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Optimal Placement of Fast Charging Infrastructure for Electric
Vehicles: an Optimal Routing and Spatial Clustering Approach

Ibtihel Ben Gharbia, Giovanni De Nunzio, Antonio Sciarretta

Abstract— The rapid growth of electric vehicles (EVs) has
brought about the need for an efficient and effective charg-
ing infrastructure network. Optimal placement of charging
infrastructure plays a crucial role in ensuring the widespread
adoption and seamless integration of EVs into the existing
transportation system. In this work, a new placement method
is proposed with the goal of optimizing trip time for all
the long-distance nation-wide journeys. The first step of the
strategy consists in identifying the ideal location of charging
stations based on an optimal routing strategy with charging
constraints. Then, a clustering-based heuristic, which also
accounts for real travel demand, is proposed to select the best
charging stations among these candidate locations. We apply
the method to the French national charging infrastructure and
we show that important gains in terms of overall trip time and
energy consumption are attainable with respect to the current
infrastructure. Finally, the proposed method is used to give a
recommendation on where to install the future charging stations
in order to maximize their positive impact.

Index Terms— Electric vehicles, charging stations, driving
range, constrained shortest path, eco-routing, spatial clustering,
bi-level optimization problem, optimal placement.

I. INTRODUCTION

As the number of electric vehicles (EVs) continues to
grow, the need for a reliable and efficient charging in-
frastructure becomes increasingly important. One of the
critical challenges in deploying charging infrastructure is
determining the optimal placement of charging stations. The
optimal placement of charging stations for EVs is a complex
problem that involves multiple decision-makers, objectives,
and constraints. Charging station operators need to install and
operate charging stations at a reasonable cost, while electric
vehicle owners need reliable and accessible charging infras-
tructure. Local communities need to balance the benefits of
charging infrastructure with the potential impact on traffic
flow, parking availability, geographical and environmental
constraints, electrical grid capacity, and cost-effectiveness.

Optimal placement of charging infrastructure is crucial to
enhance EV adoption [1], [2], alleviate range anxiety, enable
long-distance travel, and ensure cost-efficient utilization and
convenient access to fast charging facilities[3]. In recent
years, various approaches have emerged for optimal EV
charging station placement [4], [5], including data-driven [6],
GIS-based [7], and optimization modeling methods [8]. Data-
driven methods leverage historical data and machine learning
algorithms to identify patterns and correlations, informing
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optimal locations for stations [9]. GIS-based approaches
use spatial analysis to account for accessibility, population
density, and environmental factors. Optimization modeling
addresses multiple factors and objectives, such as travel de-
mand patterns, station capacity, infrastructure costs, and grid
limitations, tailored to urban and long-distance scenarios.
Urban settings apply techniques like mixed-integer linear
programming and multi-objective optimization, focusing on
land use, accessibility, and charging demand [10], [11].
In contrast, long-distance scenarios [12] employ methods
like queuing theory, location-allocation models, and spatial
optimization to tackle highway networks, intercity travel
patterns, and charging speed [13] .

In densely populated urban areas and for daily mobility,
studies have shown that EV users tend to rely more on
home/work chargers for their charging needs, due to easier
access and lower costs [14]. Public charging infrastructure is
perceived more as a backup solution in case of emergency.
However, for long-distance trips, the paradigm changes and
the associated range anxiety due to the lack of diffused and
reliable charging infrastructure along the route still hinders
the uptake of electric vehicles [15]. For these reasons, in this
work, we focus on optimally placing EV charging infrastruc-
ture at nation-wide level, with the objective of facilitating
long-distance trips, for which at least one charging event is
necessary to reach the destination. Our goal is to minimize
the experienced travel and charging time of EV drivers by
considering realistic travel demand and energy needs. To this
aim, we propose a bi-level optimization framework.

Bi-level optimization, a mathematical technique for nested
optimization problems, is suitable for balancing infrastruc-
ture providers’ objectives and EV drivers’ needs [16]. In
the proposed framework, the upper-level problem minimizes
installation and operational costs by selecting locations based
on factors like population density, traffic patterns, and electric
grid capacity. The lower-level problem models EV drivers’
responses, considering route selection and charging behavior
based on station availability. To solve this bi-level prob-
lem, the nested method iteratively solves both levels until
convergence. However, these methods can be computation-
ally expensive, particularly in long-distance scenarios with
numerous locations and constraints. As a result, alternative
solutions like clustering and heuristics have been proposed
to provide more efficient approaches, trading optimality for
reduced computational complexity [17], [18].

