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Raybaud∗,¶

†MATHERIALS team-project, Inria Paris, 2 Rue Simone Iff, 75012 Paris, France
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Abstract

Computing accurate rate constants for catalytic events occurring at the surface of

a given material represents a challenging task with multiple potential applications in

chemistry. To address this question, we propose an approach based on a combination

of the rare event sampling method called Adaptive Multilevel Splitting (AMS) and

ab initio molecular dynamics (AIMD). The AMS method requires a one dimensional

reaction coordinate to index the progress of the transition. Identifying a good reaction

coordinate is difficult, especially for high dimensional problems such a those encoun-

tered in catalysis. We probe various approaches to build reaction coordinates such as

Support Vector Machine and path collective variables. The AMS is implemented so

as to communicate with a DFT-plane wave code. A relevant case study in catalysis:

the change of conformation and the dissociation of a water molecule chemisorbed on

the (100) γ-alumina surface is used to evaluate our approach. The calculated rate

constants and transition mechanisms are discussed and compared to those obtained by

a conventional static approach based on the Eyring-Polanyi equation with harmonic

approximation. It is revealed that the AMS method may provide rate constants which

are smaller than the static approach by up to two orders of magnitude due to entropic

effects involved in the chemisorbed water.
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1 Introduction

The determination of chemical reaction rate constants is of tremendous importance to better

understand and quantify the kinetics of molecular transformations. This can be a challenging

task, especially in catalysis where multiple elementary steps are involved for one targeted

reaction. Evaluating each of them by experimental methods being often out of reach, an

alternative lies in the theoretical modeling of each of them. Thanks to the significant increase

of computational resources, quantum simulation approaches are widely used nowadays to

address numerous catalytic systems involved in petrochemistry, fine chemistry and biomass

conversion.1–4

However, at the simulation time scale, such chemical transformations are rare events.

The typical time step for the integration of stochastic dynamics modeling the evolution of

the system is of the order of 10−15 s, while the frequency of most of the chemical reac-

tions of interest is, at least, several order of magnitude higher. Moreover, to accurately

simulate catalytic activation of chemical bond breaking and formation, the simulation must

include the explicit treatment of valence electrons and the quantum chemical calculation of

the Hellmann-Feynman forces for each step of the dynamics.5 Such an ab initio molecular

dynamics (AIMD) approach becomes so computationally demanding that it is generally im-

possible to simulate a trajectory that is long enough to observe multiple reaction events,

allowing the accurate quantification of rate constants.

Theoretical approaches most commonly used to explore chemical transformations are

based on transition state theory (TST).6 Within this formalism, the reactant and product

are considered to be separated in phase space by a dynamical bottleneck,7 which can be

characterized as a surface in the configuration space. For a reaction with only one reactive

path and only one energy barrier to cross, assuming momenta are not relevant for the tran-

sition process, this surface should contain the first order saddle points. The term transition

state (TS) is versatile as sometimes it refers to a first order saddle point and sometimes to a

isocommittor surface, as defined by IUPAC.8 Considering TS to be surfaces, the reaction rate
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can be approximated as the frequency at which this surface is crossed. The most common

approach to compute the reaction rate constant is called harmonic TST (hTST) as it allows

to reduce general TST expression into the ”generalized” Eyring–Polanyi equation thanks to

harmonic approximation of the potential energy surface.6,9–11

khTST = κ(T )
kBT

h
e
−∆G‡

kBT , (1)

where ∆G‡ is the free energy of activation computed as the difference of the free energy of

the metastable basin and of the transition state, kB the Boltzmann constant, h the Planck

constant, T the temperature and κ(T ) the transmission coefficient. This last quantity has

to be between 0 and 1 and accounts for the recrossing of the surface, as discussed later on.

The free energy of activation is approximated via an harmonic approximation around the

saddle point and the minima. Although hTST is one of the most widely used method to

determine activation free energies and the rate constants of chemical events, particularly

catalytic ones, it suffers from some weaknesses. Among them, the harmonic approximation

of the potential energy surfaces as well as the determination of the prefactor κ in (1) might

be questionable. In general when the entropy of the metastable state and the transition state

differ by a non negligible amount, the harmonic approximation can lead to significant errors.

This can occur in various systems of interest to catalysis such as solid–liquid interfaces,

zeolites, porous solids and supported nano-particles.12 More general expression for the TST

rate, using a one dimensional reaction coordinate7,13 and relying on sampling methods to

estimate free energies,14–16 were proposed to overcome some limitations of (1). However,

TST reaction rates contain a transmission coefficient κ ∈ (0, 1], accounting for the recrossing

of the transition state surface, which is rather difficult to evaluate and which explains why

bare TST overestimates the transition rate.7,11,13,17–19

There are of course alternative approaches to TST. A first one is based on the evolution

of a time correlation function13,20 which found applications in Transition Path Sampling
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(TPS)21 or other approaches such as the recent work relying on Onsager–Machlup path

probability distribution of Ref. 22. Another alternative, that we will use in the present

work, is provided by approaches based on the Hill relation:23

kHill = ΦRpR→P (∂R), (2)

where ΦR is the flux of trajectories leaving the reactant state R and the committor probability

at the boundary pR→P (∂R), the probability of reaching the product state P before returning

to R starting from the boundary ∂R. In other words, this relation states that the rate

constant is the average rate at which the system attempts to leave the initial state times the

probability of success. Relation (2) has been proven correct assuming that the reactant state

R is metastable for systems evolving according to the overdamped Langevin dynamics24

or Langevin dynamics.25 The Hill relation is used in various approaches corresponding to

so-called path sampling methods such as Transition Interface Sampling (TIS),26 Forward

Flux Sampling (FFS),27 Weighted Ensembles (WE)28 and Adaptive Multi-level Splitting

(AMS).29 All these methods are designed to compute the probability pR→P (∂R), which is

the most difficult object to evaluate in (2). As a side product, these methods sample some

reactive trajectories.

