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Abstract1

Detailed chemistry computations are indispensable in numerous complex simulation2

tasks, which focus on accurately capturing the ignition process or predicting pollu-3

tant levels. Machine learning method is a modern data-driven approach for predicting4

full detailed thermochemical state-to-state behavior in reacting flow simulations. By5

combining unsupervised clustering algorithms to subdivide the composition space, the6

complexity of adaptive regression models for temporal dynamics can be significantly7

reduced. In this article, a more compact dataset is generated, which is essential for8

the clustering algorithm, by leveraging the adaptive CVODE solver time steps for data9

augmentation for stiff reactive states. A learning workflow that utilizes a deep resid-10

ual network model (ResNet) in conjunction with an adaptive clustering algorithm is11

proposed. This approach aims to replace the stiff ODE direct integration solver tradi-12

tionally used for computing thermochemical species’ state-to-state temporal evolution13
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for detailed chemistry simulations. The learning models are adaptively trained using the14

K-Means clustering algorithm in the nonlinear transformation space for different sub-15

spaces of dynamic systems. Three test cases: H2 (9 species), C2H4 (32 species), and16

CH4 (53 species), are investigated, each exhibiting varying complexities. The study17

demonstrates that the iterative predictions of thermochemical states align well with18

the results obtained from direct numerical integration. Additionally, employing multi-19

ple adaptive regression models in subdomains yields superior performance compared to20

a single regression model prediction case.21

1 Introduction22

With the growth of computing power, simulating reacting flows in space and time at various23

scales has become feasible. However, typical chemical processes entail a multitude of species24

and a vast number of chemical reactions, coupled with diffusive and convective transport25

phenomena. As a result, computationally demanding tasks, such as simulating industrial26

processes like combustion in fuel engines or glass furnaces, and simulation in complex chem-27

ical reactors, present significant challenges. Modeling chemical processes involves non-linear28

stiff ordinary differential equations (ODEs) and requires appropriate solvers like CVODE.129

Integrating the chemical ODEs often becomes the bottleneck in reactive flow simulations.30

State-of-the-art methods for chemistry accelerations traditionally rely on chemistry re-31

ductions and chemistry tabulation methods. In the case of chemistry reductions, only the32

major chemical species are considered, while unimportant species and reactions are excluded33

from the complex mechanisms.Various approaches, such as the Quasi-Steady State Approxi-34

mation (QSSA)2 or Directed Relation Graph (DRG),3 have been proposed to derive reduced35

mechanisms. These reduced mechanisms are then integrated using direct integration solvers,36

utilizing available computational resources. However, reduced mechanisms containing a large37

number of species are still necessary for studying pollutants like nitrogen compounds. Al-38

ternatively, tabulation methods, such as Look-Up Tables (LUT)4 and In-Situ Adaptive Tab-39
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ulation (ISAT),5 can be employed to pre-compute chemical solutions based on canonical40

problems using detailed chemical mechanisms. The pre-computed terms are stored in tables41

with a reduced set of variables and utilized later for chemistry integrations. Nevertheless,42

the curse of dimensionality limits their application to simple cases, as the storage memory43

exponentially increases with the number of chemical species.44

In addition to traditional chemistry tabulation, machine learning algorithms using arti-45

ficial neural networks offer an alternative method for accelerating detailed chemistry inte-46

gration. Machine learning has recently gained significant interest in the applied science and47

engineering fields.6 It has been widely applied to computer vision (CV), natural language48

processing (NLP) for several years, and more recently to various scientific computation prob-49

lems, such as for reactive flow simulations.7,8 In theory, deep learning models can serve as50

surrogate models capable of fitting any non-linear model9.10 Previous studies have demon-51

strated that neural networks can replace traditional integration methods for chemical accel-52

erations.11,12 One notable advantage of utilizing deep neural networks (DNNs) over chemical53

look-up tables is their low memory requirement.13 The number of parameters needed for a54

DNN is much smaller compared to the number of multi-dimensional points that would have55

to be stored in a table for a complex chemical reaction. Complex neural network models56

with moderate memory storage capacity can handle high-dimensional inputs, making them57

suitable for large chemical mechanisms, whereas Look-Up Tables and ISAT store only a58

limited number of input variables. Further studies have extended the application of neu-59

ral networks to even more complex cases. Sen and Menon14 employed neural networks for60

chemistry integration in turbulent premixed and non-premixed abstract problems, including61

syngas combustion with a 14-species mechanism and methane combustion with a 16-species62

mechanism. Wan et al.15 utilized ANN chemistry integration for the direct numerical sim-63

ulation of a syngas turbulent oxy-flame with side-wall effects, incorporating an 11-species64

reduced mechanism.65

Most of these research studies demonstrate the efficacy of deep learning models in accel-66
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erating the computation of source terms compared to direct numerical simulations. Recent67

investigations have further expanded the scope by focusing on more complex fuels and prob-68

lems. For instance, Ranade et al.16 employed DNN models to reconstruct the temporal69

pyrolysis and oxidation processes of complex fuels based on experimental data. Similarly,70

Ding et al.17 applied multiple DNN models to predict the time evolution of each of the 3271

states involved in CH4 combustion, with individual neural networks dedicated to each chem-72

ical species. Furthermore, An et al.18 employed neural networks which replace the direct73

integration of the reduced skeletal mechanism of kerosene with C10H22 in the context of74

engine system simulations, where the total dimension number is strongly reduced to 41 with75

