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Abstract:
In a previous work, a bi-level optimization approach was presented for the energy management
of Hybrid Electric Vehicles (HEVs), using a statistical model for traffic conditions. The present
work is an extension of this framework to the eco-routing problem. The optimal trajectory is
computed as the shortest path on a weighted graph whose nodes are (position, state of charge)
pairs for the vehicle. The edge costs are provided by cost maps from an offline optimization at
the lower level of small road segments. The error due to the discretization of the state of charge is
proven to be linear if the cost maps are Lipschitz. The classical A∗ algorithm is used to solve the
problem, with a heuristic based on a lower bound of the energy needed to complete the travel.
The eco-routing method is compared to the fastest-path strategy by numerical simulations on
a simple synthetic road network.
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1. INTRODUCTION

Road networks usually allow several paths to reach a
destination given a starting position. While paths are
traditionally chosen to minimize travel time, methods to
minimize the fuel consumption have received increased
attention in the recent years. This new criterion gives
rise to the so-called eco-routing problem. The fuel savings
between the optimized eco-routing and the path naturally
chosen by the drivers can be important, up to 25% Ahn
and Rakha (2007); Ericsson et al. (2006). Besides, distance
minimal paths have been shown to differ from the eco-
routing paths, especially in congested traffic Barth et al.
(2007). This indicates that eco-routing planning needs to
take into account the traffic conditions.

Most methods propose to solve the eco-routing planning
based on shortest path algorithms, using weighted graphs
to represent the road network with edge costs correspond-
ing to the consumption, see De Nunzio et al. (2017).
Dijkstra or A∗ algorithms can be used when edge costs
are positive, or the slower Ford-Bellman algorithm when
edge costs can be negative Bellman (1958).

In the case of HEVs, expressing the costs in terms of fuel
consumption instead of energy gives positive costs, but
requires knowledge of the torque policy of the vehicle.
Consumption estimators, that take traffic conditions into
account, are usually divided in two main categories: macro-

scopic models based on closed algebraic forms Lighthill
and Whitham (1955), and microscopic models based on
differential equations Panwai and Dia (2005).

The main contribution of the present work is to adapt
the bi-level approach from Le Rhun et al. (2019a), which
handles traffic conditions in a statistical way, with the
vehicle following probability distributions for speed and
acceleration. More precisely, the method was previously
used to optimize a single known travel, while we now tackle
the eco-routing problem of finding the optimal path on a
given road network.

The paper is organized as follows. Section 2 introduces the
models for the hybrid vehicle, traffic conditions, and states
the eco-routing problem of HEVs resulting from the bi-
level decomposition. Section 3 details the numerical errors
due to the discretization. Section 4 presents the complexity
of the algorithm used to solve the eco-routing problem.
Section 5 discusses the numerical simulations performed
using actual traffic data, mapped to a small synthetic road
network.

2. MODELING APPROACH

2.1 Vehicle model

Let us consider an HEV with ‘parallel’ design (see e.g.
Chau and Wong (2002)), where both the thermal engine
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avenue de Bois-Préau, 92852 Rueil-Malmaison, France,

[giovanni.de-nunzio, t.leroy]@ifpen.fr
∗∗∗ P. Martinon is with Inria Paris and Sorbonne-Université, CNRS,
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Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005

Paris, France, pierre.martinon@inria.fr

Abstract:
In a previous work, a bi-level optimization approach was presented for the energy management
of Hybrid Electric Vehicles (HEVs), using a statistical model for traffic conditions. The present
work is an extension of this framework to the eco-routing problem. The optimal trajectory is
computed as the shortest path on a weighted graph whose nodes are (position, state of charge)
pairs for the vehicle. The edge costs are provided by cost maps from an offline optimization at
the lower level of small road segments. The error due to the discretization of the state of charge is
proven to be linear if the cost maps are Lipschitz. The classical A∗ algorithm is used to solve the
problem, with a heuristic based on a lower bound of the energy needed to complete the travel.
The eco-routing method is compared to the fastest-path strategy by numerical simulations on
a simple synthetic road network.