All the methods described previously have different precisions and computational effi-

ciencies. On the one hand, the hTST approach is, by far, the most inexpensive methodology

in terms of computational resources but, as mentioned above, it may lead to significant

errors. On the other hand, the computational cost of enhanced sampling methods to es-

timate free energies is not negligible. The Hill relation has the advantage of being exact

compared to TST approach but the required computational cost can be high depending on

the method to compute the probability pR→P (∂R). Moreover, numerical methods sampling

reactive trajectories offer the possibility of performing a more detailed analysis of reaction

mechanisms.
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Most methods to compute reaction rate constants require the definition of a Collective

Variable (CV), either to define the states of the system, its free energy, or to use it as

a one dimensional Reaction Coordinate (RC) indexing the progress of the transition. In

many situations, reactions go through one or a few channels in phase space. CVs should

describe these channels with a minimal number of dimensions. Usually, CVs are defined

thanks to chemical intuition or through the expert knowledge of the chemical system. They

are typically based on key distances or angles associated with atoms central to the reaction

mechanism. Nonetheless, this kind of heuristic approach can have some limitations especially

when the studied mechanism is a priori unknown. Automatic and data based approaches

using various Machine Learning (ML) methods currently offer very appealing perspectives

in this context. Recent reviews30–33 provide an overview of current options to propose CVs

and discuss their advantages and drawbacks. These methods bear the promise of more

systematic and efficient ways to define CVs, albeit at the expense of interpretability compared

to intuitive CVs such as angles or distances. Nonetheless, machine-learned CVs are becoming

common practice in the field. For example, Support Vector Machine (SVM) models trained

on a set of data generated by molecular dynamics were used for exploring the configurational

transitions of model protein molecules.34 In material sciences, the combination of SVM and

AIMD was used for the mechanistic study of the diffusion of Al atoms on Al (100) surface.35

To the best of our knowledge, SVM has not been used to explore more complex reactive

events, such as chemical bond breaking/formation catalyzed by an oxide material’s surface

such as proposed in the present work.

To benchmark an innovative methodology based on the Hill relation for exploring reaction

mechanisms occurring on catalytic materials, we chose in this work a relevant case study:

the reactivity of water on the (100) orientation of γ−alumina, a widely used support in

heterogeneous catalysis applied to biomass conversion.36,37 Comprehensive DFT based stud-

ies have revealed the versatile nature of active sites (Lewis Al and Bronsted Al-OH), their

thermodynamic properties38–42 and their kinetic ones (TS and activation barriers) by us-
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ing predominantly hTST calculations.36,37,43,44 As for the study of many chemical reactions,

especially in catalysis, most of the reaction rate constants are computed within the TST

framework.4 Unbiased AIMD simulations have been also applied to decipher the gamma-

alumina’s reactivity, its local structure and spectroscopic features, in the presence of liquid

water in order to obtain a better understanding of phenomena occurring during the catalyst

preparation or catalytic reaction.45,46 TPS was used in particular for studying the catalytic

reactivity of other oxide materials,47,48 also in combination with the blue-moon ensemble

formalism.49

Methods based on the Hill relation and rare event simulation methods are rarely used for

studying chemical reactions50 and to the best of our knowledge, they have never been used to

describe reactions in heterogeneous catalysis. In particular, the AMS method has only been

used for molecular dynamics applications to study the isomerization of small biomolecules51

or a protein-ligand dissociation,52 up to now.

Hence, the aim of the present work is to highlight how AMS applied to AIMD rare event

sampling, combined with ML approach, is able to compute reaction rate constants via the

Hill relation in a relevant case study for heterogeneous catalysis. The CVs and RCs are built

using SVM or Path Collective Variables and well-chosen chemical descriptors.53

Considering the challenge of the chemical reactivity of the alumina catalysts highlighted

before, we will aim at determining rate constants for a reaction network involving various

water rotation, dissociation and association events on the (100) γ-alumina surface.

This article is organized as follows. In the methods section, the general computational

approach following a flowchart leading to the determination of rate constants is described.

First, it is presented how the implementation of AMS coupled to a reference plane wave-DFT

software enables the determination of rate constants. In a second part, numerical tools such

as SVM and path collective variables (PCV) used to define CVs and RCs are presented.

The results section first describes the catalytic model system of water activated on the γ-

alumina surface, used to probe the theoretical approach. The constructions of CVs and RCs
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corresponding to the water molecule transformation path are then explained. Finally, the

numerical values of reaction rates and the reactive trajectories are analyzed and compared

with the standard hTST approach.

2 Methods

The general flowchart of our approach is given in Figure 1. The first step is the definition

of states defined as the ensemble of structures in the vicinity of a local potential energy

minimum characterizing either a reactant or a product. In practice, these configurations

are sampled by running a short AIMD starting from minima identified on the Potential En-

ergy Surface (PES). Then, using this trajectory, the function numerically defining states is

obtained by SVM and well-chosen chemical descriptors. Depending on the reaction rate con-

stant to compute, each state has to be labeled as reactant or product. A reaction coordinate

(RC) is then built, for instance by using the decision functions of the classifiers previously

used to define states. Once states and a RC are defined, AMS is run to obtain an estimate of

the reaction rate constant of the Langevin dynamics which is assumed to model accurately

the system dynamics.

As a side remark, the definition of states and of the RC can be done using any type of

collective variables describing the configurations of the system. In the present approach, the

chosen collective variables are the 2100-dimensional SOAP descriptor of a selected atomic

environment. The role of the SVM is to build a linear combination of these collective

variables.

2.1 Reaction rate constant estimation using AMS

Motivation. To compute rate constants of rare events by using the Hill relation (2), the

flux of trajectories leaving the initial reactant state R (or the frequency at which trajectories

leave R) must be evaluated. If the reactant state is properly defined, this quantity can be
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Figure 1: Global workflow to compute reaction rate constants With the Hill relation using
Adaptive Multilevel Splitting and Support Vector Machine.

computed in a reasonably short time by unbiased MD. The difficulty lies in the estimation

of the probability that a trajectory leaving R is reactive (i.e. goes to a product state P ),

since the probability pR→P (∂R) is in most cases exceedingly small. The AMS algorithm is

specifically designed to evaluate low probability events.29 The key point of AMS is to propose

a method that has a good behavior in terms of variance and computational efficiency to

compute the probability pR→P (∂R). This is achieved by first decomposing the rare event of

interest into a succession of less unlikely events, the target probability to estimate being the

product of the conditional probabilities associated with the sub-events (see SI Section 1).

Moreover, the sub-events are built such that the associated conditional probabilities are all

the same. This is indeed a desirable feature in order to reduce the overall variance of the

estimator.51 The mathematical analysis of the variance of the AMS estimator is provided in

Ref. 29 and 54. We focus here on the presentation of the algorithm adapted to MD rare events

and only mention that this algorithm is unbiased.55 This means that, whatever the choice
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of the reaction coordinate ξ and the number of replicas of the system (see below), repeating

the algorithm sufficiently many times will always provide the same result in average, and

this average value coincide with the target probability. On the other hand, the variance

of the probability estimator depends on the quality of ξ. This opens a way to define an

iterative procedure to improve the definition of reaction coordinates, using the sampled

reactive trajectories to define better reaction coordinates.