132 elemental reactions neglecting many minor species. These studies reveal the potential of76

employing neural networks to accelerate chemical integration for complex fuels while main-77

taining good prediction accuracy. In addition, embedding augmented physical information78

into the loss function of neural networks represents a more recent approach to ensure that79

the prediction results align with the numerical solution of ODEs.19 However, research on80

this approach has so far been limited to simple cases, necessitating further extensions and81

investigations. Moreover, several studies also combine machine learning methods and tra-82

ditional approach to tackle the complex fuel problems, including using data-driven method83

to reduce the full chemistry to subspace manifold by linear and nonlinear models,20–23 and84

using neural networks to predict the flamelet generated manifolds.24–27
85

Splitting the chemical manifold into several subdomains and training multiple ANNs can86

improve learning efficiencies by facilitating the training process and reducing local model87

complexity. Various methods have been employed to efficiently separate subdomains and en-88

hance prediction accuracy. Physical descriptions of the combustion process, such as progress89

variables28 or the rate of temperature increase,29 can effectively partition the subdomains90

and improve prediction accuracy. Another approach is to utilize data-driven classification al-91

gorithms. One such algorithm is the self-organizing map (SOM) with a neural network struc-92

ture, which preserves the topological structure of the data and produces a low-dimensional93
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representation to partition input data points.18,30,31 Another option is the K-Means parti-94

tioning algorithm. This algorithm partitions the data by calculating the distance between95

each data point and a fixed number of centroids, which represent different clusters. In earlier96

research, Perini et al.32 applied an optimal K-Means algorithm to partition the full chem-97

istry states into subdomains with similar reactive conditions, successfully accelerating the98

simulation time of combustion with high-dimensional full chemistry in engine environments.99

Similarly, Barwey et al.33 used a predefined number of clusters to partition the data and100

demonstrated its ability to separate stiff reactive regions from non-stiff regions in combustion101

processes. Additionally, Nguyen et al.34 employed a hierarchical K-Means algorithm with102

predefined cluster numbers. These advances underscore the effectiveness of employing non-103

supervised partitioning algorithms in complex combustion simulations, enabling improved104

prediction accuracy and efficient handling of different combustion regimes.105

The performance of ANN training results strongly relies on the quality of the dataset used.106

Generating an appropriate dataset that includes information from different scales of chemical107

species is a challenging task. In early studies of simple chemical mechanisms, researchers108

employed random sampling of chemical species within predefined operating ranges11.12 Han109

et al. applied a fixed small-scale sampling time step to ensure the capture of fast ignition110

and heat release processes. Additionally, they introduced input simulation noise during111

each resolution time step to generate a more robust dataset. In a study by Zhang et al.,35
112

different strategies for data-driven generative sampling methods were compared. The authors113

proposed a new multi-scale sampling method for different scales of chemical species. In this114

approach, the species were classified into major and minor groups, and random sampling was115

performed at fixed intervals using either normal or logarithmic distributions. Each of these116

methods aims to ensure the dataset captures the essential features of the chemical processes117

at different scales.118

The review of these studies highlights the potential of using ANN-based chemistry in-119

tegration for more complex fuels. However, combining non-supervised K-Means clustering120
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algorithm with local adaptive temporal full detailed chemistry computation for high dimen-121

sion complex fuels has not been evaluated. Additionally, multi-scale data sampling becomes122

more challenging for high-dimensional complex fuels with numerous minor species. In this123

paper, we propose a workflow for learning 0D chemical kinetics using unsupervised clustering124

combined with deep residual networks. The performance of models by varying the number125

of clusters and network hyperparameters is systematically analysed. To generate a compact126

dataset, the adaptive time marching steps of the CVODE solver is applied to generate the127

sampling sequence, which allows to obtain more data points in the fast ignition and reac-128

tion regions. Multiple models are trained individually for different composition spaces, with129

subdomains of the dynamical system identified using the K-Means clustering algorithm in130

logarithmic space. The results, along with the analysis of model training and iterative infer-131

ence statistics, demonstrate that more accurate predictions can be achieved by empirically132

selecting optimal cluster numbers as hyperparameters for different combustion cases. Fur-133

thermore, the deep residual network outperforms traditional multi-layer perceptrons (MLPs)134

in terms of training performance.135

The remaining sections of the paper are organized as follows. Section 2 provides a gen-136

eral description of the chemistry evolution equations. Section 3 presents a novel strategy137

for generating the training datasets based on a canonical multiple initial conditions numer-138

ical experiment. Section 4 introduces the general workflow, including data pre-processing,139

clustering algorithm, and the proposed regression model. Section 5 focuses on the evalua-140

tion of data clustering, model training, and statistical inference based on actual 0D ignition141

simulations.142

2 Physical problem formulation143

This section details the chemical kinetics problem. The ODEs describing the problem are144

detailed in Sec. 2.1 and the numerical solving in Sec. 2.2.145
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2.1 Combustion equations146

Reactive flows involve the coupling between convection, diffusion and chemical reactions. A147

wide range of physical scales are present in the flow and the resolution of the fully coupled148

system is often out of reach. To address this challenge, a common approach is to employ149

operator splitting methods36,37 which solves the chemistry and transport phenomena sepa-150

rately. In a multi-dimensional simulation, the chemical system in each computational cell is151

described by a set of ODEs in time:152

dYs

dt
=

Ms

ρ
ω̇s ∀s ∈ {1, ..., Ns}

dT

dt
= − 1

ρCp

Ns∑
s=1

hsω̇s

(1)

where Ns represents the total number of chemical species. The variables Ys, hs, Ms, and153

ω̇s denote the mass fraction, molar enthalpy, molar weight, and chemical reaction rate for154

species s, respectively. The variables T , Cp, and ρ represent the temperature, specific heat155

capacity at constant pressure, and density of the gas mixture, respectively. The reactors are156

assumed to be adiabatic and homogeneous. The system is expressed as follows in a generic157

form:158

Ṡ(t) = f(S(t), q) t ∈ [0, tn+1 − tn]