Keywords: Eco-routing, bi-level optimization, traffic model

1. INTRODUCTION

Road networks usually allow several paths to reach a
destination given a starting position. While paths are
traditionally chosen to minimize travel time, methods to
minimize the fuel consumption have received increased
attention in the recent years. This new criterion gives
rise to the so-called eco-routing problem. The fuel savings
between the optimized eco-routing and the path naturally
chosen by the drivers can be important, up to 25% Ahn
and Rakha (2007); Ericsson et al. (2006). Besides, distance
minimal paths have been shown to differ from the eco-
routing paths, especially in congested traffic Barth et al.
(2007). This indicates that eco-routing planning needs to
take into account the traffic conditions.

Most methods propose to solve the eco-routing planning
based on shortest path algorithms, using weighted graphs
to represent the road network with edge costs correspond-
ing to the consumption, see De Nunzio et al. (2017).
Dijkstra or A∗ algorithms can be used when edge costs
are positive, or the slower Ford-Bellman algorithm when
edge costs can be negative Bellman (1958).

In the case of HEVs, expressing the costs in terms of fuel
consumption instead of energy gives positive costs, but
requires knowledge of the torque policy of the vehicle.
Consumption estimators, that take traffic conditions into
account, are usually divided in two main categories: macro-

scopic models based on closed algebraic forms Lighthill
and Whitham (1955), and microscopic models based on
differential equations Panwai and Dia (2005).

The main contribution of the present work is to adapt
the bi-level approach from Le Rhun et al. (2019a), which
handles traffic conditions in a statistical way, with the
vehicle following probability distributions for speed and
acceleration. More precisely, the method was previously
used to optimize a single known travel, while we now tackle
the eco-routing problem of finding the optimal path on a
given road network.

The paper is organized as follows. Section 2 introduces the
models for the hybrid vehicle, traffic conditions, and states
the eco-routing problem of HEVs resulting from the bi-
level decomposition. Section 3 details the numerical errors
due to the discretization. Section 4 presents the complexity
of the algorithm used to solve the eco-routing problem.
Section 5 discusses the numerical simulations performed
using actual traffic data, mapped to a small synthetic road
network.

2. MODELING APPROACH

2.1 Vehicle model

Let us consider an HEV with ‘parallel’ design (see e.g.
Chau and Wong (2002)), where both the thermal engine

An Eco-Routing Algorithm for HEVs
Under Traffic Conditions

Arthur Le Rhun ∗ Frédéric Bonnans ∗ Giovanni De Nunzio ∗∗

Thomas Leroy ∗∗ Pierre Martinon ∗∗∗

∗ A. Le Rhun and F. Bonnans are with Inria Saclay and CMAP Ecole
Polytechnique, route de Saclay, 91128 Palaiseau, France,
[arthur.le-rhun, frederic.bonnans]@inria.fr

∗∗ G. De Nunzio and T. Leroy are with IFP Energies nouvelles, 1 et 4
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1. INTRODUCTION

Road networks usually allow several paths to reach a
destination given a starting position. While paths are
traditionally chosen to minimize travel time, methods to
minimize the fuel consumption have received increased
attention in the recent years. This new criterion gives
rise to the so-called eco-routing problem. The fuel savings
between the optimized eco-routing and the path naturally
chosen by the drivers can be important, up to 25% Ahn
and Rakha (2007); Ericsson et al. (2006). Besides, distance
minimal paths have been shown to differ from the eco-
routing paths, especially in congested traffic Barth et al.
(2007). This indicates that eco-routing planning needs to
take into account the traffic conditions.

Most methods propose to solve the eco-routing planning
based on shortest path algorithms, using weighted graphs
to represent the road network with edge costs correspond-
ing to the consumption, see De Nunzio et al. (2017).
Dijkstra or A∗ algorithms can be used when edge costs
are positive, or the slower Ford-Bellman algorithm when
edge costs can be negative Bellman (1958).

In the case of HEVs, expressing the costs in terms of fuel
consumption instead of energy gives positive costs, but
requires knowledge of the torque policy of the vehicle.
Consumption estimators, that take traffic conditions into
account, are usually divided in two main categories: macro-

scopic models based on closed algebraic forms Lighthill
and Whitham (1955), and microscopic models based on
differential equations Panwai and Dia (2005).

The main contribution of the present work is to adapt
the bi-level approach from Le Rhun et al. (2019a), which
handles traffic conditions in a statistical way, with the
vehicle following probability distributions for speed and
acceleration. More precisely, the method was previously
used to optimize a single known travel, while we now tackle
the eco-routing problem of finding the optimal path on a
given road network.

