the small but finite inertia regime. In particular since,

Fi = Fppi + Fqqi and qiqj = δij − pipj we obtain

Fi = 3πµLRijUj (7)

with Rij = Rppipj + Rq(δij − pipj) being the resistance tensor [17]. Formula 7 has been

extended to finite inertial effect ReL � 1 by Brenner and Cox [3] (see also Khayat and Cox

[16])

Fi = 3πµL

(
RijUj +

3

16
ReL (3Rij − δijRklekel)RjmUm

)
, (8)

where e is the unit vector in the flow direction (here e = ex). Using the previous formula,

one obtains in the present configuration,

Fp(Re = 0, χ, θ) = 3πµUL cos θ

(
Rp +

6

16
ReLR

2
p −

3

16
ReL sin2 θ(RpRq −R2

p)

)
, (9)

Fq(Re = 0, χ, θ) = −3πµUL sin θ

(
Rq +

6

16
ReLR

2
q −

3

16
ReL cos2 θ(RpRq −R2

q)

)
. (10)

The previous expressions may also be rewritten as

Fp(ReL �, χ, θ) = cos θ
[
Fx(ReL � 1, χ, θ = 0◦) + αReL sin2 θ

]
, (11)

Fq(ReL �, χ, θ) = − sin θ
[
Fx(ReL � 1, χ, θ = 90◦) + βReL cos2 θ

]
, (12)

where α = −3/16(RpRq−R2
p) and β = −3/16(RpRq−R2

q). As the previous analysis is limited

to ReL � 1, it justifies our assumption of seeking the deviation from the Stokes-based θ

profile in a second step. Moreover, it provides the analytical form of the deviation.

In the ReL � 1 limit, the inertial torque reads [16]

Tz(θ, χ,ReL)

µUL2
=

5π

24

ReL
(lnχ)2

sin (2θ). (13)

As for the forces, it is convenient to write equation 13 in tensorial form. Since, sin(2θ) =

2εjklekpleipi, one may write

Tj = µL2TijUi, (14)

with Tij = 2RT εjklekpleipi and RT = Tz(θ, χ,ReL)/(µUL2 sin(2θ)).

17



A. Drag force on a cylinder held parallel to the flow direction

To begin with, we use the semi-empirical formula based on the fourth-order slender-body

theory for Stokes flow (Re = 0) derived by Kharrouba et al. [15] which reads

Fx(Re = 0, χ, θ = 0◦)

2πµUL
=
A

(1)
Re=0

ln(2χ)
+

A
(2)
Re=0

ln2(2χ)
+

A
(3)
Re=0

ln3(2χ)
+

A
(4)
Re=0

ln4(2χ)
+

2.34

χ2/3(χ− 1
2
)1.75

, (15)

where A
(1)
Re=0 = 1, A

(2)
Re=0 ≈ 0.807, A

(3)
Re=0 ≈ 0.829, A

(4)
Re=0 ≈ 1.45 and the last term is an

empirical term to extend the validity of the slender-body expansion to moderate χ. Note

that the numerator in this term is slightly different from the one originally proposed by

Kharrouba et al. [15] since it gives better agreement with the numerical results. The exact

expression of the coefficients A
(i)
Re=0 can be found in Kharrouba et al. [15]. Although equation

15 is valid over a wide range of aspect ratio (χ ≥ 2) it is limited to Re = 0. Kharrouba

et al. [15] have proposed semi-empirical modifications of this formula based on the results of

Khayat and Cox [16] and empirical fitting functions. Here, we take advantage of the recent

work of Khair and Chisholm [14] who extended Khayat and Cox [16] work by deriving

the third-order inertial correction into the 1/ ln(χ) expansion for axisymmetric flow. As

proposed by Khair and Chisholm [14] we explicitly separate the inertial contribution from

the Stokes contribution into the expansion. We seek an expansion of the form

Fx(ReL, χ, θ = 0◦)

2πµUL
=
A

(1)
Re=0 + A(1)(ReL)

ln(2χ)
+
A

(2)
Re=0 + A(2)(ReL)

ln2(2χ)
+
A

(3)
Re=0 + A(3)(ReL)

ln3(2χ)

+
A

(4)
Re=0 + A(4)(ReL)

ln4(2χ)
+

2.34

χ2/3(χ− 1
2
)1.75

, (16)

where A(1)(ReL), A(2)(ReL), A(3)(ReL) and A(4)(ReL) are functions taking into account

finite inertia effects. Note that these functions are functions of ReL rather than Re, as in

the SBT. However, in contrast to Khayat and Cox [16] and Khair and Chisholm [14] who

derived expansions in 1/ ln(χ), we have preferred to keep the 1/ ln(2χ) originally proposed

by Batchelor [2] since it offers better results. Switching from a 1/ ln(χ) expansion to a

1/ ln(2χ) expansion is straightforward but requires some algebra when higher order terms

are considered. The procedure is derived in Appendix B 2. The first order inertial correction

is null, A(1)(ReL) = 0, while the second order inertial function reads [15, 16]

A(2)(ReL) =
1

2

(
E1(2ReL) + ln(2ReL)− e−2ReL + γ + 1

2ReL
+ E1(2ReL) + ln(2ReL) + γ − 2

)
,

(17)
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where γ is the Euler constant and E1(x) =
∫∞
x

e−t

t
dt the exponential integral function. In

the limit ReL � 1, A(2)(ReL) = ReL/4−Re2
L/18 +O(Re3

L).