S(t = 0) = [T (tn), Y1(tn), ..., YNs(tn)]
T

(2)

where q is a variable regrouping all thermodynamic constants.159

2.2 Chemical kinetics solver160

A common solver for solving the system described in 2 is CVODE.1 This solver is particularly161

employed in CANTERA,38 which is a chemical computation software used for calculating162

thermodynamic and chemical species terms in reactive flow systems, including the present163

work. CVODE is a multi-step solver with variable order and step sizes, and it utilizes164
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dynamic adaptive time stepping. To approximate the solution S(tn) = S(n) at time tn,165

CVODE solves the following algebraic equation:166

K1∑
i=0

αn,iS(n−1) + hn

K2∑
i=0

βn,iṠ
(n−i)

= 0 (3)

where hn = tn+1 − tn is the time step. To tackle stiff problems, Backward Differentiation167

Formulas (BDF) is specifically considered in fixed-leading coefficient (FLC) form,1 defined168

by K1 = q and K2 = 0. The order q ranges from 1 and 5. The coefficients are fixed by the169

method type, its order, the recent history of the step sizes and the normalization αn,0 = −1.170

The standard CVODE chemical solver in CANTERA effectively handles thermochemical171

states using implicit and combined stiff/non-stiff solvers.38 By adaptively resolving the stiff172

and non-stiff regions with different time steps, the CVODE solver refines the step sizes in173

areas with rapid reaction rates. Figure 1 illustrates the simulations of temperature with174

dynamically adjusted time steps during the temporal evolution of H2, C2H4, and CH4 cases,175

where the x axis for time evolution is plotted under the logarithmic scale. The initial176

temperature and equivalence ratio are set to (T0, ϕ) = (1700K, 1.0). It can be observed177

that the CVODE solver refines the time step dtcvode in fast-reacting regions while using178

larger time steps in the starting and equilibrium regions.179

8



(a) (b)

(c)

Figure 1: Dynamic adaptive time steps used by CVODE solver with (a)H2/air, (b)C2H4/air,
and (c)CH4/air cases, where the simulations are set with T0 = 1700.0K and ϕ = 1.0 The
red lines represent the numerical solution of temperature, and the black dot points represent
the local adaptive time steps given by CVODE solver

During a 3D simulation using operator splitting, the ODE solver typically performs nu-180

merous adaptive time steps within a single computational fluid dynamics (CFD) time step181
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dtcfd = tn+1 − tn. The goal is to replace these individual time steps with a single function182

call that approximates S(t+ dtcfd) based on S(t). In this paper, dtcfd is set to a fixed value183

of dtcfd = 10−6 seconds. In simulations using operator splitting approaches, the time step184

is usually limited by stability limits on convection and diffusion (CFL and Fourier numbers185

are typically defined) and thus dictated by the CFD solver. The extension of the current186

strategy to variable dtcfd is out-of-the-scope of the present paper and will be tackled in fu-187

ture research. The constant dtcfd value selected here is a typical value found in large eddy188

simulations of systems such as gas turbines or engines. The following section outlines how189

CVODE is utilized to generate the dataset that will be used for training a model capable of190

achieving this objective.191

The following section outlines how CVODE is utilized to generate the dataset that will192

be used for training a model capable of achieving this objective.193

3 Dataset generation194

In this paper, the study of three different fuel combustion scenarios involving the fuels H2,195

C2H4 and CH4, as outlined in table 1.The selection of these cases progressively increases the196

complexity of the thermochemical reaction system.197

Table 1: Summary of three different studied fuel cases

Mechanism number of species number of reactions

H2
39 9 19

C2H4
40 32 206

CH4
41 53 325

3.1 Generation of simulation trajectories198

The design of experiments to generate the training dataset consists in specifying multiple199

initial conditions for the temperature and species mass fractions for the set of ODE 2.200

10



However, not all initial species’ mass fractions are physically relevant: in this work, we201

assume that the initial composition is a pure mixture of fuel and air, where the mass fractions202

for all other species are set to zero. A common practice in combustion is to specify the initial203

mass fractions values with a more significant variable called the equivalence ratio ϕ, which is204

a measure of the excess of fuel in the mixture with respect to stoichiometry, and expressed205

as:206

ϕ =
mfuel/mox

(mfuel/mox)st
(4)

where m are masses and n are numbers of moles, and the suffix st refers to stoichiometric207

conditions. The equivalence ratio provides a measure of the excess or deficiency of fuel in208

the mixture. By specifying the equivalence ratio, we can effectively control the initial mass209

fractions of the species in the combustion simulation.The range of initial conditions (IC)210

for the simulations is limited. The pressure is kept constant at the standard atmospheric211

pressure of 1 atm. The temperature ranges from 1600K to 1800K, while the equivalence ratio212

varies from 0.7 to 1.5. To generate the training dataset, a total of 1000 initial conditions213

are randomly selected within these intervals using Latin Hypercube Sampling (LHS), as214

illustrated in Figure 2. Each initial condition is then used to simulate a trajectory that215

represents the evolution of species mass fractions and temperature over time. The resulting216

database consists of pairs (S(t), S(t + dtcfd)) sampled along these trajectories. Since our217

objective is to simulate over multiple time steps starting from a new given initial condition218

(T0, ϕ)new, it is important to split the database based on trajectories rather than individual219

pairs across all trajectories. all pairs of data (S(t), S(t + dtcfd)) from a specific training220

trajectory will be assigned to the training database. The total dataset is splitted with a ratio221

of 75%/15%/10% for train, validation, and test datasets, respectively, based on trajectories.222

A criterion is determined to end a given simulation by defining the following variable:223
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τ =

∣∣∣∣Teq − T (t)

Teq

∣∣∣∣ (5)

Where T (t) denotes the temperature of the local time step and Teq denotes the tem-224

perature at the equilibrium state that is determined for given initial conditions (ϕ, T0) by225

a simple thermodynamic equilibrium computation. The simulations are terminated when226

the total simulation time reaches 10−3s. At this point, it is assumed that all variables have227

reached their equilibrium states. Alternatively, if the simulation reaches convergence with228

a given tolerance τ , the simulation is also considered complete. In this work, the tolerance229