The paper is organized as follows. Section 2 introduces the
models for the hybrid vehicle, traffic conditions, and states
the eco-routing problem of HEVs resulting from the bi-
level decomposition. Section 3 details the numerical errors
due to the discretization. Section 4 presents the complexity
of the algorithm used to solve the eco-routing problem.
Section 5 discusses the numerical simulations performed
using actual traffic data, mapped to a small synthetic road
network.
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1. INTRODUCTION

Road networks usually allow several paths to reach a
destination given a starting position. While paths are
traditionally chosen to minimize travel time, methods to
minimize the fuel consumption have received increased
attention in the recent years. This new criterion gives
rise to the so-called eco-routing problem. The fuel savings
between the optimized eco-routing and the path naturally
chosen by the drivers can be important, up to 25% Ahn
and Rakha (2007); Ericsson et al. (2006). Besides, distance
minimal paths have been shown to differ from the eco-
routing paths, especially in congested traffic Barth et al.
(2007). This indicates that eco-routing planning needs to
take into account the traffic conditions.

Most methods propose to solve the eco-routing planning
based on shortest path algorithms, using weighted graphs
to represent the road network with edge costs correspond-
ing to the consumption, see De Nunzio et al. (2017).
Dijkstra or A∗ algorithms can be used when edge costs
are positive, or the slower Ford-Bellman algorithm when
edge costs can be negative Bellman (1958).

In the case of HEVs, expressing the costs in terms of fuel
consumption instead of energy gives positive costs, but
requires knowledge of the torque policy of the vehicle.
Consumption estimators, that take traffic conditions into
account, are usually divided in two main categories: macro-

scopic models based on closed algebraic forms Lighthill
and Whitham (1955), and microscopic models based on
differential equations Panwai and Dia (2005).

The main contribution of the present work is to adapt
the bi-level approach from Le Rhun et al. (2019a), which
handles traffic conditions in a statistical way, with the
vehicle following probability distributions for speed and
acceleration. More precisely, the method was previously
used to optimize a single known travel, while we now tackle
the eco-routing problem of finding the optimal path on a
given road network.

The paper is organized as follows. Section 2 introduces the
models for the hybrid vehicle, traffic conditions, and states
the eco-routing problem of HEVs resulting from the bi-
level decomposition. Section 3 details the numerical errors
due to the discretization. Section 4 presents the complexity
of the algorithm used to solve the eco-routing problem.
Section 5 discusses the numerical simulations performed
using actual traffic data, mapped to a small synthetic road
network.

2. MODELING APPROACH

2.1 Vehicle model

Let us consider an HEV with ‘parallel’ design (see e.g.
Chau and Wong (2002)), where both the thermal engine

and the electric motor can power the vehicle. Such HEVs
can use the engine to recharge the battery, which allows for
optimization of the global consumption along the travel.

Neglecting losses due to mechanical links, the torque of
the engine Te and motor Tm are linked through:

Tprim(v, a) = Te + TmR (1)

with the expression of the torque at the primary shaft
Tprim(v, a) described in Appendix A, and R the reduction
ratio between the engine and the motor.

Through experimental characterization, the consumption
of the engine is modeled as a map Ĉ(ωe, Te) depending
on the rotation speed and torque request. The model
presented in Appendix A is used to reformulate the con-
sumption as a function of the electric motor torque Tm,
i.e.

C(v, a, Tm) = Ĉ(ωe(v, a), Tprim(v, a)− TmR) (2)

Likewise, consider a map for the electrical power P̂m

required by the motor:

Pm(v, a, Tm) := P̂m(ωm(v, a), Tm), (3)

with the convention that Pm > 0 for a discharge. Denoting
Cmax the maximum capacity of the battery and SoC(t) ∈
[0, 1] its state of charge at time t, the dynamics of the state
of charge then writes as:

˙SoC(t) =
1

Cmax
Pm(v(t), a(t), Tm(t)). (4)

2.2 Road network model with traffic conditions

The consumption of a vehicle on a given portion of road
is influenced by many parameters, that can be static such
as the speed limit or the slope, or transient such as traffic
and weather conditions. In the following, the road network
is modeled as a graph where roads are the edges and
intersections the nodes. The characteristics of the road
portions are then attributes of the edges. In the present
work these attributes also include the traffic conditions,
modeled as probability laws.