10−2 10−1 100 101

Re

8

10

12

14

F
x
/(
µ
U
L

)

χ = 2

10−2 10−1 100 101

Re

3

4

5

F
x
/(
µ
U
L

)

χ = 10

10−2 10−1 100 101

Re

2.0

2.5

3.0

3.5

4.0

4.5

F
x
/(
µ
U
L

)

χ = 30

FIG. 8: Drag on a finite-length cylinder aligned with the flow direction versus Re.

Dot-dashed lines (− · −): equation 15, solid line (-): equation 16 with A(3) = A(4) = 0,

dotted lines (··) : equation 16 with A(4) = 0, dashed lines (- -): equation 16, � OpenFOAM

simulations, H numerical results of [15].

Furthermore, [14] have derived an expression for the drag force acting on a slender body

immersed in an axisymmetric uniform flow up to the third order. Although [14] derived

a force prediction that allows for variations of slender-body shape, they only explicitly

considered spheroids. In Appendix B 3 we carry out the derivation for a cylinder, which

reads

A(3)(ReL) = A
(3)
A (ReL) + A

(3)
B (ReL) + 2A(2)(ReL) ln (2), (18)

where the expressions for the first and second terms can be found in appendix B 3, while the

third term appears due to our 1/ ln(2χ) expansion convention. In the limit of small ReL,

A(3)(ReL) = (3/4 − ln 2/2)ReL + (0.215 − 5/54 + ln 2/9)Re2
L + O(Re3

L). This expression

provides an analytical expression to this problem up to Re2
L. For larger ReL, empirical fits

are proposed in Appendix B 3. Figure 8 shows that the 3rd order inertial correction provides

a dramatic improvement for moderate ReL with respect to the second order approximation.

Nevertheless, it still lacks of accuracy for χ = 2. Thus, to improve the present fit, we propose

the following form for the fourth order coefficient

A(4)(ReL) = 3 ln (2)
(
A

(3)
A (ReL) + A

(3)
B (ReL)

)
+ 3A(2)(ReL) ln (2)2 − 0.636Re0.762

L , (19)

where the first three terms appear due to our 1/ ln(2χ) expansion and the last term is an

empirical fitting function. On Figure 8 we can observe that the final expression of Equation
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16 fit nicely our numerical results. Besides, notice that our results are in total agreement

with the simulations of [15].

B. Drag force on a cylinder held perpendicular to the flow direction

Regarding the drag force on a cylinder at θ = 90◦, we apply a similar procedure to that

proposed in the previous subsection. Kharrouba et al. [15] have derived an expression for a

fourth-order expansion term based on slender-body theory for Stokes flow (Re = 0). Their

expression can be easily modified to match the numerical results at moderate χ by adding

a correction function. It reads

Fx(ReL, χ, θ = 90◦)

4πµUL
=
B

(1)
Re=0

ln(2χ)
+

B
(2)
Re=0

ln2(2χ)
+

B
(3)
Re=0

ln3(2χ)
+

B
(4)
Re=0

ln4(2χ)
− 0.568

χ2/3(χ− 1
2
)1.75

. (20)

where the coefficients B
(1)
Re=0 can be found in Kharrouba et al. [15] and the last term is an

empirical factor.
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FIG. 9: Drag on a finite-length cylinder perpendicular to the flow direction versus Re.

Dot-dashed lines (− · −): equation 20, solid line (-): equation 21 with B(3) = B(4) = 0,

dashed lines (- -): equation 21, � OpenFOAM simulations, H numerical results of [30].

One can observe in Figure 9 that this equation matches with very good accuracy the

numerical results for all aspect ratios and Re ≤ 0.1. For higher Reynolds numbers, significant

deviation appears. Based on the results of the previous section and the theoretical work of

Khayat and Cox [16], we seek an expansion of the form

Fx(ReL, χ, θ = 90◦)

4πµUL
=
B

(1)
Re=0 +B(1)(ReL)

ln(2χ)
+
B

(2)
Re=0 +B(2)(ReL)

ln2(2χ)

+
B

(3)
Re=0 +B(3)(ReL)

ln3(2χ)
+
B

(4)
Re=0 +B(4)(ReL)

ln4(2χ)
− 0.568

χ2/3(χ− 1
2
)1.75

. (21)
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where B(i)(ReL) are inertial corrections to the Stokes based SBT. As shown by Khayat and

Cox [16], B(1)(ReL) = 0 and

B(2)(ReL) = E1 (ReL) + ln (ReL)− e−ReL − 1

ReL
+ γ − 1. (22)

This second-order approximation offers better results in moderately inertial regimes (Re ≤ 1)

in comparison to the Stokes law, but it still lacks accuracy for the smallest aspect ratios (see

Figure 9). To the best of our knowledge the third-order inertial terms, B3, have not been

derived theoretically. We thus search for empirical terms to model the third and fourth-order

inertial terms. The best match was obtained with the following functions

B(3)(ReL) = 2 ln (2)B(2)(ReL) +B(3)
e (ReL) (23)

