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SI 1: Multilevel splitting estimator and AMS pseudo code

The various approaches using the Hill relation to compute reaction rate constants require a

method to estimate the probability pR→P (∂R) to reach P before R, starting from a given

distribution on the boundary ∂R of the reactant state R. This probability is often estimated

using a splitting estimator such as FFS or AMS. Let us first explain why a naive Monte

Carlo estimator is plagued by a large variance, before presenting the AMS estimator, and a

pseudo code of the AMS algorithm. We also refer to the main text for a detailed explanation

of the main steps of the algorithm.

As observing a reaction is a rare event, the probability pR→P (∂R) is typically very small

which is why resorting to a simple Monte-Carlo estimator is in general not efficient. A naive

Monte Carlo estimator consists in running n trajectories starting on the boundary ∂R of R

and stopping them once they reach either the state R or the state P . Counting the number

nsuccess of trajectories which reach P before R (R → P transitions) yields the Monte-Carlo

estimator:

p̂R→P (∂R) =
nsuccess

n
. (1)

The normalised variance asscoiated with this estimator writes:

Var

(
p̂R→P (∂R)

pR→P (∂R)

)
=

(1− pR→P (∂R))pR→P (∂R)

n(pR→P (∂R))2
≈ 1

npR→P (∂R)
, (2)

as pR→P (∂R) is negligible compared to 1. From Equation (2), it is clear that the lower the

transition probability is, the larger the number of trials is needed to obtain a sensible relative

error.

To alleviate such a difficulty, a splitting estimator uses a product of conditional probabili-

ties to reformulate the problem. The idea is to include the event of interest into an increasing

sequence of more likely events. The target probability is then written as a product of condi-

tional probabilities. More precisely, by introducing M surfaces (Σj)1≤j≤M between R and P
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such that any transition path from R to P has to cross each of these surfaces, the probabil-

ity pR→P (∂R) for the trajectory to reach P before R, starting from the boundary of R can

be estimated as:

p̂R→P (∂R) = p̂R→Σ1(∂R)

(
M−1∏
j=1

p̂R→Σj+1
(Σj)

)
p̂R→P (ΣM) (3)

where p̂R→Σ1(∂R) is an estimator of the probability for the path to reach Σ1 before going back

to R, p̂R→Σj+1
(Σj) is an estimator of the probability to reach Σj+1 before going back to R

conditionally on the fact that Σj was reached before going back to R, and finally p̂R→P (ΣM)

is an estimator of the probability to reach P before going back to R conditionally on the

fact that ΣM was reached before going back to R. It can be shown that such an estimator

has a smaller variance than the Monte Carlo estimator. Moreover, for a fixed number of

surfaces M , it can be shown that the variance is minimal if the surfaces are chosen such that

all the conditional probabilities pR→Σj+1
(Σj) are equal. This leads to the adaptive multilevel

splitting (AMS) algorithm, where the surfaces are placed adaptively on a given simulation so

that the estimator of these conditional probabilities are all equal, using empirical quantiles.1

As an illustration, imagine than the probability to be estimated is (1/2)M+1 (left-hand

side of (3)), and that the surfaces are positioned so that all the probabilities to be estimated in

the product in the right-hand side are 1/2 (there is 50% chance to reach the next surface Σj+1

before R, knowing that the path has reached Σj before R). In such a situation, a naive Monte

Carlo estimator is plagued by a large variance since the probability (1/2)M+1 to be estimated

is very small. On the other hand, estimating (M + 1) times a probability of 1/2 is much

easier.

An illustration of this estimator with 7 surfaces is presented in Figure 1. To use such an

estimator in practice, one needs to define the number of surfaces, their positions in phase

space and to devise a way to estimate all the conditional probabilities pR→Σj+1
(Σj). The

AMS algorithm is designed to solve these problems all at once.
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Figure 1: Schematic representation of a splitting estimator.