τ is set to 10−4 to ensure that all simulations from different initial conditions reach their230

final equilibrium states. In the next section, a novel strategy for generating the dataset is231

presented, which takes advantage of the time step adaptation feature of the CVODE solver.232

Figure 2: Initial conditions distribution

3.2 Data acquisition from simulation trajectories233

The data pairs (S(t),S(t + dtcfd)) are acquired within the generated trajectories in the234

chemical manifold. However, the states evolution rates vary with time. Roughly speaking,235

reactions are "slow" close to the equilibrium and "fast" after ignition. A naive strategy236
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would consist in selecting sampling points from the target trajectory during the simulation237

with a regular time step, noted as dts. In other words, the dataset would contain pairs of238

the form (S(kdts),S(kdts + dtcfd)), where dts denotes the uniform sampling time step.The239

straightforward approach of selecting data points from the target trajectory with a regular240

time step (dts) may result in an imbalanced dataset. This method would result in fewer data241

points in the ignition region, where chemical reactions occur rapidly. As a consequence, the242

dataset would be imbalanced with a skewed distribution of data points. This imbalance can243

be observed in the temperature and CO2 mass fraction distributions, as shown in Figure 3244

for the case of C2H4.245

Figure 3: The sampling points distribution of (a) temperature and (b) CO2 values generated
by regular sampling method (blue) and CVODE sampling method (red) for the C2H4/air
case. The total size of data points generated by two strategies is around 1.5× 106.

In this research, the dynamic time step adaptation feature of the CVODE solver is utilized246

to generate the sampling sequence. This feature allows us to generate a more balanced247

dataset by leveraging the time step adaptation performed by CVODE during the simulation,248

as presented in section 2.2. To generate the dataset, a format of (S(tcvode),S(tcvode + dtcfd))249

is applied, where tcvode represents the time sequence obtained from the CVODE solver’s time250

step adaptation. To achieve this, the simulations by CVODE run twice at each time step:251

13



once to obtain the points S(tcvode), and a second time to obtain the sequence S(tcvode+dtcfd).252

By taking adaptive time steps, this approach ensures that there are more sampled points in253

fast reaction regions, which is beneficial for training the model. Furthermore, the maximum254

CVODE evolution time step is limited to dtcfd to ensure a sufficient resolution in the near-255

equilibrium region. This restriction helps maintain accuracy in those regions. The resulting256

dataset is better balanced compared to using a constant time step, as demonstrated in257

Figure 3. This balanced dataset is crucial for training neural networks effectively. In the258

next section, a detailed description of the training pipeline is provided.259

4 Learning methodology260

The objective in this study is to replace the direct integration by deep ANN models (DNN)261

for each CFD time step resolution, as illustrated in 4. The objective is to have a model that262

can predict the thermochemical states at time t0+k∆t as S(t0+k∆t) = f(k)DL(S(t0); θ), where263

θ represents the parameters of the learning model. In this workflow S represents the states264

of temperature and each chemical species. Indeed, for such systems the temperature might265

be directly estimated from species mass fractions and enthalpy. In an attempt to make the266

model more general and not solely tailored for constant pressure low Mach problems, the267

temperature is included as an input of the DNN in the context of this research. In this268

section, a detailed explanation of how the dataset is processed to train the neural networks269

for predicting the thermochemical states from their values at time t is introduced.270
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Figure 4: The workflow for the states prediction with time evolution

4.1 Data Pre-processing271

To address the issue of chemical species values being in different scales and having ex-272

tremely small values skewed towards zero, a pre-treatment of the chemical species values273

is performed using a logarithmic transformation. The transformed state vector is denoted274

as Sl = [T, ln(Yj)], where j = 1, ..., Ns. This transformation ensures that the variables are275

scaled to similar ranges, which is particularly beneficial for improving the prediction accu-276

racy of minor chemical species. However, before applying the logarithmic transformation, it277

is necessary to clip the zero values by a threshold. This is because the logarithmic transfor-278

mation is only applicable to positive values. Empirical thresholds are determined for each279

dataset, where the thresholds used for the H2, C2H4, and CH4 cases are 10−10, 10−12, and280

10−28, respectively. These thresholds have been chosen to preserve the accuracy of reactor281

computations. Two aspects seem to have an important impact on the threshold choice:282

• The smallest species mass fraction magnitude differ from one chemical mechanism to283

another. For instance here, the maximum magnitude is around 10−8 and the maximum284
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magnitude is around 10−40 for C2H4 and CH4. The integration needs to take these285

species into account to recover the proper chemical evolution and this sets a higher286

bound for the threshold.287

• The thresholds need to be high enough to suppress numerical artifacts which arise from288

the CVODE numerical integration for some chemical species with small mass fractions.289

A quantitative comparison of training results with different thresholds for C2H4 case are290

provided in to supporting information as an example.291

In addition to the logarithmic transformation, a scaling of the data is applied to facilitate292

the training of the DNN models. A standard normalization technique is employed, which293

sets the mean of each feature to zero and the variance to one. This scaling helps in ensuring294

that all features contribute effectively to the learning process.295

4.2 Data clustering296

A strategy to simplify the learning process is to separate the composition space into sev-297

eral sub-domains. This division is achieved using the K-Means method, which is a non-298

supervised clustering algorithm. The K-Means algorithm partitions the sampling points299

into sub-domains by minimizing the average squared distance between K centroids and the300

sampling points. The K-Means algorithm considers the mean distance in the logarithmic301

scale to maintain consistency with the data pre-processing used for DNN regression. Each302

sub-domain corresponds to a separate region of the composition space. In this approach, a303

distinct DNN model is trained for each sub-domain. This allows for more specialized and304

focused modeling within each region of the composition space. In this work, the K-Means al-305

gorithm is implemented based on K-Means++, which is an improved version of the standard306