B(4)(ReL) = 3 ln (2)2B(2)(ReL) + 3 ln (2)B(3)
e (ReL) +B(4)

e (ReL) (24)

where B
(3)
e (ReL) = 283.3e−19.799/Re0.4211L and B

(4)
e (ReL) = −148e−4.376/Re0.1829L . The addition

of these empirical terms provides a significant improvement, especially for the lowest aspect

ratios. Moreover, it extends the SBT range of validity to higher Reynolds numbers. The

numerical results of [30] have been also displayed in Figure 9. One can observe that their

results slightly overestimate ours. Also, it is difficult in practice to assess where this discrep-

ancy comes from since the authors are using a different numerical solver. Another possible

explanation might be their grid resolution as their simulations used a grid containing 10

times less cells than ours.

C. Forces and torque on an arbitrarily inclined cylinder

In this section, we generalize the above results for any yaw angle θ. We make use of

equations 5, 6 and 11, 12 as a basis to derive accurate correlation for any inclination angle.

The first possible extension of equations 5, 6 is to consider that these laws are valid for

arbitrary Reynolds number such as

Fp(ReL, χ, θ) = Fx(ReL, χ, θ = 0◦) cos θ, (25)

Fq(ReL, χ, θ) = −Fx(ReL, χ, θ = 90◦) sin θ, (26)

The solid lines on Figure 10 represent Equations 25 and 26 compared to the numerical

results. Even though this approximation is not expected to be valid in the inertial regime,
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FIG. 10: Parallel and perpendicular forces as a function of the incident angle θ. Symbols :

numerical results, solid lines (−): equations 25 and 26, dot-dashed lines (− · −): Equations

27 and 28.

it fits reasonably well the behavior of the parallel and perpendicular forces as long as Re ≤
1 and χ ≤ 10. For larger Reynolds numbers or aspect ratios, important deviations are

observed. Based on equations 11 and 12, which are valid in low inertial regime, we propose

the following expressions

Fp(ReL, χ, θ) = cos θ
[
Fx(ReL, χ, θ = 0◦) +Gp(ReL) sin2 θ

]
, (27)

Fq(ReL, χ, θ) = − sin θ
[
Fx(ReL, χ, θ = 90◦) +Gq(ReL) cos2 θ

]
, (28)

where Gp(ReL) = 0.25µULRe0.5447
L and Gq(ReL) = −0.27µULRe0.6851

L are empirical func-

tions, fitted on our numerical results. Equations 27 and 28, represented by the dotted dashed

lines on figure 10, fit our numerical results over all ranges of parameters considered. Since

sin2 θ = qkekqlel and cos2 θ = pkekplel the previous formulas can also be generalized to any

component of the force by using tensorial notations

Fi = µL
(
RRe
ij + SReij

)
Uj (29)

RRe
ij = RRe

p pipj + RRe
q (δij − pipj) is an empiric generalization of the resistance tensor to

moderate Reynolds numbers and SReij = SRep (δkl − pkpl)ekelpipj + SReq pkplekel(δij − pipj) a
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second-order tensor taking into account the non-linear dependency of the force with re-

spect to the incoming velocity. With this definition, the tensor coefficients read RRe
p =

Fx(ReL, χ, θ = 0◦)/(µUL), RRe
q = Fx(ReL, χ, θ = 90◦)/(µUL) and SRep = Gp(ReL)/(µUL),

SReq = Gq(ReL)/(µUL). This tensorial formulation provides a useful framework for the

non-resolved computation of particle sedimentation.

D. Modelling the inertial torque

In section III, we concluded that the theoretical formulas of [16] happen to be inaccurate

to describe the inertial torque, except for very large χ. An accurate correlation for moderate

χ is needed. Figure 11 shows that the sin (2θ) behaviour remains valid for all aspect ratios
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FIG. 11: Inertial torque as a function of θ for different Re. Symbols: numerical results,

Dotted lines (· · ·): semi-empirical formula derived by Kharrouba et al. [15] (Equation 30),

Dash-dotted lines (· − ·): semi-empirical formula 31.

and up to Re = 10. One can also notice the non-monotonic dependency of the torque with χ

(see Figure 11). This behaviour makes the fit of the inertial torque much more complicated

than it is for the drag and lift forces. Based on this observation, Kharrouba et al. [15] built a

semi-empirical expression which tends towards the analytical formula as ReL tends towards

zero while being modified by an empirical function for larger ReL. Their original expression

reads
Tz(θ, χ,Re)

µUL2
=

5π sin (2θ)Re

48(1 + χRe1.1)0.5

[
χ

ln2(χ)
+

(13.5− 30Re0.5)e−0.7Re

χ ln3(χ)

]
. (30)

Their formula matches the numerical results for 0.1 ≤ Re ≤ 10 and 5 ≤ χ ≤ 15, which is

approximately the range of parameters investigated in their original study. However, it is
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unable to predict the torque with good accuracy for Re = 0.025 and for χ � 1 no matter

what the value of the Reynolds number is. In the following, we make use of the expression

of Kharrouba et al. [15] by modifying two important features. First, we notice that the

non-monotonic behaviour of the torque can be avoided by expressing it as a function of ReL

rather than Re. Figure 12 displays the dimensionless torque as a function of ReL for θ = 40◦.