The complete pseudo code of the AMS algorithm is presented in Algorithm 1, see the

main text for the explanations of each steps.
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Algorithm 1: Simplified AMS pseudo algorithm

Requires;
Nrep, kmin, numerical definition of the states R and P , Reaction coordinate ξ, Nrep

initial conditions {qj
ini}1≤j≤Nrep on Σ , Molecular dynamics engine MD step,

argsort function returning the permutation of indices to sort an array of scalars,
randpick functions that randomly picks an element of an array;
Output:
p: the estimated probability of reaching P before R starting from Σ.
Algorithm;
p← 1;
for i = 1 to i = Nrep do

qi
0 ← qi

ini;
t← 0;
while qit ̸∈ R ∪ P do

qi
t+δt ←MD step(qi

t);
t← t+ δt;

zimax ← sup
t
(ξ(qi

t));

while ∃ i ∈ J1, NrepK
/
zimax ̸= +∞ do

sorted ← argsort(zmax);

zkill ← z
sorted[kmin]
max ;

killed ← {i ∈ J1, NrepK | zimax ≤ zkill};
alive ← {i ∈ J1, NrepK | zimax > zkill};
p← p

(
1− length(killed)

Nrep

)
;

for k ∈ killed do
delete

(
qk
t

)
∀t;

j ← randpick(alive);
t← 0;

while ξ
(
qk
t

)
≤ zkill do

qk
t+δt ← qj

t+δt;
t← t+ δt;

while qk
t ̸∈ R ∪ P do

qk
t+δt ←MD step(qk

t ) ;
t← t+ δt;

zkmax ← sup
t
(ξ(qk

t ));

return p
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SI 2: Rate constant error estimation

We provide in this section, an expression for the confidence interval for the reaction rate using

the Delta method, which is a standard technique in statistics.2 The Hill relation writes:

kHill = ΦRpR→P (∂R), (4)

where ΦR is the flux of trajectories leaving the state R and pR→P is the probability of

reaching P before R starting on the boundary of R. The flux in (4) is estimated via:

ΦR =
nloop−RΣRR

ttot
=

1

tloop−RΣRR

. (5)

To obtain uncorrelated loop times tloop−RΣRR, the results presented were computed consid-

ering one loop every five loops. From (4) and (5), the reaction rate writes:

kR→P =
pR→P (ΣR)

tloop−RΣRR

. (6)

Assuming Mreal realizations of AMS were done, let us consider the two estimators of the

term of the quotient:

p̂R→P (ΣR) =
1

Mreal

Mreal∑
i=1

pi,

t̂loop−RΣRR =
1

nloop−RΣRR

nloop−RΣRR∑
j=1

ti,

(7)

where pi are independent results of AMS with the same Nrep and kmin, the times ti are the

times of different loops going from R to Σ and then back to R.

The AMS estimator satisfies the central limit theorem in the limit of an infinitely large

number of replicas, see Ref. 3. Concerning the estimator of this flux, the central limit

theorem can be invoked only if the times ti are not correlated. It is clear that two successive

times might be correlated but due to the fact that the Langevin dynamics is stochastic, it
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is possible to assume that ti and ti+n are not correlated if n is large enough. The number of

times n one should skip to ensure that depends on the friction parameter of the dynamics

and was assumed to be 5 in this work. Assuming that the central limit theorem holds, one

obtains

t̂loop−RΣRR = tloop−RΣRR +

√
Var(t̂loop−RΣRR)

nloop−RΣRR

Gt,

p̂R→P (ΣR) = pR→P (ΣR) +

√
Var(p̂R→P (ΣR))

Mreal

Gp

(8)

where Gt and Gp are two real valued random variables distributed according to a standard

Gaussian distribution. By truncation of the Taylor expansion at the first order in 1√
Mreal

and

1√
nloop−RΣRR

, one gets:

k̂R→P ≈
pR→P (ΣR)

tloop−RΣRR

+
1

tloop−RΣRR

√
Var(p̂R→P (ΣR))

Mreal

Gp −
pR→P (ΣR)

t2loop−RΣRR

√
Var(t̂loop−RΣRR)

nloop−RΣRR

Gt.

As the sum of two zero mean Gaussian random variables is also a zero mean Gaussian random

variable, it therefore holds:

k̂R→P ≈ kR→P +

√
Var(p̂R→P (ΣR))

t2loop−RΣRRMreal

+
pR→P (ΣR)2Var(t̂loop−RΣRR)

t4loop−RΣRRnloop−RΣRR

Gk. (9)

Using the unbiased variance estimators

Var(p̂R→P (ΣR)) =
1

Mreal − 1

Mreal∑
i=1

(pi − p̂R→P (ΣR))
2 ,

Var(t̂loop−RΣRR) =
1

nloop−RΣRR − 1

nloop∑
i=1

(
ti − t̂loop−RΣRR

)2
,

(10)

and replacing tloop−RΣRR and pΣR→P by their estimators in (9), the following confidence
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interval are finally deduced:

kR→P ∈
[
p̂R→P (ΣR)

t̂loop−RΣRR

− θα
2
σ,

p̂R→P (ΣR)

t̂loop−RΣRR

+ θα
2
σ

]
,

σ =

√
Var(p̂R→P (ΣR))

t̂2loop−RΣRRMreal

+
p̂R→P (ΣR)2Var(t̂loop−RΣRR)

t̂4loop−RΣRRnloop−RΣRR

,

(11)

where θα
2
stand for the quantile α

2
of the Gaussian law to obtain a 1 − alpha precision

confidence interval.
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SI 3: State to state probability estimation in a multi-state case