K-Means algorithm. K-Means++ enhances the clustering quality compared to the standard307

algorithm. More information about this algorithm can be found in appendix A.308
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4.3 Neural network model309

Neural networks, particularly multiple-layer perceptrons (MLP), have been extensively used310

as surrogates for combustion kinetics solvers. MLPs are popular due to their simplicity and311

computational efficiency. Numerous studies have demonstrated the accuracy of MLPs in312

combustion problems7.8 However, when dealing with large chemical mechanisms, accurate313

regression using MLPs may require a significant number of parameters. This can lead to314

optimization challenges, such as the vanishing gradient problem commonly encountered in315

machine learning applications.6 The vanishing gradient problem refers to the issue where the316

gradients during backpropagation diminish as they propagate through many layers, making317

it difficult for the network to learn effectively. To address this challenge, an alternative318

approach used in this work is the application of residual layer structures with shortcut319

connections, known as ResNet.42 Similar topology of ResNet design has been utilized in320

various physico-chemistry computations, such as fluid flash computations43 and flamelet321

progress variables tabulation.26 The ResNet architecture has been shown to mitigate the322

vanishing gradient problem and enable efficient learning for complex problems. Figure 5323

provides an illustration of the ResNet architecture. The ResNet architecture in our research324

consists of basic units called resblocks, which include two standard hidden layers. The key325

principle of ResNet is the inclusion of shortcut connections that bypass one or more layers,326

allowing each layer to predict an increment rather than a direct value. This enables the327

network to learn residual information, which facilitates the training process. If x is the input328

of a resblock, the output y is given by:329

y = σ(F(x) + x) (6)

where F(x) is the feed-forward neural network composed of the two hidden layers and σ330

represents the non-linear activation function. The number of residual blocks is denoted as331

nr, and the neuron number in each hidden layer is represented as ne. The swish activation332
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function44 will be used throughout this work:333

swish(x) =
x

1 + e−βx
(7)

In this equation, β is set by 1 by default as indicated in44. In practical applications, par-334

ticularly for regression problems, the use of the swish activation function has been found to335

be more efficient for the optimization process compared to commonly used activation func-336

tions such as ReLU , sigmoid, or tanh.29,43 This observation has been verified through various337

experiments conducted in this study. A summary of the DNN-based model architecture is338

provided in Fig. 6.339

Figure 5: Neural network learning model structure design

4.4 Model training340

In the present work, the Mean Squared Error (MSE) is used as the loss function for model341

training. The DNN models are trained using the Tensorflow 2.10.1 framework.45 For opti-342

mization, the Adam algorithm is chosen.46 The model parameters are initialized using the343

Glorot Uniform method, and an exponential decay strategy is applied to the initial learning344
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Figure 6: The global learning algorithm for the states prediction with the separation of
composition space

rate during the training epochs. In this research, the initial learning rate for all three cases345

is set to 0.005. A learning decay rate is employed to aid the optimization process,47 and it346

is defined as r(k) = r0 × η
k
N , where r0, η, k, and N represent the initial learning rate, the347

decay rate, the kth step, and the total number of decay steps, respectively. In this study, the348

decay rate is empirically set to 0.92 and the number of decay steps to 650.349
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4.5 Model performance evaluation350

The DNN model serves as an operator for numerical time-stepping, denoted as fDL. By351

utilizing this learned operator, we can simulate the trajectory of a chemical reactor with352

a fixed initial condition by iteratively computing S(t0 + k∆t) = f(k)DL(S(t0 + (k − 1)∆t); θ).353

During the time evolution, the thermochemical states are computed iteratively in each time354

step resolution until the end of the simulation. Therefore, it is insufficient to evaluate355

the prediction performance for a single input-output pair of the models. The error may356

accumulate and lead to divergence after multiple iterations. Hence, it is crucial to assess the357

overall inference performance over multiple iterations for the entire simulation.358

To compare the results with reference numerical simulations, a global accumulative log-359

arithmic mean average percentage error Mi is used to evaluate the performance of chemical360

species trajectories under different initial conditions. Additionally, the normal mean average361

percentage error M0 is employed to evaluate the temperature prediction. It is important to362

note that since the models are trained using data in logarithmic space for chemical species,363

the logarithmic error metric is used for consistency. These introduced errors are denoted364

mathematically by:365

M0(T0, p0, ϕ) =
1

Niter

Niter∑
k=1

∣∣∣∣T pred(kdt)− T (kdt)

T (kdt)

∣∣∣∣
Mi(T0, p0, ϕ) =

1

Niter

Niter∑
k=1

∣∣∣∣∣ ln(Y pred
i (kdt))− ln(Yi(kdt))

ln(Yi(kdt))

∣∣∣∣∣ i = 1, ..., Ns

(8)

where i represents each state component (temperature and chemical species), and Niter

is the number of total iterations until the final time step prediction which is specific for each

simulation with different initial conditions. Each Mi is computed for one trajectory with

one initial condition, for one state component. The overall average errors M are computed

by averaging values of all dimensions, which is written as:

M(T0, p0, ϕ) =
M0(T0, p0, ϕ) +

∑Ns

i=1Mi(T0, p0, ϕ)

Ns + 1
i = 1, ..., Ns (9)
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The global errors M and errors for each state component Mi are statistically evaluated366

for all 100 initial conditions in the test set. This metric accounts for the potential error367

accumulation that may arise when repeatedly using a neural network to predict the evolution368

of chemical states. By taking into account the complete range of initial conditions, the overall369

performance and reliability of the neural network model can be evaluated in accurately370

capturing the dynamics of the chemical reactions.371

5 Results372

This section presents the results of the DNN model training performance and evaluates the373

simulation results achieved using the trained models. Primarily, a parametric assessment of374

the K-means clustering is conducted in Section 5.1. Then, the investigation of the perfor-375

mance of the DNN surrogate model on 0-D reactor simulations is carried out in Section 5.2.376