The contributions of this work can be summarized as
follows. Firstly, the long-distance travel demand used in the
optimal placement of charging infrastructure is estimated



based on robust and statistically unbiased national statis-
tics, providing both the likely origin-destination pairs on
the territory and the average daily traffic volumes between
each pair. Secondly, a new bi-level strategy for the optimal
placement of charging infrastructure is proposed. The physics
of the long-distance trips are directly considered in the lower
level, accounting for vehicle-specific energy needs, traffic-
aware trip time, and model-based charging time. The chosen
heuristic approximating the upper-level of the optimization is
based on a spatial clustering technique, weighted according
to the travel demand statistics.

The paper is structured as follows. Section II describes the
bi-level optimization problem used for the optimal placement
of charging infrastructure. The spatial clustering solution
method we propose is detailed in Section III. Simulation and
comparison results are presented in Section IV.

II. BI-LEVEL OPTIMIZATION PROBLEM

A bi-level optimization problem involves two optimization
problems, where the solution of one problem depends on
the solution of the other. In the context of minimizing travel
time for electric vehicles (EVs) and determining the optimal
charging station placement, we can formulate the bi-level
optimization problem as follows.

A. Lower-level problem

For the lower-level problem, a time and energy optimal
routing strategy, already proposed in our previous work
[13], is employed taking into account the constraints related
to battery charging. For clarity, we briefly resume in the
following the key parts of our previous work adapted to the
current framework.

Let G = (V,A) be a directed acyclic graph, where V is
the set of vertices (i.e. the ends of each road segment i),
and A is the set of arcs (i.e. road segments i connecting
the nodes of the graph). The additional decision variables
of the route planning strategy for electric vehicles with
charging capabilities (i.e. route, cruise speed on arcs and
charging level) are encoded directly in the graph definition.
The graph G is therefore expanded into a directed multigraph
G′ = (V,A′). This is done by creating additional arcs where
charging stations or cruise speed options are available. Then,
in order to better model the additional energy expenditure
due to acceleration events (i.e. transition from V̄i and V̄i+1),
the multidigraph G′ can be conveniently transformed into
a line graph L(G) = (A′, A∗) [19], where each arc in G′

becomes a node, and each arc represents a pair of adjacent
arcs in G′. The models for estimating the time and energy
required to travel along each arc (i.e. the graph weighting
functions) are detailed in [13].

The route planning problem is formulated as a bi-objective
optimization aiming to find the best trade-off between trip
time and energy consumption. Let us denote with ζ the arcs
of the routing graph L(G), with i+ the set of arcs ζ entering
i ∈ A′, and with i− the set of arcs ζ leaving i ∈ A′. Let also
io be the origin arc and id the destination arc. Finally, let
us denote with Pi the sub-path composed by all the arcs ζ

connecting the origin io to i. The route optimization problem
can be formulated as follows:

min
xζ

∑
ζ∈A∗

(λωi,t + (1− λ)ωi,e) · xζ (1a)

s.t.
∑

ζ∈i+
xζ −

∑
ζ∈i−

xζ =


1, if i = io

−1, if i = id

0, otherwise

(1b)

Cmin ≤
∑

ζ∈Pi

ωi,e ≤ C, ∀i ∈ A′ (1c)

xζ ∈ {0, 1}, (1d)

where the objective function (1a) is written as a weighted
sum of the time ωi,t and energy costs ωi,e on each arc of
the routing graph, with λ being the trade-off weight. In this
work, in the lower-level, we optimize trip time, therefore we
set λ = 1. The decision variable xζ takes on binary values
as imposed by (1d) depending on whether the arc ζ belongs
to the optimal path or not. Constraints (1b) are classical
flow conservation constraints. Constraint (1c) enforces every
possible sub-path to verify the physical bounds of battery
capacity. In this work, as in [13], the constrained problem is
relaxed by incorporating constraints directly in the graph via
the lexicographic product of the routing graph and a fully-
disconnected graph that represents the feasible battery levels
for consideration during optimization. The unconstrained
problem is then solved via the Bellman-Ford (BF) shortest-
path algorithm.

