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Theoretical Aspects of ASAXS 20 

Considering a homogeneous matrix including randomly oriented particles with identical shape 21 

and with size parameterized by R, the SAXS scattered intensity is defined by: 22 

𝐼(𝑞) =
𝑁𝑝

𝑉𝑠
 ∆𝜌2 ∫ 𝑃(𝑅)𝑉(𝑅)2|𝐹(𝑞, 𝑅)|2𝛹(𝑞, 𝑅)d𝑅

∞

0

 (1) 

where 𝑁𝑝 the number of particles, 𝑉𝑠 the sample volume, 𝑃(𝑅) the size distribution function,23 

𝐹(𝑞, 𝑅) the form factor, 𝛹(𝑞, 𝑅) the structure factor which equals to 1 when the particles are 24 

well spaced, i.e. when distances between particles are larger than particle sizes, and ∆𝜌2 the 25 

contrast factor such as: 26 

∆𝜌2 = (𝜌𝑝 − 𝜌𝑚)
2

(2) 

𝜌𝑝 and 𝜌𝑚 the scattering length densities of the particles and the matrix: 27 

𝜌 = 𝑟𝑒 ∑ 𝑛𝑗

𝑗

𝑓𝑗 
(3) 

𝑛𝑗 the number density of the atom 𝑗 in the matrix or in the particles, 𝑓𝑗 the atomic form factors 28 

and 𝑟𝑒 the classical Thomson radius (𝑟𝑒 = 0.282 10-12 cm).29 

As the system studied here is composed of metal particles supported on a porous support 30 

such as alumina, the latter, and particularly its pores, will contribute significantly to the SAXS 31 

signal, making it impossible to distinguish the nanoparticles. Therefore, it is mandatory to 32 

record the SAXS signal at different incident beam energies close to the metal absorption edge. 33 

In that way, it is possible to isolate the specific signals of each phase. Since the Mo 34 

arrangement looks to be described here, measurements will be carried out close to the Mo K-35 

edge absorption. 36 



It is recalled that the atomic form factor of a species 𝑗 can be written: 37 

𝑓𝑗(𝐸) = 𝑓0 + 𝑓𝑗
′(𝐸) + 𝑖𝑓𝑗

′′(𝐸) (4) 

with 𝑓0 = 𝑍, the atomic number. 38 

Atomic diffusion factor 𝑓𝑗
′(𝐸) and 𝑓𝑗

′′(𝐸) close to the Mo K-edge absorption (at 20000 eV) are 39 

reported in Table 1. 40 

Table 1. Atomic diffusion factor 𝒇𝒋
′(𝑬) and 𝒇𝒋

′′(𝑬) [1,2] close to the Mo K-edge absorption 41 

 Energy (eV) 𝑓𝑗
′(𝐸) 𝑓𝑗

′′(𝐸) 

𝐸5 19990 -6,941 0,638 

𝐸4 19975 -5,980 0,554 

𝐸3 19940 -5,096 0,542 

𝐸2 19860 -4,264 0,544 

𝐸1 19700 -3,538 0,551 

The subtraction method developed by Haubold et al. [3,4,5,6,7] has been adapted here to extract 42 

the ASAXS signal from metal particles. It consists in subtracting the intensities measured at 43 

two different energies and using the resulting intensity as a function of the particle scattering. 44 

Subtraction method 45 

As the system here is composed of particles 𝑝 supported on a porous support 𝑠 and with pores 46 

filled by air, the scattered intensity can be defined thanks to the partial structure factors 𝑆𝑝𝑝, 47 

𝑆𝑠𝑠 and 𝑆𝑠𝑝 described by Binninger et al. [8] as follows: 48 

〈𝐼(𝑞, 𝐸)〉 = |𝑓𝑠|2𝑛𝑠
2𝑟𝑒

2𝑆𝑠𝑠(𝑞) + 2ℜ(𝑓𝑝(𝐸)𝑓𝑠
∗)𝑛𝑝𝑛𝑠 𝑟𝑒

2𝑆𝑠𝑝(𝑞) + |𝑓𝑝(𝐸)|
2

𝑛𝑝
2𝑟𝑒

2𝑆𝑝𝑝(𝑞) (5) 

with ℜ the real part and ∗ the complex conjugate.  49 

The electronic density of the porous support and the particles ∑ 𝑛𝑗𝑗 𝑓𝑗 is simplified by the terms 50 