Computing the flux and sampling initial conditions. A separating surface ΣR close

to R is introduced for the estimation of the flux ΦR, to determine actual exits out of R.24

This surface has to enclose the reactant state, so that any trajectory going from R to P has

to cross ΣR (see Fig. 2). Indeed, the location of this surface allows to select the trajectories

that make actual excursions off the state R, in contrast to trajectories that would only

wander out of R for a few steps and go back inside R right away. The approach to define

the position of this surface is discussed precisely below. The flux ΦR is then evaluated by

starting a dynamics in the state R, counting the number of times nloop−RΣRR it goes from R

to ΣR, crosses ΣR and goes back to R, dividing this number by the overall time ttot:

ΦR =
nloop−RΣRR

ttot
=

1

tloop−RΣRR

, (3)

where tloop−RΣRR is the average time that a trajectory takes to go out of R, cross ΣR and

go back to R. Now that the calculation of the first term ΦR has been discussed, let us

focus on the second one: pR→P (∂R). Computation of the flux ΦR simultaneously allows

to generate some positions on the surface ΣR, which will serve to estimate the probability

pR→P (ΣR). Indeed, the estimated quantity is pR→P (ΣR) instead of pR→P (∂R), this does not

bias the result as far as R and ΣR are within the same metastable basin.24 These initial

conditions must correspond to the first time a trajectory leaving R reaches the level ΣR. As

efficient calculation of the flux and the sampling of initial conditions relies on parallelization

strategies, a Fleming–Viot particle process is used in our implementation of this initialization
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procedure.56 The particles undergo independent molecular dynamics which means they can

be run in parallel without requiring frequent communications.

Figure 2: First iteration of the AMS algorithm with kmin = 1 and Nrep = 3. Purple points
represent the initial conditions on ΣR. a) Identify the kill level z1kill = zkmin,0

max and kill the
replicas such that zi,0max ≤ z1kill, i.e. the orange replica. b) Replace the killed replicas by the
trajectory of one of the remaining replicas (the green one in this example) until the level z1kill
and continue the trajectory of the replica until it reaches either the state R or the state P .

AMS Requirements. To run an AMS estimation, the reactant state R and the product

state P have to be defined. The surface ΣR has to be placed such that each trajectory linking

the reactant and the product state goes through ΣR. Its distance to the boundary of R should

be sufficiently small so that the sampling of initial conditions and the determination of the

flux ΦR (see the previous paragraph) is not exceedingly expensive in terms of computational

cost. A number of replicas Nrep (or walkers) has to be defined, as well as a minimum

number kmin of replicas to kill at each iteration of AMS. Nrep different initial conditions

on the surface ΣR are selected uniformly among the initial conditions sampled following

the procedure described in the previous paragraph (purple points in Figure 2). Finally a
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reaction coordinate ξ should be defined to index the progression along the R → P transition.

It has to be consistent with the states R and P which can be generally enforced by setting

ξ(q) = −∞ for q ∈ R and ξ(q) = +∞ for q ∈ P .

AMS initialization. First, all the replicas are run from their initial conditions on ΣR

until either the R or P state is reached (see Fig. 2 a) which depicts an initialised set of

three replicas). They are then iteratively updated until they all finish in the product state

P . An illustration of an iteration is provided in Figure 2, the process being detailed in

the next paragraph. In what follows, qi,n
t denotes the position of the i-th replica at time t

and iteration n. In particular, {qi,n
0 }1≤i≤Nrep are initial conditions on ΣR. The method to

estimate the probability is also summarized in the pseudo-code presented in SI Section 1.

AMS iteration. Each iteration of the main AMS loop starts by defining the largest value

of the RC for each replica at the n-th iteration as zi,nmax = sup
t
(ξ(qi,n

t )). The replicas are then

reordered by increasing values zi,nmax (see Figure 2). According to the value of kmin, the level

at which positions are killed is identified as an empirical quantile: zn+1
kill = zkmin,n

max . This means

that all the trajectories for which zi,nmax ≤ zn+1
kill are killed. The number of killed trajectories

at this iteration is denoted by ηn+1
killed. Note that ηn+1

killed ≥ kmin by construction, but it could

happen that ηn+1
killed ≥ kmin+1 when several trajectories reach exactly the same zkmin,n

max . To keep

the number of replica constant, ηn+1
killed trajectories have to be created by randomly branching

ηn+1
killed trajectories among the remaining ones. More precisely, trajectories are duplicated

until the first time they reach the level zn+1
kill and then the dynamics is ran from these points

until it reaches R or P . In fact, at each iteration, the estimated probability 1− ηn+1
killed

Nrep
is the

probability for a trajectory to reach the surface Σzn+1
kill

starting on the surface Σznkill
.

Any AMS iteration can be summarized by the succession of the steps illustrated in

Figure 3.

12



Figure 3: Flowchart of one iteration of AMS. n is an iteration index and i a replica index.
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AMS termination and probability estimator. The AMS algorithm can terminate in

two different manners. First, after a certain number of iterations, all the replicas reach the

state P . In such a case, Nrep different reactive trajectories are obtained and the estimated

transition probability is computed via:

p̂R→P (ΣR) =
nmax∏
n=1

(
1− ηnkilled

Nrep

)
, (4)

where nmax is the final number of iterations of the algorithm. The second option (not

explicitely presented on Figure 3 since the RC is typically chosen so that this does not

happen) is that at a certain iteration n, ηnkilled is equal to the total number of replicas of

the algorithm. This can happen if at some point all the copied replicas have the same

value of zi,nmax. This termination event is called ”failure” as the algorithm is not able to

provide reactive trajectories and the estimated probability is p̂R→P (ΣR) = 0, consistently

with expression (4). Such a situation can be encountered if the system is stuck and all the

replicas are progressively replaced by the copy of a single replica. It is also possible that

the replicas reach their maximum in ξ in a zone of the phase space on which the reaction

coordinate ξ remains constant while the trajectories are different.

It is possible to estimate the statistical error on the estimated probability p̂R→P (ΣR)

in (4) by repeating the estimation of the probability Mreal times. These realisations should

be independent and can take advantage of parallel architecture of current super-computers.

The confidence intervals presented in the results section all correspond to a 90% confidence.

More details can be found in SI Section 2.