Only two states R and P are necessary for AMS while multiple states are generally present

in catalysis and the reaction rate constants between all the states {E1, .. Ei, .. EN} are of

interest. To address this issue with AMS, two approaches can be proposed.

First approach. We first define R = Ej and P =
⋃
i ̸=j

Ei. The initial conditions are sampled

on the surface ΣEj
surrounding the state Ej, then the transition probability ΣEj

→ P can

be estimated. Finally the probabilities ΣEj
→ Ei can be estimated by counting the number

of trajectories nin
Ei

that indeed finished in the Ei state.

p̂Ej→Ei
(ΣEj

) =
nin
Ei

Nrep

p̂Ej→P (ΣEj
). (12)

This formula is motivated later on by considering the order of the first hitting time of each

state. This approach allows to observe various types of transitions using a single AMS run.

However if one transition is less likely to occur compared to another, the sampling of the less

probable transition might not be satisfactory as most trajectories would sample the most

probable one.

Second approach. To circumvent this issue, one can decide to change the definition of the

reactant and product states. Using initial conditions sampled on ΣEj
and setting R =

⋃
i ̸=k

Ei

and P = Ek, the AMS is compelled to sample the Ej → Ek trajectories. The state R

contains states Ei with i ̸= k as it allows to consider a Ej → Ei as a non reactive trajectory.

This matter is discussed in the result section.

Justification of equation (12). Let us consider a 3 states case. The reactant state is

R = E1 and the product state is P = E2 ∪ E3. Then we define the time τEi
as the first

that the dynamics starting on ΣR reaches the state Ei. As three states are considered, six

possibilities for the ranking of these three time are possible:
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1. τE1 < τE2 < τE3 ,

2. τE1 < τE3 < τE2 ,

3. τE2 < τE1 < τE3 ,

4. τE2 < τE3 < τE1 ,

5. τE3 < τE1 < τE2 ,

6. τE3 < τE2 < τE1 .

Hence, the sum of the probability of these 6 events in equals to 1 and, given that the

states do not overlap, these events are independent. It is possible to identify that the event

corresponding to reaching P before R correspond the events 3 to 6 while the events 1 and

2 correspond to reaching R first. Reaching E2 before R corresponds to the events 3 and

4 and finally reaching E3 before R corresponds to events 5 and 6. Then, to estimate the

probability of the last two events one has just to identify the fraction of events 3 and 4 (or

5 and 6) that occurred during the realization of the events 3 to 6. This is exactly what the

factor
nin
Ei

Nrep
represents in expression (12).
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SI 4: Calculation parameters

SI 4.1: DFT parameters

The DFT functional was PBE4 with the D3 dispersion correction.5 A Gaussian smearing

was used with σ = 0.05 eV. The γ-alumina bulk structure taken from Ref. 6. The K point

grid was set to 2 × 2 × 4 and centered at the Γ point. The bulk structure was first fully

relaxed (allowing box volume to change) with a 800 eV kinetic energy cutoff to ensure low

Pulay stress. All other DFT calculations on slabs representing the γ-alumina (100) surface

were achieved by keeping the cell’s volume constant with a kinetic energy cutoff of 450 eV.

The (100) surface model is composed of a four layer slab structure with 15 Å of vacuum

inserted in the direction perpendicular to the surface plane (that is, the x direction in this

case). Calculations on this system were carried out with a K point grid set to 1 × 2 × 4.

Geometry optimizations were done using the conjugate gradient algorithm as implemented

in VASP with a convergence criterion of 0.01 eV/Å.

SI 4.2: AIMD parameters.

All the molecular dynamics runs were generated using the Brünger Brooks Karplus integrator

of the Langevin dynamics implemented in VASP. A 1.0 fs time step was used for all of them.

The length of the dynamics runs and the used friction parameter varied upon the purpose

of the molecular dynamics run as detailed in the results section of the main text.