We use here the probabilistic traffic model introduced in Le
Rhun et al. (2019b). The model is based on a subdivision
of the roads into small segments, typically delimited by
topological characteristics. We assume that the speed and
acceleration of the vehicles on each segment are random
variables (V(t),A(t)), constant over each time step h0 >
0, with discrete independent and identically distributed
(i.i.d.) distributions µs, called the traffic distribution. Fig.
1 shows an example of such a distribution.

We make the central assumption that drivers ‘follow the
traffic’, meaning that their speed and acceleration coincide
with the random variables (V(t),A(t)). Le Rhun et al.
(2019b) established that this traffic model provides a
statistically accurate estimate of the energy consumption
of the hybrid vehicle.

The state graph for hybrid electrical vehicles In the case
of internal combustion engine (ICE) vehicles, the optimal
path, i.e. the successive positions of the vehicle on the
road graph, is sufficient to define the optimal strategy.
In the case of a hybrid vehicle, the energy stored in the
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Fig. 1. Illustrative example of (speed,acceleration) distri-
bution obtained from the traffic simulator SUMO.

battery can be used to reduce the fuel consumption, adding
a supplementary state, the state of charge (SoC) of the
battery. Therefore the optimal consumption policy consists
of the successive vehicle positions and states of charge of
the battery.

Using the lexicographic product between graphs, see Fig.
2, we define the ‘state graph’, denoted Γ, whose nodes have
a form (N,SoC), with N a node of the road graph and
SoC is a non-empty discrete set of state of charges values.
Therefore an edge between (N1,SoC1) and (N2,SoC2)
exists if and only if there is an edge between N1 and N2.

Fig. 2. Illustration of the lexicographic product

Finding the optimal path on the ‘state graph’ provides an
approximation of the solution of the eco-routing problem
for HEV.

Cost of an edge Since the consumption of the vehicle
depends on the road and the traffic conditions, each
edge has a specific expected cost. In order to obtain the
edge cost νNN ′(SoC, SoC ′) between two nodes (N,SoC)
and (N ′, SoC ′), the method proposed in Le Rhun et al.
(2019a) is used. Namely, the expected consumption on
the road segment sNN ′ , with (SoC, SoC ′) as initial and
final SoC conditions, is taken as the value of the following
optimization problem, denoted as PsNN′

micro:

min
Tm

E
[∫ tf

t=0

C(V(t),A(t), Tm(t))dt (5)

+PsNN′ (SoCsNN′ (tf ), SoC
′)
]

s.c ∀t, ˙SoCsNN′ (t) =
1

Cmax
Pm(V(t),A(t), Tm(t)) (6)

ḊsNN′ (t) = V(t) (7)

Tm(t) ∈ [Tmin, Tmax] (8)

SoCsNN′ (t) ∈ [0, 1] (9)

SoCsNN′ (0) = SoC, DsNN′ (0) = 0 (10)

tf = min{t,DsNN′ (t) > LsNN′ } (11)
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and the electric motor can power the vehicle. Such HEVs
can use the engine to recharge the battery, which allows for
optimization of the global consumption along the travel.

Neglecting losses due to mechanical links, the torque of
the engine Te and motor Tm are linked through:

Tprim(v, a) = Te + TmR (1)

with the expression of the torque at the primary shaft
Tprim(v, a) described in Appendix A, and R the reduction
ratio between the engine and the motor.

Through experimental characterization, the consumption
of the engine is modeled as a map Ĉ(ωe, Te) depending
on the rotation speed and torque request. The model
presented in Appendix A is used to reformulate the con-
sumption as a function of the electric motor torque Tm,
i.e.

C(v, a, Tm) = Ĉ(ωe(v, a), Tprim(v, a)− TmR) (2)

Likewise, consider a map for the electrical power P̂m

required by the motor:

Pm(v, a, Tm) := P̂m(ωm(v, a), Tm), (3)

with the convention that Pm > 0 for a discharge. Denoting
Cmax the maximum capacity of the battery and SoC(t) ∈
[0, 1] its state of charge at time t, the dynamics of the state
of charge then writes as:

˙SoC(t) =
1

Cmax
Pm(v(t), a(t), Tm(t)). (4)

2.2 Road network model with traffic conditions

The consumption of a vehicle on a given portion of road
is influenced by many parameters, that can be static such
as the speed limit or the slope, or transient such as traffic
and weather conditions. In the following, the road network
is modeled as a graph where roads are the edges and
intersections the nodes. The characteristics of the road
portions are then attributes of the edges. In the present
work these attributes also include the traffic conditions,
modeled as probability laws.