𝑛s𝑓s and 𝑛𝑝𝑓𝑝 respectively to lighten the writing and be coherent with literature notation on this 51 

subject . 52 

The main advantage of acquiring the scattered intensity at different energies is that the 53 

scattering length density of the metal particle is varied without varying the one of the porous 54 

support. Thus, the contribution of the mesoporous support 𝑆𝑠𝑠(𝑞) is suppressed. However, the 55 

contribution from the metal-support interference 𝑆𝑠𝑝(𝑞) remains to be considered. Moreover, 56 

neglecting the imaginary parts of 𝑓𝑠 and 𝑓𝑝, the difference between the intensities measured at 57 

two different energies 𝐸𝑖 and 𝐸𝑗  permits to express the equation (5) as: 58 

〈𝐼(𝑞, 𝐸𝑖)〉 − 〈𝐼(𝑞, 𝐸𝑗)〉 = 𝑛𝑝
2𝑟𝑒

2 (|𝑓𝑝(𝐸𝑖)|
2

− |𝑓𝑝(𝐸𝑗)|
2

) . (𝑆𝑝𝑝(𝑞) + 𝛼𝑆𝑠𝑝(𝑞)) (6) 

where 𝛼 =
𝑛𝑠 𝑓𝑠

𝑛𝑝 𝑓𝑝
̅̅ ̅ and 𝑓�̅� =

𝑓𝑝(𝐸𝑖)+𝑓𝑝(𝐸𝑗)

2
 is the mean value of 𝑓𝑝(𝐸). 59 



Considering independent spherical metallic particles of radius 𝑅𝑝 deposited on a spherical 60 

support particle of radius 𝑅𝑠, it is possible to write 𝑆𝑝𝑝(𝑞), and 𝑆𝑠𝑝(𝑞) as follows:61 

𝑆𝑝𝑝(𝑞) =
𝑁𝑝

𝑉𝑠
∫ 𝑃𝑝(𝑅𝑝)𝑉𝑝

2(𝑅𝑝)
+∞

0

𝐹𝑝
2(𝑞, 𝑅𝑝)𝑑𝑅𝑝 (7) 

𝑆𝑠𝑝(𝑞)

=
𝑁𝑝

𝑉𝑠
∬ 𝑃𝑝(𝑅𝑝)𝑃𝑠(𝑅𝑠)𝑉𝑝(𝑅𝑝)𝑉𝑠(𝑅𝑠)𝐹𝑝(𝑞, 𝑅𝑝)𝐹𝑠(𝑞, 𝑅𝑠)

𝑠𝑖𝑛 (𝑞(𝑅𝑝 + 𝑅𝑠))

𝑞(𝑅𝑝 + 𝑅𝑠)

∞

0

 d𝑅𝑝d𝑅𝑠 
(8) 

In the present case, 𝛼 ~ 0.83 so the interference term 𝑆𝑠𝑝 is maybe not negligible. Both terms 62 

will be considered the data modeling. 63 

An example of ASAXS 𝐼(𝐸3) −  𝐼(𝐸5)  curves obtained by the subtraction method for the64 

26_A_D catalyst is represented in Figure 1. 65 

66 

Figure 1. ASAXS curves (𝑰(𝑬𝟑) −  𝑰(𝑬𝟓)) obtained by the subtraction method for the67 

26_A_D catalyst 68 

ASAXS data modeling 69 

To evaluate the size distribution of the sulfided slabs, a nonlinear least-squares adjustment 70 

of the ASAXS signal is performed on equation (6). The assumptions made for the choice of 71 

the regression model are listed below. 72 

ASAXS 𝐼(𝐸3) −  𝐼(𝐸5) curves show two inflections of the scattered signal as seen in Figure 1.73 