SI 4.3: NEB and saddle points

Saddle points on the potential energy surface were identified by nudged elastic band (NEB)

methods using the VASP TST tools.7,8 The spring force was taken to 5.0 eV.Å
−2

and nudg-

ing was turned on. The number of images was 10 including the reactant and product. The

optimizer used was FIRE with the default parameters that can be found in the VTST docu-

mentation.8 The initial path was created by an interpolation between the z-matrix represen-
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tation of the reactant and product structures with the Opt’n path code.9 The identification

of the relevant saddle points on the potential energy surface was done starting from the NEB

results and refined using the quasi-Newton method. The vibrational frequencies of the min-

ima and the saddle points were evaluated using a finite difference method as implemented in

the VASP package based on displacements of 0.01 Å. Using these frequencies, the free ener-

gies of the meta-stable basins and the transition states were computed within the harmonic

approximation. The rotational components of the entropy were not explicitly computed and

assumed to cancel out between minima and transition states. Detailed expressions used can

be found in Ref. 10. Finally the hTST rates were computed using Eyring-Polanyi equation

assuming that the transmission coefficient is equal to 1.

SI 4.4: SOAP descriptor parameters

The SOAP descriptors were computed using the dscribe python package.11 The cutoff radius

was set to 6 Å as the main structural changes in the example system are within a sphere of

this radius around a central atoms. The atomic density in the neighborhood of an atom is

approximated as a sum of Gaussians centered on the nearby atomic nuclei and their width

σ was 0.05 Å. The width of these Gaussians is chosen so that there is not too much overlap

between two different structures. The parameters nmax and lmax controlling the size of the

basis on which the atomic density is projected were respectively set to 8 and 6.
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SI 5: Implementation with VASP software

The Fleming-Viot particle process to sample initial conditions and the AMS were imple-

mented in python scripts calling the execution of the VASP software for the integration of

the unbiased Langevin dynamics. Both these algorithms require to stop the dynamics when

it enters a certain state. This means that at every time-step, one has to evaluate the crite-

rion used to define this state and then decide whether the dynamics is to be continued or

not. This kind of stopping condition cannot be enforced with the current implementation of

VASP and had to be implemented. The collective variable to define the states is computed

using a python script CV.py that is used as input. The choice of the stopping conditions is

monitored by INCAR tags.
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SI 6: Detailed numerical results

The most precise results for each observed transitions during this study are presented in

Table 1. From these results, some reaction heats were computed and presented in Table 2.

Table 1: Transition rate constants computed with AMS for all the transition observed in
this study with 90% precision.

Transition tloop−RΣRR (fs) pTransition kTransition(s
−1)

Water rotations
A1 → A2A3

a 110± 5 (3.38± 1.56) 10−3 (3.08± 1.43) 1010

A2A3 → A1
b 85± 9 (1.34± 0.41) 10−2 (1.49± 0.46) 1011

A2A3 → A4
b 85± 9 (3.90± 1.97) 10−3 (4.33± 2.20) 1010

A4 → A2A3
c 100± 5 (2.24± 0.83) 10−2 (2.35± 0.87) 1011

A1 → A4
a 110± 3 (3.66± 7.18) 10−7 (3.34± 6.56) 106

A4 → A1
c 100± 5 (1.28± 0.65) 10−3 (1.34± 0.68) 1010

Hydroxyl rotation
D1D3 → D2D4

d ∅ ∅ ∅
D2D4 → D1D3

e 63± 4 (1.72± 2.84) 10−5 (2.86± 4.71) 108

Formation and dissociation of water
A1 → D1D3

f 109± 3 (1.78± 1.64) 10−4 (1.64± 1.59) 109

D1D3 → A1
d 88± 4 (2.05± 1.40) 10−3 (2.32± 1.59) 1010

A2A3 → D2D4
b 85± 9 (7.07± 6.77) 10−4 (7.86± 7.53) 109

D2D4 → A2A3
e 63± 4 (7.71± 3.24) 10−3 (1.28± 0.54) 1011

A2A3 → D1D3
b ∅ ∅ ∅

D1D3 → A2A3
d 88± 4 (2.05± 2.77) 10−5 (2.33± 3.14) 108

a Rate sampled using Nrep = 200, Mreal = 10, R = A1,
P = A2A3 ∪ A4 ∪ D1D3 ∪ D2D4 and ξ = A1-vs-all SOAP-SVM RC.

b Rate sampled using Nrep = 100, Mreal = 20, R = A2A3,
P = A1 ∪ A4 ∪ D1D3 ∪ D2D4 and ξ = A2A3-vs-all SOAP-SVM RC.