Multiple states case. Defining the states R, P and the surface ΣR when there are multiple

metastable states requires a specific treatment to compute state to state reaction rates. Two

main approaches are proposed and made precise in Section 3 of the SI. The first one samples

all possible trajectories starting from a given state. The second approach more specifically

focuses on the targeted transition. An illustration and comparison of the two approaches is
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provided in the results section.

Implementation with a plane wave DFT code. The AMS algorithm and the sam-

pling of initial conditions was implemented in Python scripts calling the VASP software for

AIMD simulations.57,58 All DFT simulations parameters are listed in SI Section 4.1 while

AIMD parameters are presented in SI Section 4.2. Some slight modifications have been im-

plemented in the VASP code to allow for different stopping conditions of the VASP MD runs.

More details concerning the implementation can be found in the SI Section 5. The various

repetitions Mreal of the AMS estimation can be run independently in parallel. The Fleming–

Viot particle scheme also allows for in dependant runs, communications are required only

infrequently allowing arbitrary number of particles ran independently in parallel. The devel-

opment of the scripts and the testing was mostly done on ENER440 calculator at IFPEN.

Results presented in the following section come from simulations ran on Joliot-Curie(Genci)

and Topaze(CCRT).

2.2 Tools to define states and reaction coordinates

Let us conclude this section describing the methods by introducing useful tools that will be

used to define the states and the reaction coordinates in the next section.

Representation of chemical structures. Reaction coordinates and states definitions

must be invariant under rotation, translation and symmetries of the system as well as by

permutation of identical atoms. Since description relying on Cartesian coordinates do not

exhibit these properties, substantial work was conducted to find representations of atomic

systems invariant by Galilean transformations and other symmetries, in particular in the field

of ML empirical potentials.59–62 We chose the smooth overlap of atomic positions (SOAP)60

descriptor allowing to capture enough information on atomic environments to reach errors

of the order of 1 meV for potential energy surface fitting.63,64 This descriptor turned out to
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be sufficient for our needs as illustrated in the result section. The detailed parameters used

to compute SOAP descriptor using dscribe Python package65 can be found in SI Section 4.3.

Support Vector Machine. A linear SVM model is designed to find the highest margin

separation plane between two sets of labeled points. The margin denotes the minimal dis-

tance between the plane and the labeled points. The details concerning this optimization

problem can be found in ML textbooks66 or the scikit-learn documentation.67 The impor-

tant result for this work is that, once the optimization problem is solved, only a certain

subset of the total training set is used in the definition of the plane. These are the so-called

support vectors which are the closest to the separation plane. The vector normal to this

plane and the scalar defining its position is thus a linear combination of the support vectors.

The classifier decision function is the algebraic distance to the plane multiplied by a scaling

factor chosen so that the decision function value on support vectors which are not outliers is

either 1 or −1. To define multiple states using SVM, the one versus all approach was chosen,

as made precise later on in the result section dedicated to the definition of states. Linear

SVM models were trained using the SVC routine of scikit-learn package with a linear ker-

nel.67 The data were normalized using the standard scaler implemented in the same package.

The regularization parameter was kept to the default value 1 as, after cross validation, the

classification scores on the test sets were always 100%.

Path Collective Variables (PCV). The principle of PCVs is to first define a reference

path for the transition as a sequence of structures {Ri}0≤i≤L−1. These structures are repre-

sented with a numerical descriptor, here the SOAP descriptor. A reaction coordinate is then

constructed as:53

s(R) =

∑L−1
i=0 i e−λd(Ri,R)∑L−1
i=0 e−λd(Ri,R)

, (5)

where d is a distance here the Euclidean norm. The parameter λ has to be of the order of

variation of the inverse distances between two consecutive structures along the path. If the
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structures along the path are not evenly spaced along the path according to the distance d,

a sequence of values λi can be used instead. In the present case, we chose λi as:


λ−1
i =

1

2
(d(Ri−1,Ri) + d(Ri,Ri+1))

λ−1
0 = d(R0,R1); λ−1

L−1 = d(RL−2,RL−1).

(6)

PCVs were directly implemented in the python scripts used for the reaction coordinate

evaluation during the dynamics.

3 Results and discussion

3.1 γ-Al2O3 models and definition of states

Model of the catalytic system. The catalytic case study chosen to benchmark the

previously presented method is the transformation of a water molecule adsorbed on the

(100) γ-alumina surface.39,40,42 A representation of the γ-Al2O3 surface on which one water

molecule is chemically adsorbed without dissociation on an aluminum Lewis site is given in

Figure 4. More information about the alumina slab used is provided in SI Section 4.1.

Figure 4: Representation of one water molecule adsorbed on an aluminum site of the (100)-
γ-alumina surface model. Surface atoms are represented as ball and sticks while subsurface
ones are represented as lines. Colors: Red: Oxygen, Grey: Aluminum, White: Hydrogen,
Black: limit of the periodic cell. a) Top view; b) Side view.

The first step is to identify various potential energy minima corresponding to the metastable
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states of the water molecule adsorbed on the surface either in a dissociative mode or non-

dissociative modes. As described in what follows, the dissociative modes lead to the forma-

tion of two hydroxyl (OH) groups : the first one is formed upon the transfer of a H atom

of the water molecule to an O site of the surface; the second one results from the native

water molecule. This systematic exploration confirms previous DFT studies where the min-

ima were identified by running multiple geometry optimizations starting from various initial

conditions.39,40

Data set generation to learn states. Once local minima are identified, the metastability

of the basins surrounding them should be assessed because these local minima should be

sufficiently separated from other local minima. To quantify this, two AIMD trajectories of

1 ps each were run starting from each minimum. The first AIMD was run with a friction

parameter of 5 ps−1 to thermalize the system faster, while the second one was run with

γ = 0.5 ps−1. If the system ends up in another potential energy well during this second part

of the trajectory, then the initial well is not considered relevant to be qualified as a metastable

state. At 300 K, multiple transitions between all basins were observed, thus all the potential

wells cannot be considered metastable and relevant so as to mimic realistic chemical reactions.

At 200 K, 8 genuine metastable states could be identified denoting that at this temperature,

the system better mimic chemical reaction conditions. The various identified states are

named Ai or Di depending on whether the state corresponds to a non-dissociated adsorbed

water molecule or to two surface hydroxyls after water dissociation, respectively (see Fig. 5).

Some of these states are in fact identical as there exists a plane symmetry in this structure

and thus these metastable potential energy wells should be gathered in the same state. For

example, the wells D1 and D3 are symmetrically identical.