Finally, a particular study about the influence of the database generation method, comparing377

regular and CVODE-based sampling is introduced in Section 5.3.378

5.1 Analysis of data clustering379

The number of K-means clusters needs to be selected beforehand as there is no method for

systematic selection. A practical approach to evaluate the clustering efficiency is to compute

the distortion D, which corresponds to the squared Euclidean distance between the data

points and the centroids:

D =
K∑
i=1

∑
S∈Ωi

∥∥∥Ŝl − di

∥∥∥2

(10)

where Sl is the logarithm of the state vector and Ŝl its normalized counter-part. di represent380

the coordinates of the K centroids. The evolution of the distortion with the number of381

clusters is shown in Figure 7 for H2, C2H4 and CH4. It can be observed that as the number382

of clusters increases, the distortion decreases monotonically, with a steeper slope initially and383
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a smoother evolution thereafter. In this study, the optimal number of clusters for each fuel384

is determined empirically within a predefined range by evaluating inference simulations. It385

should be noted that while the data is separated into subdomains with a converged distortion386

value, the local data distribution may not be optimal for model training, which can lead to387

inference instabilities during iterative predictions. Models are evaluated with up to six388

clusters, as the distortion value does not significantly decrease for larger numbers of clusters,389

indicating that all sampling points have already been optimally partitioned around local390

centroids. Moreover, with an increasing number of clusters after six, some subdomains391

may have insufficient data for effective local model training. After partitioning the dataset,392

individual learning models are trained and evaluated for each subdomain.393

5.2 Model training evaluations394

Several model training strategies are crucial for achieving optimal performance in this re-395

search. Firstly, trajectory learning under the logarithmic scale is necessary to address the396

prediction of extremely small values. After the data preprocessing, the rescaled data for each397

subdomain model in different cases are shown in Figure 8. The logarithmic transformation398

helps to transform the original data distribution into a more homogeneous distribution and399

removes extreme values skewed towards zero.48 Data standardization, on the other hand,400

rescales the original data to have a mean of zero and a unit variance.401

Training with a deeper neural network structure, including residual shortcuts, is more402

efficient compared to traditional multiple-layer perceptrons (MLP). This is demonstrated by403

comparing a standard MLP with the same number of hidden layers and neurons in each404

layer to our optimal trained ResNet models. Additionally, the activation function swish405

is expected to improve the optimization process compared to the commonly used ReLU406

activation function in previous research papers15.34 The evolution of the loss function over407

training epochs for models in a cluster containing strongly reactive states is depicted in408

Figure 9. It can be observed that the swish activation function significantly promotes409
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(a) H2 (b) C2H4

(c) CH4

Figure 7: distortion values over cluster numbers for (a) H2/air, (b) C2H4/air, and (c)
CH4/air cases

the optimization process, leading to smaller loss function values compared to the ReLU410

activation function. Furthermore, the residual networks with skip-connection structures also411

improve the optimization results for reactive zones. By employing the selected strategy in this412

work, which is a residual neural network model with the swish activation function, we achieve413

the lowest loss values during the optimization compared to other strategies. Additionally,414

there is no significant difference between training and validation losses, indicating that there415

is no overfitting during the training process. Similar conclusions regarding the absence of416
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(a)

(b)

(c)

Figure 8: Distribution of training data from reactive subdomains before and after the pre-
processing with nonlinear logarithmic transformation: (a)H2, (b)C2H4, and (c)CH4.
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(a) (b)

(c)

Figure 9: Training and validation loss function values(MSE) over epoch number for models
of reactive subdomains for 3 cases (a)H2/air, (b)C2H4/air, and (c)CH4/air.
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(a)

(b)

(c)

Figure 10: Parity plots of true output values and predicted errors for (a)H2/air, (b)C2H4/air,
and (c)CH4/air. The chosen plot elements here are temperature, the fuel and a radical minor
species, which are predicted by models of a reactive subdomain.
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overfitting can also be drawn from Figure 10, which presents the parity plots of the true417

output values Strue and the errors between the true and predicted values Spred−Strue. Most418

of error values between the true and predicted states are much smaller than the state values419

under physical scales for each dimension.420

Tables 2, 3, and 4 provide statistics of M, including the average, minimum, and maximum421

values, for inference simulations of 100 initial conditions in the test set. The total sizes of422

the trained models are 330 kB, 3.2 MB, and 3.8 MB for the H2, C2H4, and CH4 cases,423

respectively. Box plots in Figures 11, 12, and 13 illustrate the statistical distribution of424

temperature and species mass fractions. The boxplots represent the distribution of the425

errors Mi for each chemical species and of M0 for temperature. The errors are computed426

for 100 test simulations and the y axis denotes the error values. The inner box extends427

from the first quartile Q1 to the third quartile Q3 of the distribution, while the whiskers428

extend from Q1˘1.5 ∗ IQR to Q3 + 1.5 ∗ IQR where the interquartile range IQR equals429

Q3 − Q1. for the black dots are determined to be outliers which represent the highest and430

lowest values of the error distribution. From the overall statistical results, it is observed431

that methods with multiple models are more efficient compared to the baseline method with432

only one cluster. However, in some cases where the mean error M is low, there are still a433

few extreme error values. This observation highlights the issue of trajectory divergence from434

the correct path during the simulation, which can be attributed to the limited robustness435

of the local models. The optimal number of clusters leading to the best performance, with436

the lowest M, in the predefined workflow is found to be 6, 4, and 5 for the H2, C2H4, and437

CH4 cases, respectively. The data is divided into different subdomains, including preheated438

mixing zones with extreme values skewed towards zero, stiff reactive zones, and burn-up439

zones. The best models for each fuel will be considered in the subsequent analysis. Figure440