We use here the probabilistic traffic model introduced in Le
Rhun et al. (2019b). The model is based on a subdivision
of the roads into small segments, typically delimited by
topological characteristics. We assume that the speed and
acceleration of the vehicles on each segment are random
variables (V(t),A(t)), constant over each time step h0 >
0, with discrete independent and identically distributed
(i.i.d.) distributions µs, called the traffic distribution. Fig.
1 shows an example of such a distribution.

We make the central assumption that drivers ‘follow the
traffic’, meaning that their speed and acceleration coincide
with the random variables (V(t),A(t)). Le Rhun et al.
(2019b) established that this traffic model provides a
statistically accurate estimate of the energy consumption
of the hybrid vehicle.

The state graph for hybrid electrical vehicles In the case
of internal combustion engine (ICE) vehicles, the optimal
path, i.e. the successive positions of the vehicle on the
road graph, is sufficient to define the optimal strategy.
In the case of a hybrid vehicle, the energy stored in the
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battery can be used to reduce the fuel consumption, adding
a supplementary state, the state of charge (SoC) of the
battery. Therefore the optimal consumption policy consists
of the successive vehicle positions and states of charge of
the battery.

Using the lexicographic product between graphs, see Fig.
2, we define the ‘state graph’, denoted Γ, whose nodes have
a form (N,SoC), with N a node of the road graph and
SoC is a non-empty discrete set of state of charges values.
Therefore an edge between (N1,SoC1) and (N2,SoC2)
exists if and only if there is an edge between N1 and N2.

Fig. 2. Illustration of the lexicographic product

Finding the optimal path on the ‘state graph’ provides an
approximation of the solution of the eco-routing problem
for HEV.

Cost of an edge Since the consumption of the vehicle
depends on the road and the traffic conditions, each
edge has a specific expected cost. In order to obtain the
edge cost νNN ′(SoC, SoC ′) between two nodes (N,SoC)
and (N ′, SoC ′), the method proposed in Le Rhun et al.
(2019a) is used. Namely, the expected consumption on
the road segment sNN ′ , with (SoC, SoC ′) as initial and
final SoC conditions, is taken as the value of the following
optimization problem, denoted as PsNN′

micro:

min
Tm

E
[∫ tf

t=0

C(V(t),A(t), Tm(t))dt (5)

+PsNN′ (SoCsNN′ (tf ), SoC
′)
]

s.c ∀t, ˙SoCsNN′ (t) =
1

Cmax
Pm(V(t),A(t), Tm(t)) (6)

ḊsNN′ (t) = V(t) (7)

Tm(t) ∈ [Tmin, Tmax] (8)

SoCsNN′ (t) ∈ [0, 1] (9)

SoCsNN′ (0) = SoC, DsNN′ (0) = 0 (10)

tf = min{t,DsNN′ (t) > LsNN′ } (11)
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where LsNN′ denotes the length of the segment and DsNN′

the traveled distance on it.

2.3 Optimal path for HEV under traffic conditions

It is now possible to formulate an eco-routing problem for
HEV as finding the optimal path on the ‘state graph’ Γ
between a start node S and a destination node D. We
denote by ΓSD the set of paths between S and D in the
‘state graph’, with γ denoting a single path. This optimal
path problem consists in finding a target state of charge
trajectory SoCr. We introduce ai (resp. bi) the maximum
charge (resp. discharge) to reduce the search space. Setting
ai = 1 and bi = 1 restores the original discrete problem.
The choice of ai (resp. bi) can be guided by the vehicle
and segment characteristics. In the sequel, we assume:

ai > 0, bi > 0 (12)

Therefore the eco-routing problem can be stated as follows:

minimize
γ∈ΓSD

∑
i∈γ

νNiNi+1
(SoCr

i , SoC
r
i+1) (13)

s.t ∀i ∈ γ, SoCr
i ∈ [0, 1] (14)

∀i ∈ γ, SoCr
i+1 − SoCr

i ∈ [−ai, bi] (15)

3. DISCRETIZATION ERROR ANALYSIS

Since the SoC is discretized, it is useful to analyze the error
between the discrete problem (Ph) and the continuous
one (P ) defined below. Indeed, let be a path γ on the
road network, and consider the consumption minimization
problem on this path. Let us define the criterion:

F γ(SoCr) :=
∑
i∈γ

νNiNi+1(SoC
r
i , SoC

r
i+1) (16)

Denote the continuous problem by (P γ), and the discrete
problem by (P γ

h ).

minimize
SoCr

F γ(SoCr)

s.t ∀i ∈ γ, SoCr
i ∈ [0, 1]

∀i ∈ γ, SoCr
i+1 − SoCr

i ∈ [−ai, bi]

(P γ)

minimize
SoCr

F γ(SoCr)

s.t ∀i ∈ γ, SoCr
i ∈ {0, h, ..., 1}

∀i ∈ γ, SoCr
i+1 − SoCr

i ∈ [−ai, bi]

(P γ
h )

Denote the value of (P γ
h ) by V γ

h , and the value of (P γ) by
V γ . Let the eco-routing problem (P ) be

min
γ

(V γ) (P )

and its discrete approximation (Ph) be

min
γ

(V γ
h ). (Ph)

Theorem 1. Discretization Error

Assume that the criterion F γ is Lipschitz continuous with
constant L. Let S∗ be a solution of (P γ). Then there exists
Sh feasible for (P γ

h ), such that |Sh − S∗|= O(h) and

F γ(S∗) ≤ F γ(Sh) ≤ F γ(S∗) +O(h). (17)

Proof. Let S∗ be an admissible solution for (P γ). Set

Ŝ := (1− ε)S∗. Then Ŝ ∈ [0, 1] and also

Ŝi+1 − Ŝi ∈ [−(1− ε)ai, (1− ε)bi].

Define the discretized grid H = {0, h, ..., 1}, and a projec-
tor Πh over H such that

Πh(x) ∈ argmin
h∈H

(|x− h|) (18)

Let Ŝh := Πh(Ŝ). Then Ŝh ∈ {0, h, ..., 1} and

Ŝi+1 − Ŝi ∈ [−(1− ε)ai − h, (1− ε)bi + h]. (19)

Therefore Ŝh is feasible for problem (P γ
h ) if and only if:

h− εbi ≤ 0 , εai − h ≥ 0 (20)

Thanks to assumption (12), we can take:

ε =
h

min(mini(ai),mini(bi))
(21)

Therefore, ε = O(h). An admissible solution of (P γ
h ) is

at O(h) distance of an admissible solution of (P γ). Since
the objective function F γ is Lipschitz continuous, the
conclusion follows.

Corollary 2. Under the hypothesis of Theorem 1, we have
that

val(P ) ≤ val(Ph) ≤ val(P ) +O(h) (22)

4. ROUTING ALGORITHM

The class of problems under consideration has directed
graphs and non-negative costs. Therefore, we may use
the classical Dijkstra’s algorithm, see for instance Cormen
(2009). Another possibility is to use the A∗ algorithm, a
generalization of Dijkstra’s algorithm based on a heuristic
estimate (called the heuristic distance) H of the distance
of nodes to the destination node, allowing to decrease the
number of visited nodes.

The A∗ algorithm computes the optimal path if the
heuristic distance H is admissible in the sense below, see
Nilsson (1980).

Definition 3. Admissibility

A heuristic H is admissible if it never overestimates the
real cost to reach the goal. In other terms,

∀v ∈ Γ, H(v) ≤ H∗(v) (23)

where H∗(v) is the minimum cost between node v and the
goal node.

4.1 Complexity

The complexity of the A∗ algorithm has been discussed for
instance in Martelli (1977). In the worst-case scenario, the
destination node is explored after all the other nodes on
the graph, and after that all the edges have been explored
too. If n is the number of nodes andm the number of edges,
the complexity is O(n ∗ operations+m ∗ operations). The
only operation which is not in O(1) is the minimization
over the nodes, that can be made in O(log(n)). Then the
complexity is O(n∗ log(n)+m) and we have that m ≤ n2.
So the complexity of the A∗ algorithm in the worst possible
case is O(n2).

However, the number of nodes of the state graph depends
of the discretization on the SoCr as well as the number

of edges. The number of nodes of the state graph is the
product of the number of intersections n in the road
network and the number of SoC divisions created. The
number of edges of the state becomes m/h2. Then the
complexity of the A∗ algorithm according to the problem
is O(n/h log(n/h) +m/h2).