The numerical definition the states A1, A2A3, A4, D1D3, D2D4 were built using one versus

all (1-vs-all) linear SVM classifiers decision function fX−vs−all. For instance, the state A1

is defined as {q |fA1−vs−all(SOAP (q)) ≤ −1}. To train these models, the data used was a
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Figure 5: Representation of the main different minimum energy structures corresponding to
metastable states for the water molecule adsorbed on the (100) γ − Al2O3 surface. Arrows
represent transitions that might occur. Color legend: gray: aluminum, red; oxygen, white:
hydrogen

1 ps MD trajectory at 50 K starting from each local minimum. The point of running a MD

at a lower temperature was to obtain points close to the minimum of the potential energy

well. The dynamics starting was run with a friction parameter of 5 ps−1 during 1 ps for

equilibration, then run during 1 ps with γ = 0.5 ps−1.

The production runs of these trajectories were used to train the SVM classifiers. Only

one SOAP descriptor centered on the oxygen atom of the adsorbed water molecule was

used as features in the training set, thus SOAP is the function that maps the positions q

to the SOAP descriptor of this oxygen atom environment SOAP (q). With the parameters

mentioned in the SI Section 4.4, this leads to an array of size 2100 to describe each structure.

Before training the model, the variation of each dimension of the SOAP descriptors were

scaled to have zero mean and unit variance. The test score of the SVM model was 100%

in every case, which indicates that the set of structures represented with SOAP descriptors

are linearly separable. On the other hand, trying to separate the SOAP descriptor of the

trajectories starting from two symmetric minima such as D1 and D3 systematically led to
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smaller test scores. This indicates that the well surrounding these two minima are indeed

similar in the sense of the SOAP descriptor.

As a side remark, in a situation where symmetries of states are unknown, using this kind

of approach can help to identify some similarities. In Figure 6, an histogram of the decision

function of a A1-vs-D1 SOAP-SVM classifier is plotted. The various colors represent the

different labelled states. It is clear that this CV allows to differentiate the A and D states.

Moreover, according to this criterion, the A2 and A3 as well as well as the D1/D3 and D2/D4

groups of points bear some similarities for reason of symmetry.

Figure 6: Histogram of A1-vs-D1 SOAP-SVM CV on the whole labelled dataset.

Definitions of the boundary surface ΣR. For every metastable state X, a boundary

ΣX is defined from the 1 ps trajectory generated to assess the metastability of the basin

X. This surface ΣX is taken as a levelset of the decision function fX−vs−all of the SVM

classifier trained to distinguish this state from the others. This level is chosen so that during

the 1 ps MD the trajectory goes 10 times above this level. In practice, for all the states

A1, A2A3, A4, D1D3, D2D4, the surface ΣX was chosen as {q |fA1−vs−all(SOAP (q)) = −0.95}.

This choice implies that ΣR for AMS is directly related to the choice of R since the two sets

are determined from the level sets of the same function.
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Definition of reaction coordinates (RCs). The first RCs used to perform AMS sim-

ulations are the various 1-vs-all SVM decision functions. These RCs are therefore named

”1-vs-all SOAP-SVM RC” in the following sections. Some more specific RCs are built us-

ing the same approach targeting a specific transition from a state to another. In this case,

the decision function is obtained by separating only the two targeted states. The corre-

sponding RCs are termed ”1-vs-1 SOAP-SVM RC”. Finally, a Path Collective Variables

(PCV), termed ”SOAP-PCV” is also used as reaction coordinate to index the progression

of AMS replicas. The SOAP-PCV RCs differ depending on the reference path. We consider

here paths built by an interpolation of the z matrix representations of the minima of two

metastable basins.68 The associated RCs are termed ”interpolated SOAP-PCV”.

3.2 Analysis of AMS rate constants

In this section, we analyze first the sensitivity of the reaction rates to two key parameters, the

number of replicas (Nrep) and the number of repetitions of the probability estimation (Mreal).

These parameters also govern the computational cost and how this cost can be distributed

on multiple CPUs, taking advantage of the parallel architecture of current supercomputers.

Then, the other impacting choices on the precision of the reaction rate constant are the RC

and the states, also investigated in what follows. The reaction rate constants obtained for

each observed transition are finally compared to values computed from hTST.

Parallel calculations against precision. The effect of the number of replicas (Nrep) and

the number of AMS repetitions (Mreal) is evaluated for a fixed number of initial conditions

NrepMreal, which roughly corresponds to a fixed computational cost. Indeed, assuming that

every branching during one AMS realization has the same cost in average and that ηnkilled is

constant and equals kmin at all steps of the AMS realization, the cost of one AMS realisation

is given by the product of the number of AMS iterations (nmax) and the number of killed
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replicas (kmin). Under these assumptions, the AMS estimator (4) writes:

p̂ =

(
1− kmin

Nrep

)nmax

. (7)

Assuming that kmin

Nrep
is small, the computational cost of a single AMS simulation is:

kminnmax ≈ −Nrep ln (p̂) . (8)

Taking into account number of repetitions of the algorithm Mreal, the final cost of a reaction

rate constant estimation is −MrealNrep ln (p̂). Considering the current implementation of

AMS, Mreal realisation of AMS can be run in parallel. The objective is to find the minimal

value of Nrep to better distribute the computational cost on multiple parallel realisations.

With too few replicas, the intrinsic variance of the AMS estimator can be so large that

the confidence interval of the estimated probability contains 0, leading to not interpretable

results. Table 1 reports the evolution of water rotation rate constants kA1→A2A3 calculated

with AMS for various values of Nrep and Mreal by using the ”A1-vs-all-SOAP-SVM” reaction

coordinate and states defined as R = A1 and P = A2A3 ∪ A4 ∪ D1D3 ∪ D2D4.

Table 1: Estimation of probability, rate and the corresponding accuracy at 90% confidence
for water rotation. The number of initial conditions MrealNrep was varying Mreal and Nrep.
R = A1, P = A2A3 ∪ A4 ∪ D1D3 ∪ D2D4, ξ = A1-vs-all SOAP SVM RC.

Mreal Nrep tloop−RΣA1R (fs) pA1→A2A3(ΣA1) kA1→A2A3 (s−1)
5 400 108± 5 (3.73± 3.03)10−3 (3.67± 2.99)1010

10 200 110± 5 (3.38± 1.56)10−3 (3.08± 1.43)1010

20 100 101± 5 (3.47± 1.96)10−3 (3.21± 1.82)1010

By definition tloop is not impacted by Nrep or Mreal. The target value of probability and

rate are little impacted in the present case, which is not the case for the variance. The choice

of Nrep = 200 and Mreal = 10 is sufficient to obtain a A1 to A2A3 water rotation rate of

3.1 1010 s−1 with the 90% confidence interval of [1.65 1010s−1, 4.51 1010s−1]. Similar precision

can be obtained with Nrep = 100 and Mreal = 20. Therefore, it is important to perform

22



the AMS simulations a certain number of times (Mreal) in order have a proper variance

estimation. Hence, for a similar computational cost in CPU time, satisfying accuracy can

be obtained using Mreal ≥ 10.