For a given ReL the torque decreases monotonically as a function of χ. This confirms that

the particle length is the relevant scale as in SBT where the leading order contribution to

the torque comes from a volume around the fibre scaling as L3 [26]. Second, in the same

spirit as the drag and lift force formulas, we convert the 1/ ln(χ) expansion into a 1/ ln(3χ)

expansion (see Appendix B 2). After adding higher order empirical terms, the expression

for the pitching torque which yields the best agreement with the numerical results is

Tz(θ, χ,ReL)

µUL2
=

5π sin (2θ)ReL
24(1 +Re1.991

L )0.331

[
1

ln2(3χ)
+

2.244− 1.813Re0.543
L

ln3(3χ)

−3.603 + 8.854Re0.538
L

ln4(3χ)
− 14.301(ReL/χ)0.448

ln5(3χ)

]
. (31)

A very good match is observed between equation 31 and the numerical results (Figure

11). Finally, it is noteworthy to make some remarks regarding Figure 12. First, one can
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FIG. 12: Inertial torque as a function of ReL for θ = 40o. Coloured symbols: numerical

results, Dash-dotted lines (· − ·): semi-empirical formula 31. Crosses (+) : numerical

results of Pierson et al. [21] for χ = 3 and θ = 45o.

observe that the torque ReL scaling is valid up to ReL ∼ 1 no matter the value of the
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aspect ratio. For larger Reynolds numbers, the torque still approximately scales as ReL, for

the smallest aspect ratio while for larger ones a much slower increase is observed (close to

Re
1/3
L ). One can also note that for a given ReL the torque decrease as a function of χ is

much stronger than the 1/ ln2(χ) prediction of the SBT.

VI. DISCUSSION

In this work, direct numerical simulations have been launched to evaluate the hydrody-

namical drag force, lift and torque applied to a cylinder immersed in a uniform flow. The

numerical results show good agreement with experimental data from several sources giving

strong confidence in the numerical methodology. The comparison between the simulations

and the extended slender-body theory of Khayat and Cox [16] has shown the limitations of

this theory.

The drag force prediction is highly accurate, as we recorded a relative error of less than

5% in the range of χ ≥ 5 and ReL < 1. However, this error reaches 40% when considering

higher ReL and lower χ. The lift force and torque predictions are considerably less accurate,

except for very large aspect ratios. Indeed, for the highest χ considered, the SBT was found

to underestimate the lift force and torque to approximately 20%, even in the low inertia

regime. Consequently, after providing clear explanations for this inaccuracy, we have built

semi-empirical formulas to describe with an improved accuracy the force and torque on the

body. One question remain to be addressed for the previous expressions to be usable in

sedimentation problems: are the formulas presented here sufficiently accurate to describe

the motion of a settling cylinder?

In order to answer this question, we consider a finite-length cylinder settling under gravity

with velocity U and angular velocity Ω (Figure 13). We assume that the unsteady particle

motion as the cylinder rotates and translates is small. As a result, the motion can be

considered quasi-steady, and we neglect the particle inertia, history and added mass loads.

Since the time required for the cylinder to change its orientation scales as 1/Ω the previous

assumption requires that ΩL/U � 1 [6, 19]. This requirement may be justified theoretically

in the limit ReL � 1 Cox [6]. In practice, experimental results and numerical simulations

show that this assumption remains valid up to ReL ≈ 1 [4, 24, 25]. Still under the limit

ΩL/U � 1, one may safely neglect the coupling between translation and rotation, and
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FIG. 13: Finite-length cylinder submitted to the gravity acceleration g.

especially the Magnus lift force acting on a translating and rotating body[6, 22]. Under this

assumption, the body motion is planar. Without loss of generality, we note this plane (x,y),

as shown on Figure 13. Using equation 29, the equation of motion reads

0 = µL
(
RRe
ij + SReij

)
Uj + (ρp − ρ)V gi, (32)

0 = TΩ + Ti, (33)

where ρp and V are respectively the cylinder density and volume, Ti is the inertial torque

whose expression can be found in section V D and TΩ is the hydrodynamic torque resisting

rotation. In contrast to Roy et al. [24] and Cabrera et al. [4] who used the leading order

term in the slender-body expansion for this torque, we used the expression derived by [22]

which goes up to the fourth-order of the slender-body expansion and had been validated

using direct numerical simulations.

To validate the model, we have compared it to the experimental results of Cabrera et al.