14 demonstrates the partitioned clusters represented by different colors on the manifold of441

mass fractions of O2 and H2O in logarithmic scale over the progress variable defined by442

c = T−T0

Teq−T0
. It is evident that the total manifolds are piecewise separated into subdomains.443
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Each subdomain exhibits reduced complexity, enabling the construction of learning models444

with simpler structures and fewer parameters for all subdomains.445

Table 2: Statistics for experiments of H2/air case

Cluster number nr ne mean M(%) minimum M(%) maximum M%)

1 1 120 0.301 0.043 2.913
2 1 85 0.097 0.016 1.446
3 1 70 0.117 0.020 1.056
4 1 60 0.068 0.010 3.571
5 1 54 0.081 0.023 11.87
6 1 49 0.068 0.012 0.643

Table 3: Statistics for experiments of C2H4/air case

Cluster number nr ne mean M(%) minimum M(%) maximum M(%)

1 2 300 0.971 0.047 45.30
2 2 212 0.366 0.070 3.571
3 2 174 0.039 0.009 187.94
4 2 150 0.033 0.010 0.249
5 2 135 0.040 0.010 0.312
6 2 123 0.043 0.010 0.179

Table 4: Statistics for experiments of CH4/air case

Cluster number nr ne mean M(%) minimum M(%) maximum M(%)

1 2 350 0.947 0.199 6.907
2 2 248 0.882 0.138 9.391
3 2 202 0.332 0.036 4.421
4 2 175 0.153 0.042 2.159
5 2 157 0.152 0.033 1.102
6 2 143 0.173 0.030 1.583
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(a)

(b)

Figure 11: Box plot of statistical logMAPE errors for 100 a posteriori test simulations of
H2/air case with (a)temperature and major chemical species and (b)several minor chemical
species

Furthermore, additional evaluations of iterative predictions are conducted by increasing446

the number of simulations within the predefined range of initial conditions. In this case,447
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(a)

(b)

Figure 12: Box plot of statistical logMAPE errors for 100 a posteriori test simulations
of C2H4/air case with (a)temperature and major chemical species and (b)several minor
chemical species

1680 simulations based on model predictions are generated, and the overall accumulative448

logarithmic Mean Average Percentage Error (logMAPE) (9) is computed for each simulation.449
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(a)

(b)

Figure 13: Box plot of statistical logMAPE errors for 100 a posteriori test simulations of
CH4/air case with (a)temperature and major chemical species and (b)several minor chemical
species

Cubic interpolation is utilized to generalize the 2D error distribution functions. The design of450

the experiment with a large number of initial conditions is fixed within the same predefined451
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(a) H2 with 6 clusters (b) C2H4 with 4 clusters

(c) CH4 with 5 clusters

Figure 14: 3D clustering plots of manifolds for mass fractions of O2 and H2O over the
evolution of progress variable: (a)H2/air, (b)C2H4/air, and (c)CH4/air.

range that was used for training the models, with regular samplings of T0 and ϕ at intervals452

of ∆T0 = 5K and ∆ϕ = 0.01. The distribution of overall average MAPE errors is depicted453

in Figure 15. It can be observed that simulations based on the best models exhibit overall454

average MAPE errors lower than 1%, with a slight decrease in accuracy near the boundaries of455

the domain. Due to its higher complexity, the CH4/air case exhibits larger overall logMAPE456

errors, but they are still within an acceptable range.457
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(a) H2 (b) C2H4

(c) CH4

Figure 15: 2D distribution of mean relative errors of all dimensions for (a)H2/air,
(b)C2H4/air, and (c)CH4/air cases within designed initial condition zone, using refined
initial conditions sampling and cubic interpolation

5.3 Comparison of sampling strategies458

The results of comparing predictions using regular sampling and the CVODE-based sampling459

method are shown in Table 5. The chosen clusters are based on the optimal clusters for460

each case, which is 6, 4 and 5 for H2, C2H4 and CH4. The results demonstrate that the461

CVODE-based sampling method improves the overall prediction performance, as indicated462

by smaller mean, minimum, and maximum errors (M) for all three cases. Regular sampling463
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Table 5: Statistics for experiments of H2/air, C2H4/air and CH4/air case using regular
sampling method and CVODE sampling method

H2 C2H4 CH4

Regular sampling
mean M(%) 0.170 0.051 0.332

maximum M(%) 1103.2 0.434 1.880
minimum M(%) 0.018 0.019 0.063

CVODE sampling
mean M(%) 0.069 0.033 0.152

maximum M(%) 0.643 0.249 1.102
minimum M(%) 0.012 0.010 0.034

can lead to unbalanced clustering and uneven data distribution, resulting in unstable iterative464

predictions, as observed in Table 5 for the H2 case. By employing adaptive time steps, the465

CVODE-based method generates more data points from fast reaction regions, leading to a466

more robust unsupervised clustering model with a balanced distribution of data points.467

5.4 Simulation of 0D reactors using DNN468

To illustrate the prediction of specific trajectories, two simulations with different initial con-469

ditions near the boundaries of the dataset were performed. One simulation was conducted470

with a low temperature of 1620.0K and an equivalence ratio of 0.75, while the other simu-471

lation had a high temperature of 1790.0K and an equivalence ratio of 1.45. The results for472

temperature are shown in Figure 16 for the three fuels. It can be observed that the predic-473

tions generated by the models closely match the results of the direct numerical simulations.474

Additional inference results which show the predictions for a subset of the chemical species,475

and results which display the predictions in logarithmic predictive space, with clustering476

zones marked by different colors can be found in supplementary materials. The DNN results477

exhibit good agreement with the direct numerical simulations in both the auto-ignition zones478

and equilibrium zones, compared to the exact numerical simulations. The cluster index of479

states is predicted after unsupervised classification by the clustering algorithm, resulting in480
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states belonging to different subdomains at different time steps. The predictions in loga-481

rithmic space are accurate within each partitioned subdomain of states, and the state values482

skewed toward zero are accurately predicted at the start of the simulations.483

(a) (b)