Consequently, two types of molybdenum objects must be considered. These two populations 74 

are attributed to isolated slab at a smaller scale and moderately dense slab aggregates at a 75 

larger scale, thanks to electron microscopy observations. Thus, we consider that scattering 76 

objects can be porous. The porosity is named ε. In the case of crystalline slabs, ε = 0 and in 77 

the case of slab aggregates, ε > 0. 78 

The number of molybdenum atoms in the scattering object is expressed as[9]: 79 



𝑁𝑀𝑜𝑥 =  
𝑁𝐴 × 𝜌𝑀𝑜𝑥

𝑀𝑀𝑜𝑥
× 𝑉 × (1 − 𝜀) (9) 

where 𝑀𝑀𝑜𝑥 = MoS2 in the case of sulfided molybdenum and 𝑀𝑀𝑜𝑥 = MoOy in the case of oxide 80 

molybdenum, 𝑉 the volume of the scattering object, 𝑁𝐴 the Avogadro’s number (6.022×1023 81 

mol-1), 𝑀𝑀𝑜𝑥 the molar mass in g/mol and 𝜌𝑀𝑜𝑥 the density (g/cm3) of the molybdenum phase. 82 

Hence, the scattering factor of a molybdenum object is defined by:  83 

𝑛𝑝𝑓𝑝 = (
𝑁𝐴 × 𝜌𝑀𝑜𝑥

𝑀𝑀𝑜𝑥
× 𝑓𝑀𝑜𝑥) × (1 − 𝜀) (10) 

Thus, the term 
𝑁𝑝

𝑉𝑠
 from the equation (1) can be written as: 84 

𝑁𝑝

𝑉𝑠
=

𝑤𝑀𝑜𝑥 × 𝜌𝑠

𝜌𝑀𝑜𝑥
×

1

1 − 𝜀
×

1

〈𝑉〉
 (11) 

with 〈𝑉〉  the mean volume of the slab stack or slab aggregate (cm-3), 𝑤𝑀𝑜𝑥  the weight 85 

concentration of the molybdenum phase (wt%), 𝜌𝑠  the sample structural density (g/cm3). 86 

Isolated and stacked slabs can be modelled as discs of height 2𝐻  and radius 𝑅𝑝 . The 87 

corresponding form factor is: 88 

𝐹𝑑𝑖𝑠𝑐
2 (𝑞, 𝑅𝑝, 𝐻) = 4 ∫ (

sin2(𝑞𝐻 cos 𝛽)

(𝑞𝐻)2 cos2 𝛽
)

𝐽1
2(𝑞𝑅𝑝 sin 𝛽)

(𝑞𝑅𝑝)
2

sin2 𝛽

𝜋/2

0

sin 𝛽 d𝛽 (12) 

and 89 

𝑉𝑝(𝑅𝑝, 𝐻) = 𝜋𝑅𝑝
22𝐻 (13) 

As for the slab aggregates, they can be modelled as an ellipsoid of axes (𝑅𝑎, 𝑅𝑎, and 𝜈𝑅𝑎), the 90 

used shape factor is then the following: 91 

𝐹𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑
2 (𝑞, 𝑅𝑎 , 𝜈) = ∫ 𝛷2 [𝑞𝑅𝑎(1 + 𝑥2(𝜈2 − 1))

0.5
]

1

0

d𝑥 (14) 

with 92 

𝛷(𝑡) = 3 (
sin 𝑡 − 𝑡 cos 𝑡

𝑡3
) (15) 

and 93 

𝑉𝑎(𝑅𝑎 , 𝜈) =
4

3
𝜋𝜈𝑅𝑎

3 (16) 