[4] for settling cylinders with ReL ≤ 0.4. Figure 14 displays the results of the model. A

very good match with the experimental results is observed for the vertical and horizontal

velocities. This is in contrast with the original prediction of the slender-body theory which

overestimates the vertical velocity. The agreement for the angular velocity is also very good

for the largest aspect ratio, but deviation can be noticed for the smallest one at χ = 8. It

is however difficult to assess if this discrepancy is due to the present model or to the large

scattering of the experimental data. Finally, the present results corroborate the use of the
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FIG. 14: (a), (d) Vertical velocity Ux as a function of the angle α. (b), (e) Ratio between

horizontal Uy and vertical velocity as a function of θ. (c), (f) Angular velocity divided by

the square of the velocity. (•) : experimental results from Cabrera et al. [4], Solid line (-) :

present model (Equations 32 and 33), Dashed line (–) : Cabrera et al. [4] model based on

the SBT. The angle θ and α are defined in Figure 13.

quasi-steady assumption in Cabrera et al. [4] configuration (ReL ≤ 0.4). More work is needed

in this regime to properly assess when the quasi-steady assumption fails (as a function of

χ and ReL). In particular, the influence of the coupling between rotation and translation

on the steady loads may be of particular interest. In a recent paper, Teng et al. [28] have

performed accurate simulation of the coupling of translation and rotation in the motion of

cylindrical rods near solid boundaries. To the best of our knowledge, the equivalent problem

without the influence of a solid boundary has not been studied so far and is a matter of

future research.
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Appendix A: Validation of the numerical methodology

As mentioned within the text body, the computation of the hydrodynamic stress applied

on the sharp surface of a cylinder requires special care. In this appendix, we investigate the

loads’ dependence on the mesh definition with meticulous attention. For this purpose, we

present several studies where we investigate the mesh refinement, the domain size depen-

dence, the overall mesh topology and the numerical scheme used to discretize the gradient

operator. It should be noted that our emphasis is on the discretization of the gradient term

as it is the most predominant in the viscous regime.

1. Investigation on the mesh quality.

In our modelling strategy, we incline the cylinder relatively to the coordinate axes and

background grid created by the blockMesh utility, while the inlet flow stays horizontal (see

Figure 1). For vertical and horizontal cylinders the mesh generated by snappyHexMesh is of

good quality. In those cases, the cylinder surface is indeed parallel to the background grid,

thus resulting in fewer skewed and non-orthogonal cells around the surface of the cylinder.

Nonetheless, for a cylinder oriented with other angles of deviation, the cells near its surface

are inevitably non-orthogonal, skewed and non-hexahedral. For this reason, we present here

a comparison between the mesh used in this work and two others types of meshes that result

to cells of better quality.

Figure 15 displays a scheme of two different mesh configurations which are equivalent to

the original one used in the main body of the paper. The first configuration, inspired from

the study of Gao et al. [9], and exhibited in Figure 15 (left), uses a fully hexahedral grid

with a butterfly topology near the cylinder up to a spherical far-field topology. It has few

skewed and non-orthogonal cells. We built this mesh with the software Pointwise R©. Half of

the sphere domain is an inlet boundary condition, the other half corresponds to the outlet

of the domain.

The second model, presented in Figure 15 (right), is nearly the same as the original of

Figure 1, except that we kept the cylinder parallel to the background grid lines, as it was

shown to yield a better quality of cells. The left and top boundaries are considered as

inlets, while the bottom and right boundaries are outlets. In the direction perpendicular
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FIG. 15: Schemes of two cases modelling an equivalent situation to Figure 1. (Left)

Spherical grid labelled mesh 2. (Right) Cartesian grid with an inclined flow direction,

labelled mesh 3. Ωin and Ωout represent, respectively, the inlet and outlet boundary

conditions.

to the plane of Figure 15, the front and back boundary conditions are zero-gradient. This

enables us to incline the inlet flow direction instead of inclining the cylinder, and therefore

preserve a good mesh quality. The outlet boundary condition corresponds to the following

mathematical constrains, ∂u
∂n

= 0 for the velocity field and p = 0 for the pressure field, where

n represents the outward normal to the boundary. The front and back boundary conditions

are treated similarly to section II, i.e. with zero-gradient conditions for all variables.

In the following, we will refer to the original model as mesh 1, the Pointwise R© mesh

(Figure 15(left)) as mesh 2, and the last mesh (Figure 15(right)) will be referred as mesh 3.

On Table I, we display the main characteristics of the meshes namely, the maximum non-

orthogonality factor, the maximum skewness factor, and the number of non-hexahedral cells

in the mesh. Those characteristics are computed with the checkMesh utility of OpenFOAM

and are of main importance in order to maintain consistency in the discretization of the

Navier-Stokes equations [27]. mesh 2 contains only hexahedral cells. Besides, it has an

acceptable non-orthogonality and skewness coefficient and possesses a very high level of

refinement with 113 cells per diameter. The mesh 3 has the lowest maximum skewness

and non-orthogonality factor but contains non-hexahedral cells (near the surface of the

cylinder). mesh 1 contains slightly more skewed, non-orthogonal and non-hexahedral cells.

Consequently, our initial mesh mesh 1 must perform as well as the other two models in

order to be correctly validated.
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TABLE I: Characteristics of each mesh. The non-orthogonality and skewness factors are

computed with the checkMesh utility of OpenFOAM R©.

mesh 1 mesh 2 mesh 3

Maximum non-orthogonality factor 55.731 46.125 32.125

Maximum skewness factor 2.296 1.00 0.526

Number of non-hexahedral cells 49096 0 47256

Number of cells per diameter 30 113 30
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FIG. 16: (left) Dimensionless drag force Fx. (right) Dimensionless lift force Fy. The aspect

ratio and angle of incidence considered are, χ = 5 and θ = 30◦. (�) Simulations performed

on the original model, mesh 1, presented Figure 1 with a Gauss Linear gradient scheme.