(c)

Figure 16: Continuous inference simulation of (a)H2/air, (b)C2H4/air, and (c)CH4/air
cases for temperature with 2 trajectories: T01 = 1620.0K,ϕ1 = 0.75 and T02 = 1790.0K,ϕ2 =
1.45.
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5.5 Computing performance484

The performance of the DNNs in terms of computational cost is assessed in this section.485

A single 0-D reactor is computed and the cost of the simulation is analyzed. The Python486

framework used in the above DNN study is not adapted to performance analysis as the Ten-487

sorflow DNN inference involves overhead costs. Tests on computational speed are therefore488

performed using the NNICE49 library, which is an in-house C++ code providing lightweight489

DNN inference capabilities without relying on Machine Learning libraries C++ APIs. The490

NNICE library is easily coupled to any CFD code and is relevant for estimating gains which491

can be expected by replacing a direct integrator with DNNs.492

The CVODE and DNN integrations are timed at each time step. We focus here on the493

C2H4 case to demonstrate the decrease in computational cost using DNNS. The selected494

initial condition is T0 = 1700.0K and ϕ = 1.0. We use here 4 clusters, as it has been shown495

to lead to the best results for C2H4. Several DNN architectures, summarized in Table 6, are496

tested to illustrate the impact of DNN size on acceleration. We verified that all networks497

lead to satisfactory results. Figure 17 shows the acceleration ratio tcvode/tDNN for each498

iteration during the simulation, where tcvode and tDNN are the time spent in CVODE and499

DNN integration, respectively.500

The results clearly demonstrate that the chemistry integration performed by the DNN is501

5 to 30 times faster than CVODE. More specifically, DNN predictions for both stiff (from 0.0s502

to approx. 4 × 10−5s) and non-stiff regions exhibit the same computing efficiency, whereas503

the CVODE solver incurs higher costs due to the use of implicit schemes involving Jacobian504

matrix computations. This leads to a significant gain in computational cost for the most505

reactive states, as seen in Figure 17 in the first instants of the simulation, corresponding to506

the ignition phase. Moreover, the computation acceleration is enhanced when the size of the507

network decreases. This suggests that for an optimal computing efficiency, a hyper-parameter508

search on the network size could bring benefits.509

36



Table 6: Models information for DNN performance testing

DNN model nr ne model size for each cluster

DNN1 1 150 462.7 kB
DNN2 2 120 554.7 kB
DNN3 2 150 830.9 kB

Figure 17: The acceleration ratio tcvode/tDNN between CVODE resolution and DNN predic-
tion resolution for each time step, curves for three models with different sizes.

6 Conclusion and perspective510

In this research, a deep learning surrogate model has been successfully trained and applied511

to the predictions of 0D combustion simulations using different fuels of increasing complex-512

ity. Several key strategies have been employed, including a new sampling method based513

on adaptive time steps of the CVODE solver to achieve a balanced data distribution, the514

application of a non-supervised K-Means algorithm to separate the dataset into subdomains515

in logarithmic space, and the use of residual networks to improve optimization during the516

training process. The analysis of the inference results demonstrates that by partitioning the517

sampling points into subdomains, the overall complexity of the model prediction process518
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can be reduced while achieving optimal results. Proper selection of hyperparameters plays519

a crucial role in obtaining accurate iterative predictions.520

As an extension of this work, the proposed sampling method based on implicit numerical521

stiff solvers can be further applied to sample thermochemical data points in the context of522

2D/3D combustion processes involving convection and diffusion terms. This would allow the523

learning workflow to be extended to more complex problems that are coupled with convection524

and diffusion in computational fluid dynamics.525

A K-Means algorithm526

Figure 18: Clustering by K-Means algorithm

The K-Means algorithm, as shown in Figure 18, is a clustering algorithm that partitions a

set of N sampling points based on their similarities, aiming to minimize the average squared

distance between K centroids and the sampling points. Given a set of N observed sampling

points S1,S2, ...,SN , the algorithm iteratively minimizes the within-cluster sum of squares

(WCSS) as the loss function. The WCSS is defined as the sum of the squared Euclidean
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distances between each sampling point and its assigned centroid, which is denoted as:

Lkmeans =
K∑
i=1

∑
S∈Ωi

∥∥∥Ŝl − di

∥∥∥
2

(11)

where the di denotes the centroid of each cluster, Ŝ represents the data normalization. Notice527

that the clustering step is performed in the transformed coordinates after the normalized528

logarithmic transformation for chemical species Yj with Sl = [T, ln(Yj)], j = 1, ..., Ns.529

The K-Means++ algorithm50 is an improved version of the standard K-Means algorithm530

that addresses the issue of poor clusterings that can occur with the standard approach. It531

introduces a more effective initialization step for selecting the initial centroids. The steps of532

the centroids initialization by the K-Means++ algorithm are as follows:533

• Initialize the first centroid by randomly selecting one data point from the dataset using534

Latin Hypercube Sampling(LHS).535

• For each remaining data point, compute its distance to the nearest centroid.536

• Select the next centroid from the remaining data points with a probability proportional537

to the square of the distance to the nearest centroid. This ensures that points further538

away from existing centroids are more likely to be selected as new centroids.539

• Repeat steps 2 and 3 until K centroids are selected.540

By using the K-Means++ algorithm for initialization, the K-Means clustering process541

starts with more representative initial centroids, leading to better overall clusterings. This542

helps to avoid situations where the algorithm gets stuck in sub-optimal solutions or produces543

unbalanced clusters.544
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Supporting Information545

Detailed quantitative analysis of thresholds and additional 0D simulation results for several546

chemical species based on optimal DNN models (PDF)547
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