c Rate sampled using Nrep = 200, Mreal = 10, R = A4,
P = A1 ∪ A2A3 ∪ D1D3 ∪ D2D4 and ξ = A4-vs-all SOAP-SVM RC.

d Rate sampled using Nrep = 200, Mreal = 10, R = D1D3,
P = A1 ∪ A2A3 ∪ A4 ∪ D2D4 and ξ = D1D3-vs-all SOAP-SVM RC.

e Rate sampled using Nrep = 200, Mreal = 10, R = D2D4,
P = A1 ∪ A2A3 ∪ A4 ∪ D1D3 and ξ = D2D4-vs-all SOAP-SVM RC.

f Rate sampled using Nrep = 200, Mreal = 10, R = A1 ∪ A2A3 ∪ A4 ∪ D2D4,
P = D1D3, ΣR = ΣA1 and ξ = interpolated SOAP-PCV

Similar results can be obtained via the hTST approach and are presented in Tables 3 and 4.
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Table 2: Reaction heats at 200 K computed AMS reaction rates of Table 1

Value (kJ.mol−1)
Water rotations
∆GA1→A2A3 2.62± 2.66
∆GA2A3→A4 2.81± 2.83
∆GA1→A4 13.8± 4.45
Water dissociations
∆GA2A3→D2D4 4.64± 3.54
∆GA1→D1D3 4.41± 3.88

Table 3: Activation energies and rate constant computed with the harmonic approximation
at 200K.

Transition ∆G‡
Transition (kJ.mol−1) kTransition(s

−1)
Water rotations
A1 → A2A3 6.67 7.55 1010

A2A3 → A1 1.17 2.06 1012

A2A3 → A4 7.88 3.64 1010

A4 → A2A3 3.31 5.66 1011

A1 → A4 16.5 2.04 108

A4 → A1 6.44 8.65 1010

Hydroxyl rotation
D1D3 → D2D4 12.4 2.38 109

D2D4 → D1D3 11.5 4.15 109

Formation and dissociation of water
A1 → D1D3 4.18 3.37 1011

D1D3 → A1 2.17 1.13 1012

A2A3 → D2D4 −4.28 5.45 1013

D2D4 → A2A3 −1.71 1.17 1013

Table 4: Reaction heats computed from harmonic approximation of the free energy at 200
K

Value (kJ.mol−1)
Water rotations
∆GA1→A2A3 5.50
∆GA2A4→A4 4.56
∆GA1→A4 10, 1
Water dissociations
∆GD1D3→D2D4 0, 93
Water dissociations
∆GA2A3→D2D4 −2.56
∆GA1→D1D3 2.01
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SI 7: Clustering reactive trajectories

K-means and most clustering algorithms better perform for clustering problems in low di-

mensions. Performing clustering using the whole reactive trajectories is therefore expected

to be inefficient. Moreover, the sampled reactive trajectories do not necessary have the same

length and cannot directly be compared. To alleviate these problems, a first preprocessing

step is to summarize each trajectory by a small number of structures. These structures

correspond to the first point of the trajectory crossing certain reaction coordinate isolevels.

In the example presented in the result section of the main text, five levels were used. These

levels are equally spaced between the largest minimal values of the RC along the trajectories

and the smallest maximal values of the RC along the trajectories. The next preprocessing

step is to numerically represent these few structures per trajectory via the SOAP descriptor

centered on the oxygen atom of the water molecule. As these SOAP descriptors are also in

high dimension, a principal component analysis is performed for all the normalized SOAP

descriptors of structures corresponding to the same level of the RC. Finally, the first four

principal components are used as descriptors of the structure. The choice of using the first

four principal components is motivated by the fact that these four components capture at

least 90% of the variance of the SOAP descriptors for a given level. Finally, a full reactive

trajectory of is represented as a vector of size four times the number of levels chosen. As

the K-means algorithm strongly depends on its (random) initialisation, the algorithm was

repeated 20 times and the best set of clusters was kept. Setting the number of clusters to find

to 3 allows to find the two types of pathways for the A4 → A1 rotation which were previously

discussed. The trajectories are attached as videos in the electronic SI. Three clusters are

necessary as both paths are not equally sampled by the AMS simulation. Indeed, one path

being less probable, is less sampled. This behavior is typical of K-means which prefers to

split one large cluster in two parts rather than identifying a large one and a much smaller

one. Of course such issues could be alleviated by resorting to other clustering methods but
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such study is beyond the scope of the present work. However, the result obtained at this

level paves the way to future more detailed investigations.
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