(+) Simulation performed on mesh 1 but with Least Square gradient scheme. (N)

Pointwise R© butterfly topology mesh (see mesh 2 in Figure 15(left)). (•) Orthogonal grid

with leaned flow input direction (see mesh 3 in Figure 15(right)).

We were able to perform a set of simulations at χ = 5 and θ = 30 for each mesh configu-

ration, and for several Reynolds numbers. Additionally, we tried two gradient schemes, the

Gauss linear (or Green-Gauss Cell-Based gradient scheme) and the Least Square gradient

scheme. Figure 16 demonstrates without ambiguity that all meshes produce identical results

when using a Gauss Linear scheme. Indeed, Figure 16 shows a perfect agreement among

all meshes for the drag and lift force, except for the mesh 1 when using the Least Square

gradient scheme represented by the ’+’ symbol in the graphs. This is not surprising as solely

the original model contains a non-negligible amount of non-orthogonal and skewed cells at

the surface of the cylinder. As a consequence, the discretization using the Least Square
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scheme, leads ultimately to numerical errors. Which is nicely corrected with the use of the

Gauss linear scheme. For further explanations on the Least square and Gauss linear scheme

performance, we encourage the reader to look at the study of Syrakos et al. [27]. Note that

other gradient schemes have been put to the test, such as the weighted least square and the

point cells least square, but the most efficient was found to be the Gauss Linear gradient

scheme. We must conclude that the meshes generated by snappyHexMesh perform as well as

the Pointwise R© mesh, despite the objectively less good quality of the cells generated all over

the surface of the cylinder. Also, the perfect agreement on the drag and lift force between

mesh 1 and mesh 2, which possesses a definition of respectively 30 and 113 cells per diameter

length, proves that our mesh is refined enough to capture the hydrodynamic stress on its

surface (additional independence studies on the mesh refinement can be found in Fintzi [8]).

One last detail needs to be commented on the lift forces results, for Re < 0.1: we

can notice that mesh 3 overestimates the lift force compared to the two other meshes. We

observed these slight variations in the results only at low Reynolds numbers. We determined

that the differences are due to the use of different boundary conditions, specifically the

two inlet Dirichlet boundaries in this case, instead of the Neumann boundary condition

prescribed on the side of mesh 1.

2. Influence of the domain size and boundary conditions

Having considered the key points from the last subsection, we now examine the influence

of the domain size and boundary conditions on the accuracy of the results by a comparison

with experimental data. We consider a perpendicularly oriented cylindrical particle translat-

ing at constant velocity. To determine the optimal size of the domain, we make a parametric

study by changing the domain size L. In each of those cases, we will evaluate the normalized

drag force along the ex axis and compare that force to the reference Kasper et al. [13]. The

choice of boundary condition at far-field is subjective, since the initial problem is supposed

to have no boundary at all. We investigated different setups of boundary conditions. All the

cases studied here share the same boundary condition on the inlet and outlet of the domain,

i.e. a Dirichlet boundary condition for the velocity and a null pressure gradient at inlet, in

combination with a null pressure field and a null velocity gradient at outlet. Our first try,

called Dirichlet in the following, is to impose u = Uex and p = 0 on the side boundaries.
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We can also impose a null gradient for both variables on all the sides of the domain, i.e.

∂u/∂n = 0 and ∂p/∂n = 0. We call this condition Neumann. Likewise, we can impose

symmetry boundary conditions, that we will call Symmetry, such that ∂p/∂n = 0, un = 0

and ∂ut/∂n = 0 on the sides, where ut is the tangential component of the velocity and un

the normal component. We have also carried out a parametric analysis of the size of the

domain relative to the cylinder diameter.
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FIG. 17: Relative error between the numerical results and experimental results of Kasper

et al. [13] for the drag force applied on a cylinder translating perpendicular to the flow at

Re = 0.01. The error is shown versus the domain size L/D for the different boundary

conditions on the domain sides. N: Dirichlet, �: Symmetry, •: Neumann.

On figure 17, we can observe that regardless the boundary condition type, i.e. Neumann

and Dirichlet and Symmetry, all cases tend towards the reference value as L/D tends to

infinity. This proves that our numerical strategy is able to converge to the experimental

results at the expense of large computational domains. Furthermore, we can see that the

Neumann set of boundary conditions has the smallest relative error with respect to the other

boundary conditions. Hence, we have chosen in this study to select the Neumann boundary

conditions on all our side boundaries. Also, a domain size L ≈ (100 + 5χ)D is sufficient to

avoid significant effects of the boundaries on the numerical results up to χ = 20.