The size distributions of isolated/stacked slabs and slab aggregates are modelled by the 94 

lognormal distribution such as: 95 



𝑃𝑘(𝑅𝑘) =
1

√2𝜋𝑅𝑘𝜎𝑘

exp(−
(ln 𝑅𝑘 − 𝜇𝑘)2

2𝜎𝑘
2 ) (17) 

where 𝑘 is equal to 𝑝 for isolated/stacked slabs and equal to 𝑎 for slab aggregates, and 𝜇 and 96 

𝜎 are the scale and shape parameters of the lognormal distribution, respectively. 97 

To calculate the number, surface and volume average sizes from the adjusted lognormal 98 

distribution, the distributions moments 𝑀n must be known: 99 

𝑀𝑛𝑘
= exp (𝜇𝑘 × 𝑛 +

𝑛2𝜎𝑘
2

2
) (18) 

Thus, the average size of the isolated/stacked slabs in number and volume can be calculated, 100 

as well as for the slab aggregates: 101 

𝑅𝑝𝑛𝑢𝑚 =
𝑀1𝑝

𝑀0𝑝

= exp (𝜇𝑝 +
𝜎𝑝

2

2
) and 𝑅𝑝𝑣𝑜𝑙 =

𝑀3𝑝

𝑀2𝑝

= exp (𝜇𝑝 +
5𝜎𝑝

2

2
) (19) 

𝑅𝑎𝑛𝑢𝑚 =
𝑀1𝑎

𝑀0𝑎

= exp (𝜇𝑎 +
𝜎𝑎

2

2
) and 𝑅𝑎𝑣𝑜𝑙 =

𝑀4𝑎

𝑀3𝑎

= exp (𝜇𝑎 +
7𝜎𝑎

2

2
) (20) 

It is now possible to write the term 𝑆𝑝𝑝(𝑞) in equation (7) such as:102 

𝑆𝑝𝑝(𝑞) = [
𝑁𝑝𝑝

𝑉𝑠
 ∫ 𝑃𝑝(𝑅𝑝) 

+∞

0

𝑉𝑝
2(𝑅𝑝, 𝐻)𝐹𝑑𝑖𝑠𝑐

2 (𝑞, 𝑅𝑝, 𝐻)𝑑𝑅𝑝

+
𝑁𝑝𝑎

𝑉𝑠
∫ 𝑃𝑎(𝑅𝑎)𝑉𝑎

2(𝑅𝑎 , 𝜈)𝐹𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑
2 (𝑞, 𝑅𝑎 , 𝜈)

+∞

0

𝑑𝑅𝑎] 
(21) 

with 103 

𝑁𝑝𝑝

𝑉𝑠
=

𝑤𝑀𝑜𝑥 × 𝜌𝑠

𝜌𝑀𝑜𝑥
× 𝑤𝑝 ×

1

1 − 𝜀𝑝
×

1

〈𝑉𝑝〉 (22) 

and 104 

𝑁𝑝𝑎

𝑉𝑠
=

𝑤𝑀𝑜𝑥 × 𝜌𝑠

𝜌𝑀𝑜𝑥
× 𝑤𝑎 ×

1

1 − 𝜀𝑎
×

1

〈𝑉𝑎〉 (23) 

where 𝑤𝑝 and 𝑤𝑎 are the fraction of molybdenum involved in the isolated/stacked slabs or slab 105 

aggregates, respectively, and 〈𝑉𝑝〉 and 〈𝑉𝑎〉 are the mean volumes of the isolated/stacked slabs106 

and slab aggregates, such as: 107 

〈𝑉𝑝〉 = 𝜋 × 2𝐻 × ∫ 𝑅𝑝
2𝑃𝑝(𝑅𝑝)d𝑅𝑝 = 𝜋 × 𝑀2𝑝 × 2𝐻 = 𝜋 × 2𝐻 × exp (2𝜇𝑝 +

4𝜎𝑝
2

2
) (24) 

〈𝑉𝑎〉 =
4

3
× 𝜋 × 𝜈 × ∫ 𝑅𝑎

3𝑃𝑎(𝑅𝑎)d𝑅𝑎 =
4

3
× 𝜋 × 𝜈 × 𝑀3𝑎

=
4

3
× 𝜋 × 𝜈 × exp (3𝜇𝑎 +

9𝜎𝑎
2

2
) 