The lower problem’s solution, determining optimal charg-
ing decisions for each EV, is integrated into the upper
problem to identify optimal charging station placement. This
approach determines the best locations for stations while
considering the charging needs of all EVs in the network.

B. Upper-level problem

The upper-level problem seeks to minimize the overall
travel time for all EVs in the network by strategically
placing charging stations. This involves considering factors
like detour time, waiting times, and travel efficiency related
to station placement and its impact on EV users. We define
N as the number of candidate locations for charging stations
and M as the set of potential EV users. Assuming we have
a set of candidate locations X = (x1, x2, . . . , xN ), where
each location xk is a potential charging station site. Let sk
be a binary decision variable, where sk = 1 if a charging
station is placed at location k, and sk = 0 otherwise. This
leader problem can be formulated as follows

min
sk

M∑
j=1

Tj(sk) (2a)

s.t.
N∑

k=1

sk ≤ K, (2b)

sk ∈ {0, 1}, (2c)

where the objective function (2a) is a the travel time of each
vehicle

Tj(sk) =
∑
Pj

∗

ωi,t,



where Pj
∗ represents the optimal path for EV j determined

as a solution to the lower-level problem that takes into
account the selected charging stops X . The decision variable
sk takes on binary values as imposed by (2c) depending
on whether a station exists at a specific location or not.
Constraints (2b) ensures that the total number of charging
stations to be placed does not exceed the given budget
(i.e. maximum number of charging stations to be placed)
K, with K ≤ N . The resolution of this problem involves
addressing the challenges and complexities that arise when
solving two interconnected optimization problems. Due to
their hierarchical structure, it is computationally demanding,
particularly due to the complexity and large-scale nature of
the lower-level problem (1a)-(1d).

Therefore, a novel heuristic approach is proposed to ef-
fectively tackle the complexities of this intensive bi-level
optimization problem. The approach is designed to yield
feasible and optimal solutions for strategically positioning
direct-current (DC) fast-charging stations in France.

III. METHODOLOGY

To identify the location of fast-charging stations that is
most appropriate for the charging needs related to the long-
distance trips, it is crucial to analyze the various routes
connecting different cities. By examining all possible routes,
we can ensure that the charging infrastructure is optimally
distributed to cater to the needs of electric vehicle users
traveling between cities.

Using data from studies conducted by the French national
institute of statistics and economics (Insee)1, we have filtered
a list of cities based on two criteria: population and hotel ca-
pacity, as well as their proximity to one another. Specifically,
we have selected the top hundred most populated cities in
France with the highest hotel capacity and then narrowed
down the list by keeping only the cities that are more than
40 km apart. As a result, we have ended up with a final list of
61 cities, illustrated in Figure 1, that meet these criteria. This
approach makes sense since we are trying to identify a set of
cities where there is a high likelihood of demand for charging
stations due to the number of people and hotels in the area,
while also ensuring that the cities are spaced out enough to
increase the spatial coverage of the analysis. In this study, we
calculate via the lower-level of the optimization the fastest
route for each of the 3,600 origin-destination (O-D) pairs,
assuming the availability of all stations and the absence of
any queuing at the charging stations. This implies that for the
lower-level optimization problem presented in section II-A,
the wait time is considered to be equal to zero and the trade-
off weight λ is set equal to one. This is an ideal scenario that
would make it easier and more convenient for EV drivers to
charge their vehicles, and would also help to reduce range
anxiety, which is a common concern among EV drivers.

The location and the available power of the charging
stations within the considered network are key parameters
to schedule the optimal sequence of charging events. The

1Source: statistiques-locales.insee.fr

Fig. 1: The 61 selected French cities for our study.

proposed heuristic strategy consists of two steps. The first
step involves identifying a set of optimal candidate stations,
while the subsequent step focuses on determining the optimal
placement of the required stations, which could be a subset
of the candidate ones.

A. Phase 1: Identification of candidate charging stations

The first step of the methodology assumes the presence
of a virtual charging station at each node of the graph. This
setup establishes an ideal scenario, serving as the foundation
for determining the necessary charging stations required for
the network. By adopting this approach, we gain valuable
insights into the optimal conditions for electric vehicle
users, enabling us to make informed decisions regarding the
placement of charging infrastructure.