Appendix B: Slender-body theory

1. Loads on a slender cylinder oriented arbitrarily in a uniform flow

In their original article, [16] performed a matched asymptotic expansion in 1/ ln(χ) as-

suming χ� 1. For bodies with a straight centreline, they were able to obtain the force per
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unit of length. In the case of a straight cylinder of circular cross-section the force per unit

of length reads

f(s)

2πµU
= −

(
1

lnχ

)
(cos θ p−2ex)+

(
1

lnχ

)2{1

4

[
2 cos θ ex −

(
2− cos θ + cos2 θ

)
p
] [1− e−X

X
− 1

]
−1

4

[
2 cos θ ex −

(
2 + cos θ + cos2 θ

)
p
] [1− eY

Y
− 1

]
− 1

2
(cos θ p− 2ex) [E1 (X) + ln(1− cos θ)]

−1

2
(cos θ p− 2ex) [E1 (Y ) + ln(1 + cos θ)]− (cos θ p− 2ex)(γ + ln(

1

4
ReL)) +

3

2
cos θ p− ex

}
+O

(
1

lnχ

)3

(B1)

where, X = 1
2
ReL(1 − cos θ)(1 + s), Y = 1

2
ReL(1 + cos θ)(1 − s), γ is the Euler’s constant

and E1(x) is the exponential integral function. Using the expression above, the force and

torque acting on the body can be readily obtained as F = L/2
∫ 1

−1
f(s)ds and T = L2/4p×∫ 1

−1
sf(s)ds. By performing the integration, Khayat and Cox [16] derived three main formulas

describing the loads on a cylinder inclined by an angle of θ with respect to the flow direction.

Those formulas are written below in terms of our parameters and the Reynolds number based

on the length of the cylinder, ReL = χRe/2. The drag force Fx, the lift force Fy and the

torque Tz read

Fx(Re, θ)

µUL
=

−2π(2− cos2 θ)

− lnχ+D(ReL = 0, θ)

(
1 +

D(ReL, θ)−D(ReL = 0, θ)

lnχ

)
+O

(
1

lnχ

)3

,

(B2)

Fy(Re, θ)

µUL
=

π sin 2θ

− lnχ+ L(ReL = 0, θ)

(
1 +

L(ReL, θ)− L(ReL = 0, θ)

lnχ

)
+O

(
1

lnχ

)3

, (B3)

Tz(Re, θ)

µUL2
= −1

2
π

(
1

lnχ

)2

G(ReL, θ) +O
(

1

lnχ

)3

. (B4)

Note that we have preferred the expressions (6.14) and (6.15) to (6.8) and (6.10) in

Khayat and Cox [16], since the latter diverges as ReL tends to infinity. Expressions for

D(ReL, θ), L(ReL, θ) and G(ReL, θ) are detailed below.

D(ReL, θ) =

(
cos2 θ

2ReL
(C(X) + C(Y )) + 3 cos2 θ − 2

)
1

2(2− cos2 θ)
+B(X) +B(Y )

+
1

2
ln
(
1− cos2 θ

)
+ γ + ln

(
ReL

4

)
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L(ReL, θ) =

[(
(2− cos θ + cos2 θ) sin θ

2X

)
C(X)−

(
(2 + cos θ + cos2 θ) sin θ

2Y

)
C(Y )

]
1

sin(2θ)

− 3

2
+B(X) +B(Y ) +

1

2
ln
(
1− cos2 θ

)
+ γ + ln

(
ReL

4

)

G(ReL, θ) = [cos θ (P (X)−Q(X) + P (Y )−Q(Y )) +P (Y )− P (X)] sin θ

with C(x) = E1(x) + ln(x) + γ − x, Z(x) = e−x−1
x

, B(x) = 1
2

(E1(x)− Z(x)), Q(x) =

E1(x)+ln(x)+γ
x

, P (x) = 2
x

(
1 + e−x−1

x

)
, X = ReL (1− cos θ) and Y = ReL (1 + cos θ).

2. Switching from a 1/ ln(χ) expansion to a 1/ ln(2χ) expansion

Let us define f(χ) an arbitrary expansion of order l in 1/ ln(χ)

f(χ) =
l∑

n=1

an
lnn(χ)

+O
(

1

ln(χ)

)l+1

, (B5)

where an are the series coefficients. We aim at finding the corresponding coefficients, bn,

such that

f(χ) =
l∑

n=1

an
lnn(χ)

+O
(

1

ln(χ)

)l+1

=
l∑

n=1

bn
lnn(2χ)

+O
(

1

ln(2χ)

)l+1

. (B6)

We start by considering only one term 1/ lnn(χ) which can be expressed as

1

lnn(χ)
=

1

lnn(2χ)

[
1 +

(
1− ln (2)

ln (2χ)

)n
− 1

]−1

(B7)

=
1

lnn(2χ)

∞∑
i=0

[
1−

(
1− ln (2)

ln (2χ)

)n]i
(B8)

=
1

lnn(2χ)

∞∑
i=0

i∑
j=0

(
i

j

)
(−1)j

(
1− ln (2)

ln (2χ)

)nj
(B9)

=
1

lnn(2χ)

∞∑
i=0

i∑
j=0

nj∑
k=0

(
i

j

)(
nj

k

)
(−1)j+k

lnk (2)

ln k(2χ)
(B10)

where we have used the infinite series 1/(1 −X) =
∑∞

i=0X
n and the binomial theorem. If

we substitute equation B10 into equation B5 we obtain

f(χ) =
l∑

n=1

an
lnn(χ)

=
l∑

n=1

l−n∑
i=0

i∑
j=0

nj∑
k=0

an

(
i

j

)(
nj

k

)
(−1)j+k

lnk (2)

lnk+n (2χ)
+O

(
1

ln(χ)

)l+1

.