Impact of the definition of reaction coordinates and states. The definitions of the

states R and P determine the type of trajectories that can be sampled by the algorithm. The

choice of the reaction coordinate impacts the quality of this sampling. For instance, exploring

all types of trajectories from A1 to any other states, requires to sample initial conditions on

ΣA1 , set R = A1 and P = A2A3 ∪ A4 ∪D1D3 ∪D2D4. Using the A1-vs-All SOAP-SVM RC

to sample trajectories ending in P leads to the results presented in Table 2. This approach

Table 2: Transition rates leaving A1 estimated using A1-vs-all SOAP-SVM RC, Nrep = 200,
Mreal = 10, R = A1 and P = A2A3 ∪ A4 ∪ D1D3 ∪ D2D4. As the results come from
the same AMS tloop−RΣRR is constant and equal to 110± 5 fs.

Transition pTransition(ΣA1) kTransition (s−1)
A1 → A2A3 (3.38± 1.56) 10−3 (3.17± 1.43) 1010

A1 → D1D3 (1.79± 1.86) 10−3 (1.63± 1.70) 1010

A1 → A4 (3.66± 6.02) 10−7 (3.44± 5.50) 106

allows to sample the transition A1 → A2A3 with a reasonable accuracy according to the

estimate of the rate constant’s variance. However, the less probable transitions (A1 → D1D3

and A1 → A4) are under-sampled and the rate estimations are not precise enough as the 90%

confidence interval contains 0. Moreover, the direct transition from A1 to D2D4 being so rare

that it has not even been sampled. To more accurately quantify the transition A1 → D1D3,

more specific RCs must be used. The results obtained with two other RCs are compared in

Table 3. Changing the reaction coordinate A1-vs-all SOAP-SVM into A1-vs-D1 SOAP-SVM

for AMS does not significantly improve the rate constant precision as the estimated variance

is still so large that 0 is contained in the confidence interval. This is due to the fact that

in view of the definition of R and P , AMS still samples trajectories that are of no interest

such as the rotation A1 → A2A3. To observe only A1 → D1D3 reactive trajectories, one

possibility would be to set R = A1 and P = D1D3. However, as the AMS iteration
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stops once the trajectories finish either in R or P , a trajectory including the A1 → A2A3

rotation would consume too much computational time before going to R or P as the state

A2A3 is metastable. Hence R and P must be defined differently. Considering transition

starting from A1, with the choice R = A1 ∪ A2A3 ∪ A4 ∪ D2D4, P = D1D3, and

initial conditions sampled on ΣA1 , AMS is compelled to sample A1 → D1D3 trajectories.

The difference here with the previous case is that, if a rotation A1 → A2A3 is observed

in the course of the algorithm, then it will be stopped once it enters the A2A3 state and

be considered as a non reactive trajectory. Such trajectories will ultimately be discarded

and replaced by trajectories having higher values zmax of the chosen reaction coordinate

defined in a way so as to enhance the sampling of trajectories between the desired metastable

states. Both the quality of the reaction coordinate and the choice of the R and P states

are important to obtain precise results for the A1 → D1D3 transition (see Table 3). In our

case study, the necessity to change the definition of R and P might be due to the difference

of the transition probability between the rotation A1 → A2A3 and the water dissociation

A1 → D1D3. Indeed, the half size of confidence intervals is larger than the target rate in

the case where any type of rotations can be sampled, while constraining the AMS to sample

only A1 → D1D3 trajectories leads to smaller confidence intervals. In the present case the

interpolated SOAP-PCV RC is not significantly better than the A1-vs-D1-SOAP-SVM RC

in terms of variance as the 90% confidence error represents 97% of the target values while

for the A1-vs-D1-SOAP-SVM RC it is 89%.

Table 3: Variation of the RC and reactant / product states R and P to sample the A1 →
D1D3 transition with Nrep = 200, Mreal = 10 and initial conditions sampled on ΣA1

RC tloop−RΣA1
R (fs) pA1→D1D3(ΣA1) kA1→D1D3 (s−1)

R = A1 ; P = A2A3 ∪ A4 ∪ D1D3 ∪ D2D4

A1-vs-all-SOAP-SVM 110± 5 (1.79± 1.86) 10−3 (1.63± 1.70) 1010

A1-vs-D1-SOAP-SVM 105± 3 (1.81± 1.98) 10−5 (1.72± 1.88) 108

interpolated SOAP-PCV 104± 4 (1.95± 2.26) 10−4 (1.87± 2.17) 109

R = A1 ∪ A2A3 ∪ A4 ∪ D2D4 ; P = D1D3

A1-vs-D1-SOAP-SVM 105± 2 (3.31± 2.97) 10−4 (3.15± 2.83) 109

interpolated SOAP-PCV 108± 2 (1.78± 1.73) 10−4 (1.64± 1.59) 109
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Comparison of the rate constants calculated with AMS and with hTST. Various

rate constants involved in the reaction networks of Figure 5 were computed using AMS.

Various reaction coordinates and various definitions of the states R and P were used to

obtain the results presented in Table 4. For the sake of clarity, the choice of R, P , RC

and AMS parameters for each transition are listed in SI Table 1. These rates obtained by

AMS are directly compared to the reaction rate constants computed from the static hTST

approach. Activation free energies calculated with hTST are reported in SI Table 3. and

they qualitatively compare with previously published DFT data.44

Table 4: Transition rate constants for all the transitions observed in this study with 90%
confidence interval for AMS results.