For each O/D pair, the lower-level optimization problem
is solved using the unconstrained shortest-path algorithm
BF on the expanded graph, as in (1a)-(1d), to integrate
the battery constraints [13]. Adding virtual charging stations
at each node can be advantageous for identifying optimal
candidate charging locations and analyzing various scenar-
ios. However, this approach presents some computational
challenges. Specifically, as the number of nodes (and thus
virtual stations) increases (about 6.000 virtual stations per
each considered O/D), the memory required to store the
information in the expansion graph (about 7 billion arcs
per each considered O/D) also increases drastically. The
large number of nodes and arcs can put a significant strain
on memory resources and computational time. The positive
aspect is that this calculation is performed only once, and the
resulting solutions, comprising the selected search stations
retained by the optimization process, are saved and treated
as the set of optimal candidate stations for the upper-level
optimization problem.

In this set of optimal candidates, equal charging station
needs were assumed for all roads. However, this does not

https://statistiques-locales.insee.fr/


accurately reflect real-life situations since road usage varies.
By incorporating travel flows and weights, charging station
placement and capacity can be optimized for high-demand
areas, improving infrastructure efficiency and sustainability.

The weighting process utilized the national origin-
destination (O-D) matrix of vehicle flows from the French
government’s official open data platform2, estimating daily
average vehicle travel between departments in 2011. This
approach mitigates biases in real-world data (e.g., data col-
lection methods or regional differences), providing a more
accurate and realistic representation of travel flows. In this
study, the O-D matrix data was processed to convert interde-
partmental flows into inter-city flows for the selected cities
(see Figure 1). Subsequently, a vehicle flow fk is assigned
to each candidate station xk.

B. Phase 2: Optimal charging station selection

In the second part, the main goal is to address the upper-
level problem as described by equations (2a)-(2c). However,
given the computational time challenges associated with
this problem, a practical alternative solution is proposed
by employing the following weighted K-means clustering
approach [20].

The candidate locations for charging stations are treated
as data points, represented by the set X = (x1, x2, . . . , xN ),
with each xk corresponding to a potential site. Vehicle
flows at each location serve as weights and are denoted by
F = (f1, f2, . . . , fN ), where fk signifies the vehicle flow
at location xk. The objective of this approach is to identify
K optimal charging station locations C = (c1, c2, ..., cK),
minimizing the objective function J(C), which is defined as

J(C) =

K∑
k=1

∑
xi∈Ck

fi|xi − ck|2.

The objective function seeks to minimize the sum of squared
distances between candidate locations xi and their assigned
centroids ck, accounting for the location-specific importance
fi. To solve this optimization problem, the algorithm ini-
tializes K centroids, assigns each data point to the nearest
centroid based on a distance metric (e.g., euclidean distance),
recalculates the centroids as the weighted mean of the data
points assigned to each cluster, and iterates these steps
until convergence. The resulting centroids represent the K
optimal locations for the charging stations, considering both
proximity and importance. This ensures that charging stations
are strategically placed in areas with higher traffic volumes,
effectively addressing the charging demands of electric ve-
hicles and enhancing the overall charging infrastructure.

With respect to minimizing the collective travel time of all
EVs in the network as presented in (2a), this metric will be
evaluated a posteriori, after the weighted K-means clustering
algorithm has been applied to determine the optimal charging
station locations. By assessing the time efficiency of the
charging station placements, it is possible to ensure that
users experience reduced waiting times and efficient access

2Source: data.gouv.fr

to charging facilities. This post-hoc analysis can also help
identify areas for improvement and adjustments to the initial
clustering algorithm or additional constraints that may be
incorporated, ultimately leading to better charging station
placements that cater to both spatial and temporal demands.

IV. SIMULATION RESULTS

For each examined infrastructure configuration, the lower-
level optimization problem is solved for the 3,600 considered
O/D pairs, as outlined in Section II-A, identifying fast
routes and sequencing battery charging events. We then
assess various metrics to evaluate system performance, such
as average daily travel time per EV, average daily energy
consumption per EV, and feasibility rate. The feasibility rate
represents the percentage of routes that can be successfully
completed by EVs without battery depletion, considering the
presence of installed charging stations. A higher feasibility
rate implies that the proposed approach effectively increases
the number of viable routes for EV users, ensuring they can
reach their destinations without exhausting their charge. This
metric serves as an indicator of the approach’s effectiveness
in enhancing EV transportation’s overall feasibility and us-
ability.