(25)



Interference between support and molybdenum phase 108 

The interference between the alumina support and molybdenum phase 𝑆𝑠𝑝(𝑞) described in 109 

equation (8) must be considered. Therefore, the size distribution 𝑃𝑠(𝑅𝑠), the particle volume 110 

𝑉𝑠(𝑅𝑠) and the form factor 𝐹(𝑞, 𝑅𝑠) must be defined. Pure alumina support has been analyzed111 

by SAXS to determine these different terms. The support structure can be described by: 112 

𝐹𝑠(𝑞, 𝑅𝑠) = 3 (
sin 𝑞𝑅𝑠 − 𝑞𝑅𝑠 cos 𝑞𝑅𝑠

(𝑞𝑅𝑠)3
) (26) 

and 113 

𝑉𝑠(𝑅𝑠) =
4

3
𝜋𝑅𝑠

3
(27) 

and with a bimodal lognormal distribution such as: 114 

𝑃𝑠(𝑅𝑠) =
1

C1 + C2
(C1 × 𝑃𝑠1(𝑅𝑠) + C2 × 𝑃𝑠2(𝑅𝑠)) (28) 

with C1 =  1, C2 = 0.21,  𝜇𝑠1 = 2.88, 𝜎𝑠1 = 0.33, 𝜇𝑠2 = 2.74 and 𝜎𝑠2 = 0.69. 115 

Final model 116 

Finally, considering the first population of Mo particles as isolated/stacked slabs and the 117 

second one as aggregates of partially dense slabs, it is possible to write the equation (6) such 118 

as: 119 

〈𝐼(𝑞, 𝐸𝑖)〉 − 〈𝐼(𝑞, 𝐸𝑗)〉 = 𝑤Mox
× 𝑤𝑝 ×

𝜌𝑠

𝜌Mox

× ΔMox

2 (𝐸𝑖, 𝐸𝑗) × (𝑆′
𝑝𝑝 + 𝛼𝑆′

𝑠𝑝) (29) 

with 120 

∆Mox

2 (𝐸𝑖, 𝐸𝑗) = 𝑟𝑒
2 × [(𝑛Mox

𝑓Mox
(𝐸𝑖))

2
− (𝑛Mox

𝑓Mox
(𝐸𝑗))

2
] (30) 

𝑆′
𝑝𝑝(𝑞) = [

1

< 𝑉𝑝 >
 ∫ 𝑃𝑝(𝑅𝑝) 

+∞

0

𝑉𝑝
2(𝑅𝑝, 𝐻)𝐹𝑑𝑖𝑠𝑐

2 (𝑞, 𝑅𝑝, 𝐻)d𝑅𝑝

+
𝑤𝑎(1 − ε𝑎)

𝑤𝑝
×

1

< 𝑉𝑎 >
∫ 𝑃𝑎(𝑅𝑎)𝑉𝑎

2(𝑅𝑎, 𝜈)𝐹𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑
2 (𝑞, 𝑅𝑎 , 𝜈)

+∞

0

d𝑅𝑎] 
(31) 

𝑆′𝑠𝑝(𝑞) = [
1

< 𝑉𝑝 >
∬ 𝑃𝑠(𝑅𝑠)𝑉𝑠(𝑅𝑠)𝐹𝑠(𝑞, 𝑅𝑠)𝑃𝑝(𝑅𝑝)𝑉𝑝(𝑅𝑝, 𝐻)𝐹𝑑𝑖𝑠𝑐(𝑞, 𝑅𝑝 , 𝐻)

sin (𝑞(𝑅𝑝 + 𝑅𝑠))

𝑞(𝑅𝑝 + 𝑅𝑠)
𝑑𝑅𝑝𝑑𝑅𝑠

∞

0

+
𝑤𝑎(1 − ε𝑎)