Transition kTransition−AMS (s−1) kTransition−hTST (s−1)
Water rotations
A1 → A2A3 (3.08± 1.43) 1010 7.55 1010

A2A3 → A1 (1.49± 0.46) 1011 2.06 1012

A2A3 → A4 (4.33± 2.20) 1010 3.64 1010

A4 → A2A3 (2.35± 0.87) 1011 5.66 1011

A1 → A4 (3.34± 6.56) 106 2.04 108

A4 → A1 (1.34± 0.68) 1010 8.65 1010

Hydroxyl rotation
D1D3 → D2D4 ∅ 2.38 109

D2D4 → D1D3 (2.86± 4.71) 108 4.15 109

Formation and dissociation of water
A1 → D1D3 (1.64± 1.59) 109 3.37 1011

D1D3 → A1 (2.32± 1.59) 1010 1.13 1012

A2A3 → D2D4 (7.86± 7.53) 109 5.45 1013

D2D4 → A2A3 (1.28± 0.54) 1011 1.17 1013

A2A3 → D1D3 ∅ ∅
D1D3 → A2A3 (2.33± 3.14) 108 ∅

Reaction rate constants obtained by harmonic approximation are consistently higher

than those obtained via the Hill relation and AMS for the Langevin dynamics, with one

single exception for the A2A3 → A4 rotation. Assuming that the friction parameter is set

so that Langevin dynamics reproduces accurately the system’s dynamics, the AMS rate

constants should be more precise than the TST ones due to the intrinsic overestimation

of rates of TST as mentioned in the introduction. The harmonic approximation of the
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potential energy surface for fast approximations of free energies can lead to large errors. In

particular, entropic effects are usually mistreated by hTST approaches as it was underlined

by previous theoretical studies based on transition path sampling and blue moon ensemble

simulations49 or other approaches.12 In the present case, this might be the reason for the

important overestimation of the rates of formation and dissociation events. Especially in the

case of the A2A3 → D2D4 transition, the approximation of the TS free energy is so bad that

the activation free energy is negative (as reported in SI Table 3) which leads to the large

overestimation of the rates.

Under the assumption of a correctly parameterized dynamics, the values presented in

Table 4 allow to realize that most water rotations are at least one order of magnitude faster

than dissociation events. Only the direct A1 → A4 rotation seems to occur less frequently.

The formation of water happens on the same timescale as the fast water rotations depending

on the hydroxyls conformation. This ordering has to be compared to the one from hTST

rate constants. The quickest changes are the water formation and dissociation events. The

slowest formation event occur as frequently as the fastest water rotation.

Using the presented approach to compute various reaction rate constants, especially those

of forward and backward reactions, one can deduce also reaction free energies:

KR→P =
kR→P

kP→R

, (9)

and

∆GR→P (T ) = −NAkBT ln (KR→P ) , (10)

where NA is the Avogadro number and KR→P is the reaction equilibrium constant.

The values of the reaction free energies of Table 5 allow to identify that according to the

harmonic approximation, the most stable state should be the D1D3, while the most stable

one identified with the AMS method is A1 for T=200 K. Previous ab initio thermodynamic

studies within harmonic approximations also identified that the dissociative state is more
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Table 5: Reaction heats at 200 K computed from Table 4 and hTST

AMS Value (kJ.mol−1) hTST Value (kJ.mol−1)
Water rotations
∆GA1→A2A3 2.62± 2.66 5.50
∆GA2A3→A4 2.81± 2.83 4.56
∆GA1→A4 13.8± 4.43 10.1
Hydroxyl rotations
∆GD1D3→D2D4 ∅ 0.93
Water dissociations
∆GA1→D1D3 4.41± 3.88 −2.56
∆GA2A3→D2D4 4.64± 3.54 2.01

favored.39,40 Here also, one may suspect that entropic contributions may be at the origin of

the change in the stability order. In particular, within the harmonic approximation, it is

assumed that the adsorbed water molecule in A1 state and in D1D3 has similar rotational

and transnational degree of freedoms. We cannot exclude that this assumption leads to

errors as AIMD simulation reveals numerous rotational movements of the adsorbed water.

This effect influences the entropy change and stabilizes the non dissociated A1 state with

respect to the dissociated one D1D3. This thermodynamic analysis may also be consistent

with the previous kinetic observation. Indeed, the thermodynamic stabilization of the non

dissociated reactant states with AMS induces that water dissociation rate constants are

significantly smaller with AMS than with hTST.

3.3 Analysis of AMS reactive trajectories.

In addition to computing reaction rates, we show in this section how the AMS method

allows to sample reactive trajectories. The overall AMS trajectories lengths are in the order

of 200 ps. Qualitatively speaking, some chemically relevant trends can be identified. We

identify there are two pathways for the rotation A4 → A1. The first, and the less likely

one, is similar to the path identified by the NEB static approach. The second one seems

to be more similar to a A4 → A2A3 → A1 rotation, where the trajectory does not actually

enter the A2A3 state but approaches it for a few femtoseconds before continuing toward the
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A1 state. The same type of paths are observed in the few trajectories where a transition

D1D3 → A2A3 occurs. However, such a systematic analysis of each reactive trajectory might

become rapidly tedious and not safe enough to capture the overall chemical trends, since

more than 2000 A1 → D1D3 trajectories are sampled by the AMS algorithm. An automated

method is therefore necessary to analyze all of them and some dimensionality reduction is

useful to this end.

Clustering reactive trajectories. In the case of the A4 → A1 rotation, two paths exist

which can be identified by a visual inspection of many reactive trajectories. A more system-

atic way to proceed would be to rely on clustering methods, which are specially designed to

identify groups within a dataset. Among the various possible approaches, we used here an ap-

proach based on the K-means algorithm as implemented in scikit-learn.67 To make numerical

representation of each trajectory independant on its length, each trajectory was represented

as the intersections of the trajectory and five isolevels of the A4-vs-all SOAP-SVM RC. The

details of the procedure to perform this clustering are presented in SI Section 7. It is impor-

tant to mention that K-means method requires to know a priori the number of clusters to

find thus various values should be tested. The two types of paths can be identified by visual

inspection of the trajectory closest to each cluster’s centroid even though all the trajectories

are not perfectly assigned by this approach. Of course resorting to other clustering methods

could be more efficient but such a systematic study is beyond the scope of the present work.

The ”top” path (see Figure 7 and trajectories supplied in electronic supplementary materi-

als) qualitatively looks similar to the path found by the NEB. The fact that this path is less

sampled than the ”side” path indicates that this transition is rarer.