The routing algorithm was implemented in MATLAB
on a computer with an Intel(R) Core(TM) i7-8850H CPU
at 2.6 GHz and 16 GB of RAM. Traffic data for the road
network was sourced from HERE Maps for March 15, 2022,
specifically during off-peak hours. We assume each O/D pair
is served by an electric vehicle equipped with a 30 kWh
battery. To provide a conservative and robust analysis of
charging infrastructure requirements, a low-capacity battery
was intentionally chosen to prevent reliance on high-capacity
batteries for long-distance travel, thus ensuring users aren’t
forced to purchase EVs with larger batteries. This approach
delivers practical and feasible solutions for charging in-
frastructure without imposing excessive demands on EV
technology. In this study, we assume a charging power of
50 kW. As for the K-means clustering, the algorithm was
executed in Python using the scikit-learn library.

The proposed method can be employed to strategically
position charging stations on a road network currently lack-
ing such infrastructure, while simultaneously improving the
overall system by considering the existing stations.

A. Ideal scenario with no pre-existing charging infrastruc-
ture

The first simulation results seek to exhibit the effectiveness
of the proposed method in strategically situating fast charging
stations across France, assuming no pre-existing stations in
the country. Our objective is to determine the optimal number
of stations that achieve the highest route feasibility rate while
simultaneously complying with the optimization criteria.

The computationally intensive initial phase, described in
Section III-A, yielded a substantial set of 1,767 optimal can-
didate stations. During the optimal station placement phase,
the upper-level problem (M = 3, 600 and N = 1, 767)
was addressed using the weighted K-means algorithm with

https://www.data.gouv.fr/fr/datasets/matrice-nationale-origine-destination-des-flux-de-vehicules-legers-et-de-poids-lourds/


Fig. 2: Locations of 300 fast charging stations in France
determined by weighted K-Means (displayed in Red)

multiple values of K (K = 250, 300, 400, 800). This
approach allowed for the analysis and understanding of the
number of stations’ influence on the overall solution. By
examining different values of K, we aimed to gain insights
into the impact of varying station quantities on the results and
determine the optimal configuration for station placement.

To evaluate the performance of our approach, we com-
pared various investment scenarios with the existing charging
station network. For this purpose, we utilized the REST API
of OpenChargeMap, a non-commercial, crowdsourced ser-
vice known for its comprehensive and accurate information.
This API facilitated the retrieval of precise charging station
locations within the analyzed network. In September 2022,
a data extraction was conducted, resulting in 1,150 existing
fast charging stations in France.

Figures 3 and 4 showcase the comparison results. As
demonstrated, increasing the density of charging stations
leads to reduced average travel times and decreased energy
consumption, owing to enhanced route planning efficiency.
Installing a large number of stations may offer extensive
coverage and convenience for EV users. However, it can also
result in higher costs for station acquisition and installation,
as well as increased operational and maintenance expenses.

Through strategic determination of ideal charging station
locations, Figures 3 and 4 illustrate that it is feasible to
minimize the required number of stations while still achiev-
ing a 100% feasibility rate. These figures emphasize the
effectiveness of thoughtful placement in optimizing charging
infrastructure, ensuring maximum coverage and accessibility
for EV users while minimizing infrastructure costs. Using
our approach, we can strategically position 300 charging
stations (depicted in Figure 2) to achieve substantially im-
proved performance across the network compared to the
existing infrastructure. The observed gains per day and per
EV are relatively modest due to the application of an optimal
recharging strategy, which is also applied to the existing
stations. Nevertheless, we observe an average reduction of

Fig. 3: Mean travel time vs. number of charging stations

Fig. 4: Average energy consumption vs. number of charging
stations

150 Wh in daily energy consumption per EV in France,
mainly thanks to reduced detours to reach farther charging
points. This leads to an overall decrease of 162 MWh per day
nationwide, considering the over one million of daily trips
contained in the national O-D matrix. This notable reduction
underlines the effectiveness of our approach in enhancing
energy efficiency and lowering the overall energy demand of
electric vehicles in the country.