𝑤𝑝
×

1

< 𝑉𝑎 >
∬ 𝑃𝑠(𝑅𝑠)𝑉𝑠(𝑅𝑠)𝐹𝑠(𝑞, 𝑅𝑠)𝑃𝑎(𝑅𝑎)𝑉𝑎(𝑅𝑎, 𝜈)𝐹𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑(𝑞, 𝑅𝑎 , 𝜈)

𝑠𝑖𝑛(𝑞(𝑅𝑎 + 𝑅𝑠))

𝑞(𝑅𝑎 + 𝑅𝑠)
𝑑𝑅𝑎𝑑𝑅𝑠

∞

0

]

(32) 

Obtained parameters 121 



As explained earlier, the model estimates the isolated/stacked slabs size distribution (𝜇𝑝, 𝜎𝑝) 122 

and the slab aggregate size distribution (𝜇𝑎, 𝜎𝑎). Thus, several average object sizes can be 123 

calculated in number, surface or volume. 124 

Thus, the isolates/stacked slabs size distributions ( 𝜇𝑝 , 𝜎𝑝 ), the slab aggregates size 125 

distributions (𝜇𝑎, 𝜎𝑎), and the parameter 
𝑤𝑎(1−ε𝑎)

𝑤𝑝
 allow us to extract much information. 126 

Isolated/stacked slabs scale 127 

Several parameters can be estimated to describe the isolated/stacked slabs, but only two are 128 

of special interest: 129 

- the mean slab length 𝐿𝑠𝑙𝑎𝑏𝑠 (in number), such as: 130 

𝐿𝑠𝑙𝑎𝑏𝑠 = 2 × 𝑅𝑝 (33) 

- the average stacking 𝑆𝑠𝑙𝑎𝑏𝑠, such as: 131 

𝑆𝑠𝑙𝑎𝑏𝑠 = 0.5 × 
2𝐻

3.1
+ 0.5 (34) 

3.1 Å is the thickness of a slab according to crystallography. The number averaged length is 132 

considered here so that it could be easily compared to the mean length measured in TEM.  133 

Slab aggregates scale 134 

Several parameters can describe the slab aggregates, as followed: 135 

- the mean aggregate width 𝑊𝑎𝑔 (in volume), such as: 136 

𝑊𝑎𝑔 = 2 × 𝑅𝑎   (35) 

- the relative Mo amount (in%) involved in the slab aggregates 𝐶𝑎𝑔, such as: 137 

𝐶𝑎𝑔 =
𝑤Ɛ

1+𝑤Ɛ
× 100 and 𝑤Ɛ =

𝑤𝑎(1−𝜀𝑎)

𝑤𝑝
 (36) 

- the absolute Mo amount (in%) involved in the slab aggregates 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐶𝑎𝑔, such as: 138 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐶𝑎𝑔 = 𝐶𝑎𝑔  ×  𝑤Mox
  (37) 

- the mean volume of slab aggregates 〈𝑉𝑎𝑔〉 (in nm3), such as: 139 

〈𝑉𝑎𝑔〉 =
4

3
× 𝜋 × exp (3𝜇𝑎 +

9𝜎𝑎
2

2
) ×  𝜈 (38) 

- the aggregate number density 
𝑁𝑎𝑔

𝑉𝑠
, such as: 140 



𝑁𝑎𝑔

𝑉𝑠
=

𝑤Mox
× 𝜌𝑠

𝜌Mox

× 𝑤𝑎𝑔

1

1 − 𝜀
×

1

〈𝑉𝑎𝑔〉 (39) 

where 𝜌𝑠 the structural density of the sample here is around 1.31, 1.40, 1.57 and 1.72 g/cm3 141 

for the 18, 22, 36 and 30 wt% MoO3 catalysts respectively. 142 

Example of fit 143 

An example of fit is presented in Figure 2 for the 26_A_D sample. The first part of the curve 144 
(from 10-1 Å-1 to 1 Å-1) is essentially due to the contribution of the first population of 145 
isolated/stacked slabs whereas the second part of the curve (from 10-2 Å-1 to 10-1 Å-1) is due to 146 
the contribution of the second population of larger objects attributed as slab aggregates. 147 