Stochastic Transition State estimation. One possibility is to consider only one struc-

ture per trajectory instead of the whole trajectory. The most important structure q along a

trajectory can be defined as the one such that the committor probability is pR→P (q) = 0.5,

(where pR→P (q) is the probability that a molecular dynamics trajectory starting from q
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Figure 7: Schematic representation of the two types of paths for the A4 → A1 rotation. The
first path (blue) is named ”side” while the second one (green) is named ”top”. The purple
line represent the RC isolevels used to represent the trajectories.

reaches first the P state rather than R. According to the IUPAC goldbook,8 in the part

of the TS definition referring to a surface, all the structures satisfying the pR→P (q) = 0.5

conditions are part of the transition state. This definition of transition state as a ”set of

states (each characterized by its own geometry and energy)” is indeed not consistent with

the following part of the definition ”The transition state is characterized by one and only one

imaginary frequency” which presents it as a first order saddle point on the potential energy

surface. The various structures q such that pR→P (q) = 0.5 are not necessarily identical

to the saddle points identified via the NEB method and harmonic frequencies calculations,

although some resemblance is expected. We propose to investigate this point in what follows

for one water dissociation on the alumina surface.

As mentioned in the methods section, the estimated probability for a trajectory to reach

the surface Σzn+1
kill

starting on the surface Σznkill
is 1− ηn+1

killed

Nrep
. By identifying the level n0.5 such
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that
nmax∏
n=n0.5

(
1− ηnkilled

Nrep

)
= 0.5, (11)

one can define the iso-level Σ0.5 of the reaction coordinate. The configurations corresponding

to reactive trajectories crossing this surface are such that p̂R→P (q) = 0.5. There should be

at least one structure corresponding to this condition per reactive trajectory. Considering

only the first structure crossing the iso-level Σ0.5, the mean structure is computed, in the

sense of the SOAP descriptor. This analysis was applied for the various realizations of AMS

that were run.

Stochastic Transition State of water dissociation. For the dissociation event A1 →

D1D3, the interpolated SOAP-PCV reaction coordinate with the reactant and product states

defined as R = A1 ∪ A2A3 ∪ A4 ∪ D2D4 and P = D1D3 conducts to a mean structure of

configuration such that pR→P (q) = 0.5 qualitatively similar to the saddle point of the PES

determined with the NEB method, as represented in Figure 8 (the corresponding trajec-

tory is provided in electronic supplementary information). From a quantitative viewpoint,

some slight structural differences can be noted regarding the O-H distances involving the

transferred H atom. For the saddle point, the broken O-H bond is 0.14 Å shorter than for

AMS, whereas the newly formed O-H bond is 0.14 Å larger. This difference might come

from the fact that the momenta can bear a certain importance in the committor. Indeed the

committor values estimated bears dynamical information while the saddle point is defined

only with the positions.

The quality of this analysis depends on the quality of the sampling of the reaction path.

Indeed considering the reactive trajectories sampled from the AMS done with: R = A1

and P = ∪ A2A3 ∪ A4 ∪ D1D3 ∪ D2D4 the definition of the stochastic TS is of poor

quality. This comes from the fact that this AMS mostly samples A1 → A2A3 trajectories

(and only rarely A1 → D1D3 trajectories). The best approximation of a stochastic TS is on

the most sampled path (Region 1 in Fig. 9). This is in line with the obtained results for the
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Figure 8: Ball and sticks representation of a) saddle point on the PES and b)mean structures
such that pR→P (q) = 0.5 on AMS using interpolated SOAP PCV RC. Color legend, red:
oxygen, gray: aluminum, white: hydrogen.

confidence interval of the reaction rate constants (see Table 3). In Figure 9, the green curve

represents the Σ0.5 iso-level of the reaction coordinate, while the red one is the Σ0.5 iso-level

of the committor function. As these levels do not match perfectly on the whole space, the

best approximation of the stochastic TS is in the region of space where most of the reactive

trajectories concentrate (Region 1). This issue in the analysis of the reactive trajectories

of less probable transitions is recurrent when multiple paths are sampled. An alternative

approach to automatically identify whether multiple paths leading to a single product are

present within a set of sampled trajectories would be desirable.

4 Conclusion

We proposed and implemented a theoretical approach based on the Hill relation to compute

the exact reaction rate constants using rare event sampling and support vector machines. It is

illustrated on various chemical events occurring at an oxide material surface. A key algorithm

to this end is the Adaptive Multilevel Splitting, which estimates reaction probabilities and

samples reactive trajectories by using ab initio molecular dynamics. For that purpose, SVM

was used to define the chemically relevant states and reaction coordinates to index the

transition from reactant to products. It allows to compute the exact reaction rates for the

dynamics at hand and makes possible a detailed analysis of reaction mechanisms via the

inspection of reactive trajectories. The implementation done so as to communicate with a
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Figure 9: Schematic representation of poor match of the Σ0.5 iso-level of the committor
function (red) and the reaction coordinate (green). The green iso-level is placed after an
AMS sampling of some reactive trajectories from R to P where a majority of the trajectories
has gone via Region 1.

plane-wave DFT software allowed to illustrate the approach by studying the reactivity of

a water molecule adsorbed on the γ-alumina (100) surface. The computed reaction rate

constants were discussed and compared to those of a static hTST approach.

The methods precision is impacted by the choice of reaction coordinate, the choice of

reactants and products in a multiple state situation, the number of repetitions of the proba-

bility estimation and the number of replicas intrinsic to AMS. The hTST approach does not

make assumptions on the system’s dynamics, but relies on strong assumptions concerning the

shape of the potential energy surface, implying uncontrolled approximation of entropy. The

proposed methodology allows to alleviate these limitations at the expense of an increased

computational cost. Assuming that the Langevin dynamics accurately models the system’s

dynamics (which involves in particular having a relevant value of the friction coefficient), the

presented approach should be more precise than TST approaches. In the case considered

here, hTST reaction rate constants are always higher than the ones estimated via AMS and

the Hill relation. The relative stability of states is also different. In particular, we show
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that hTST underestimates the thermodynamic stability of adsorbed water molecules, and

simultaneously overestimates rate constants of water dissociation and formation. On top of

that, the analysis of reactive trajectories allows to identify possible paths that are not clearly

identified via the NEB approach.

This method used in combination with ab-initio molecular dynamics can be computation-

ally expensive. This issue might be alleviated by the use of Machine Learning Force Fields

(MLFF), which can approach the accuracy of DFT force calculations at a much smaller

computational cost. It also provides the opportunity to accurately describe nuclear quan-

tum effects using path integral molecular dynamics such as in Ref. 69. Some active learning

schemes to train MLFFs have been proposed recently and they could articulate well with

the present method.70,71 In particular, in contrast to standard MD, the presented approach

favor a sampling of transition regions which are crucial to the description of chemical event.

The study of a specific system could be done by first using jointly AMS and active learning

to generate an accurate MLFF. Then, it could be used to evaluate accurately reaction rate

constants and sample reactive trajectories.
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