(B11)
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In particular

a1

ln (χ)
+

a2

ln2 (χ)
+

a3

ln3 (χ)
+

a4

ln4 (χ)

=
b1

ln (2χ)
+

b2

ln2 (2χ)
+

b3

ln3 (2χ)
+

b4

ln4 (2χ)
+O

(
1

ln (2χ)

)5

(B12)

with b1 = a1, b2 = ln (2)a1+a2, b3 = ln2 (2)a1+2 ln (2)a2+a3 and b4 = ln3 (2)a1+3 ln2 (2)a2+

3 ln (2)a3 + a4 Similar calculations lead to the formula to swith from a 1/ ln(2χ) expansion

to a 1/ ln(χ) expansion

f(χ) =
l∑

n=1

bn
lnn(2χ)

=
l∑

n=1

l−n∑
i=0

i∑
j=0

nj∑
k=0

bn

(
i

j

)(
nj

k

)
(−1)j

lnk (2)

lnk+n (χ)
+O

(
1

ln(χ)

)l+1

. (B13)

3. Higher-order slender body prediction for the drag force on a cylinder aligned

with the flow direction

In their study, Khair and Chisholm [14] derived the third-order inertial contribution to

the drag force on an axisymmetric body aligned with the flow direction. Although their

formulas are very general, they did not derive in closed form the analytical expression for a

cylindrical body. This is the purpose of the present appendix. Khair and Chisholm [14] have

decomposed the third-order inertial A(3)(ReL) term into two parts A
(3)
A (ReL) and A

(3)
B (ReL).

After some algebra, the first contribution reads for a cylindrical body

A
(3)
A (ReL) =

∫ 1

−1

f
(3)
A (z,ReL)dz, (B14)

with

f
(3)
A (z,ReL)

= π

(
E1(ReL(1− z)) +

−zReL + eReL(z−1) +ReL − 1

ReL(z − 1)
+ ln(ReL(1− z)) + γ

)
×
(
E1(ReL −ReLz) +

eReL(z−1)

ReL(z − 1)
+

1

ReL(1− z)
+ ln(ReL(1− z))

−4 ln
(

2
√

1− z2
)

+ γ + 1
)
.

Note that the normalization of the force differs by a factor of 2 between Khair and Chisholm

[14] and our present convention. As Khair and Chisholm [14] for spheroidal particle, we
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were unable to obtain the integral B14 in closed form. However, we can gain further insight

into the integral by expanding f3A in the limit ReL � 1

f
(3)
A (ReL, z) = πReL(z − 1)

(
2 ln

(
2
√

1− z2
)
− 1
)

+ πRe2
L

(
1

4
(1− z)2 − 1

12
(z − 1)2

(
2− 4 ln

(
2
√

1− z2
)))

+O(Re3
L).

After integration, we obtain the following expression for A
(3)
A

A
(3)
A (ReL) =

(
3

4
− ln 2

)
ReL +

(
2

9
ln 2− 5

54

)
Re2

L +O(Re3
L). (B15)

As expected, A
(3)
A is an inertial correction since it is zero for ReL = 0. Also, as observed by

Khair and Chisholm [14] for spheroids, the leading order term in the expansion grows as Re.

In contrast to what Khair and Chisholm [14] reported for spheroid, A
(3)
A (ReL) is positive for

cylindrical particle while it is negative up to ReL ≈ 5 for spheroid.
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FIG. 18: Plot of A
(3)
A versus ReL. Solid line − : numerical integration of equation B14,

dashed lines −− : equation B16, dotted line ·· : A
(3)
A (ReL) =

(
3
4
− ln 2

)
ReL, dashed-dotted

line − · − : equation B15.

We have also carried out the integration of equation B14 numerically which is represented

in Figure 18. Equation B15 is valid up to ReL ≈ 0.5, while its first order linear approxima-

tion ceases to be valid at Re ≈ 0.25. As can be observed, the integral can be reasonably

approximated by the following linear function over the whole range of ReL investigated

(except for ReL ≤ 0.5 where both Taylor expansions are more accurate).

A
(3)
A = 0.11ReL (B16)

Thus, we choose to keep the simple but efficient linear fit to represent A
(3)
A .
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As stated in Khair and Chisholm [14], A
(3)
B is independent of the body shape. Khair

and Chisholm [14] expressed A
(3)
B in the Fourier space and they also performed a numerical

quadrature to express it in the real space. Their result is displayed in Figure 19. It is

possible to fit the numerical results given in Khair and Chisholm [14], which gives us the

following expression for the total inertial term

A
(3)
B (ReL) = − 0.215 log (Re1.26

L + 1)

Re1.26
L Re−2

L + 2.341Re−0.184
L

, (B17)

which tends towards −0.215Re−2
L as ReL tends towards zero.
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FIG. 19: Plot of A
(3)
B versus ReL. ◦ : numerical quadrature [14], dashed lines −− :

equation B17, dotted line (··) : 0.215Re2
L.
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