B. Realistic scenario incorporating existing charging
infrastructure

Since September 2022, the existing charging infrastruc-
ture has experienced considerable enhancements. During our
study, we performed two additional data extractions using the
REST API. The first extraction in January 2023 recorded
an increase of 82 charging stations, and the second one in
April 2023 detected 273 newly installed stations throughout
France.

Our method was applied to enhance the existing charging
station infrastructure starting from September 2022. To take



into account the existing stations and identify optimal areas
for infrastructure improvement, a 10 km x 10 km mesh cov-
ering the area within the square that includes France (refer to
the green square in Figure 1). We then calculated the optimal
candidate stations density and the density of actual stations as
of September 2022 within each mesh cell, considering traffic
volume weighting. Figure 5 and Figure 6 illustrate the heat
map of charging station density for the actual infrastructure
and for the set of optimal charging stations. In the second
step, we identify intersections of grid cells in the heat maps
containing at least one charging station. This analysis reveals
areas lacking charging infrastructure, enabling us to focus
on regions requiring additional stations. By targeting non-
intersecting squares, we enhance the charging infrastructure
and derive station locations from the centers of these squares,
yielding a new set of candidate sites with N = 740.

The second set of simulation results evaluates the ef-
fectiveness of our infrastructure development strategy by
comparing it to the real-world charging station locations
observed in January 2023 and April 2023. To achieve this, we
employed the spatial clustering weighted K-means approach
on this new set of candidate charging station locations, using
K = 82 and K = 273 as the desired number of clusters. In
each scenario, the new stations will be incorporated with
the 1,150 existing stations as of September 2022. Figures
7 and 8 depict the impact of charging station expansion on
travel time and daily energy savings per EV. These figures
offer a comparison between the current infrastructure and
our proposed infrastructure development strategy, beginning
with the infrastructure status in September 2022 and tracing
back its evolution. As observed, our approach yields a
greater gain in comparison to the existing stations. Further-
more, with the incorporation of 273 additional stations, we
achieve a 100% feasibility rate, surpassing the performance
of existing infrastructure in April 2023, which does not
currently attain such a rate. This improvement is especially
notable when addressing the challenge of long-distance route
planning for electric vehicles, considering battery charging
constraints for all 3600 O/D pairs in our study. We also
observe that, with our strategy, we could save approximately
160 MWh per day in France. This amount is approximately
equivalent to the electricity generated by 15 onshore wind
turbines, each with a power of 2 MW, a typical size for
this type of turbines. Furthermore, this energy savings is
comparable to the average daily electricity consumption of a
small town of about 20,000 people in France. In addition,
these figures show that the proposed strategy for placing
charging stations achieves the performance of April 2023
with only 82 new stations, as opposed to the 273 existing
stations. This means that our strategic placement could have
saved nearly 200 stations. Given the average purchase and
installation cost of a rapid charging station, ranging from
30,000e to 60,000e, the potential savings in infrastructure
investment are substantial. For instance, with each station
costing 45,000e (mid-range), the savings could be approx-
imately 9Me. This indeed emphasizes the effectiveness of
our strategy in optimizing the deployment of EV charging

Fig. 5: Heat map of existing charging stations in France per
10 km square area.

Fig. 6: Density of candidate charging stations, weighted by
traffic volume per 10 km square area.

infrastructure, yielding considerable cost savings as well as
energy reduction. The proposed approach not only results in
significant financial savings but also contributes to a more
sustainable and energy-efficient transportation system.

V. CONCLUSION

This work addresses the problem of optimal placement
of fast charging infrastructure at nation-wide scale. A new
bi-level optimization strategy is proposed accounting for
the physics of long-distance trips. This includes vehicle-
specific energy requirements, traffic-aware trip time, and
model-based charging time. The chosen heuristic method,
which approximates the upper-level of the optimization,
allows the strategy to yield fast and practical results. These
results can be utilized as a decision support tool for stake-
holders in the charging infrastructure domain. The demand
for long-distance travel is calculated using reliable and
statistically unbiased national data, which determines the



Fig. 7: Impact of charging infrastructure expansion on travel
time savings per day and per EV

Fig. 8: Impact of charging infrastructure expansion on energy
savings per day and per EV

probable origin-destination pairs within the territory and the
corresponding average daily traffic volumes between each
pair. Our approach has been compared with the current
infrastructure, and the results demonstrate its superior ef-
ficiency in terms of travel time, energy consumption and
feasibility rate.
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