148 

Figure 2. ASAXS curves (𝑰(𝑬𝟑) −  𝑰(𝑬𝟓)) obtained by the subtraction method for the149 

26_A_D catalyst and fit of the experimental ASAXS data 150 

151 

Standard errors evaluation 152 

Since ASAXS is an unusual technique based on log normal representations and morphological 153 

models, ASAXS measurements have been performed on the same sample (i.e. 26_A_D) at a 154 

single and exact same point to estimate the intrinsic standard error of the technique. Thus, the 155 

three ASAXS 𝐼(𝐸3) −  𝐼(𝐸5) curves are reported in the Figure 3. It is quite clear that the ASAXS156 

curves are similar inducing a low standard errors.  157 



158 

Figure 3. Reproduction of ASAXS (𝑰(𝑬𝟑) −  𝑰(𝑬𝟓)) curves for the 26_A_D catalyst.159 

A nonlinear least-squares adjustment of this three ASAXS 𝐼(𝐸3) −  𝐼(𝐸5) signal is performed160 

to quantify the standard errors. Standard errors concerning the obtained parameters 161 

mentioned previously are reported in Table 2. As induced by the ASAXS 𝐼(𝐸3) −  𝐼(𝐸5) curves162 

(see Figure 3), the intrinsic standard errors are very low except for the 𝐿𝑠𝑙𝑎𝑏𝑠 with a standard 163 

error of around 11%. 164 

Table 2. Results obtained on the 26_A_D sample three times at the exact same point. 165 

𝐿𝑠𝑙𝑎𝑏𝑠 

(nm) 

𝑆𝑠𝑙𝑎𝑏𝑠 𝐶𝑎𝑔 

(%) 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐶𝑎𝑔 

(%) 

𝑊𝑎𝑔 

(nm) 

𝐿𝑎𝑔 

(nm) 

〈𝑉𝑎𝑔〉

(nm3) 

𝑁𝑎𝑔
𝑉𝑠

⁄  (10-6 nm-3)

26_A_D_1 3.2 1.0 59 15 7.5 68.4 434 1.1E-04 

26_A_D_2 2.7 1.0 60 16 7.5 67.5 399 1.2E-04 

26_A_D_3 3.5 1.0 60 15 7.5 67.0 451 1.1E-04 

Average 3.2 1.0 59.5 15.5 7.5 67.6 428 1.1E-04 

Absolute 

uncertainties 
0.34 0.00 0.60 0.15 0.03 0.60 21.49 6.6E-06 

Relative 

uncertainties 

(%) 

10.9 0.0 1.0 1.0 0.5 0.9 5.0 5.9 

Mention that these measurements have been carried out for a different 26_A_D capillary than 166 

the one used and presented in the main text. This can explain the slightly different results about 167 

the obtained parameters presented in the main text and the one presented in Table 2. 168 

It is also necessary to mention that ASAXS technique is a local technique carried out on 169 

grounded catalysts placed in capillaries. If the catalyst is heterogeneous in terms of 170 



macroscopic Mo distributions or support texture, a different ASAXS signal could be obtain by 171 

analyzing a different position on the capillary. Using a capillary of 1.5 mm diameter makes it 172 

possible to limit this phenomenon by averaging the ASAXS signal of the catalysts 173 

heterogeneities.   174 



TEM statistical analysis 175 

In the main text, TEM results have been discussed through two parameters such the mean 176 

slabs length and the average stacking. However, it is possible to represent the MoS2 slabs size 177 

and stacking distribution by a lognormal law. Such distributions are reported in Figure 4.  178 

Figure 4. Slabs size distributions (mean aggregate length, left) and slabs stacking 179 

distribution (right) of the 26 wt% MoO3 catalysts from TEM statistical analysis. 180 

The slabs length are between 1 to 10 nm, the stacking level is around 1 to 6. 181 
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