4.2 Heuristic distance

We propose here an admissible heuristic for the case of the
hybrid vehicle eco-routing. Define Hc an estimate of the
consumption to reach the physical destination

Hc := ηmα0L (24)

with L the travel length, ηm the maximum efficiency of
the ICE to convert fuel to mechanical energy, α0 defined
in Appendix A.

Similarly, define HSoC as an estimate of the consumption
to reach the desired state of charge

HSoC := ηeCmax(SoCf − SoCcurrent) (25)

with ηe the maximum efficiency of the ICE to convert fuel
to battery charge.

Finally, to take into account the possibility of regenerative
braking that can recover the kinetic energy of vehicle, let
us define Hkinetic

Hkinetic :=
ηcm

2
v2max (26)

with ηc a conversion factor of the kinetic energy into fuel
according to the ICE and vmax the maximum speed. Since
the aim is to reach a specific destination with a final
state of charge, the heuristic is taken as the sum of these
estimates. Additionally, taking into account that the fuel
cannot be produced by the vehicle, the final expression is:

H := max(0, Hc +HSoC −Hkinetic) (27)

5. NUMERICAL SIMULATIONS

We now present numerical simulations for the eco-routing
method. Consider a simple road network comprised of a
small ring with congested traffic with a mean speed of 40
km/h, enclosed in a larger ring with fluid traffic with a
mean speed of 100 km/h. This can be considered as a very
simplified model of a typical road network with ring roads
around a city. For the sake of simplicity, each segment of
the presented network has the same topological aspects.
In particular, we are interested in comparing the solution
from the eco-routing, called ‘eco-path’ in the following,
with the fastest path. We first study a specific travel with
a fixed origin and destination, and then give some more
general results on all possible travels in the network.

5.1 Study of a single travel

Fig. 3 shows the eco-path (green, left graph) and fastest
path (orange, right graph) for a given travel with condi-
tions (SoCi = 30%, SoCf = 25%). Note that the consid-
ered vehicle has a low battery capacity, see Cmax in Table
A.1, allowing for relatively significant SoC changes even on
small road segments. The SoC values at the end of each
road segment are indicated on the nodes, while the values
of the objective function in (5) of the problems PsNN′

micro are
displayed along each edge. In this particular example, the

Fig. 3. Eco-path (left) and Fastest Path (right) - (SoCi =
30%, SoCf = 25%)

fastest path takes the 4 fast segments on the outer ring,
while the eco-path uses the slower inner segments to reduce
the consumption, with 7 segments in total.

Path Value Cons. (l) SoCf (%) Time (s) Dist. (km)

Eco 0.41 0.012 21 163 2.14
Fastest 2.66 0.038 4 44 1.22

Table 1. Comparison of Eco and Fastest Path
- (SoCi = 30%, SoCf = 25%).

Table 1 summarizes for both paths the sum of values of the
objective function in (5), consumption, final SoC, time and
distance for a SoCf = 25% constraints. The time is based
on the average speed of each segment. The consumption
and final SoC are calculated by taking the average of
1000 travels simulated with i.i.d. sampling according to
the traffic conditions and using the local optimal policies
determined by the eco-path. For this sample travel the
eco-path consumption is one third of the fastest path,
for a double distance and four times longer time. Note
that the difference in terms of value is greater than the
difference in consumption, which indicates that the eco-
path has a better chance of following the reference SoC
trajectory, since the value function of PsNN′

micro is the sum of
the consumption and penalty for the final SoC constraint
at the end of the segment. This also shows in the final
SoC value, with the eco-path being much closer to the
prescribed SoCf = 25%, reaching 21% while the fastest
path ends up at only 4%.

Fig. 4. Eco-path (left) and Fastest Path (right) - (SoCi =
30%, SoCf = 20%)

Fig. 4 and Table 2 show the same results for a final
constraint SoCf = 20%. The consumption is still one
third of the one of the fastest path, but now with a more
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of edges. The number of nodes of the state graph is the
product of the number of intersections n in the road
network and the number of SoC divisions created. The
number of edges of the state becomes m/h2. Then the
complexity of the A∗ algorithm according to the problem
is O(n/h log(n/h) +m/h2).

4.2 Heuristic distance

We propose here an admissible heuristic for the case of the
hybrid vehicle eco-routing. Define Hc an estimate of the
consumption to reach the physical destination

Hc := ηmα0L (24)

with L the travel length, ηm the maximum efficiency of
the ICE to convert fuel to mechanical energy, α0 defined
in Appendix A.

Similarly, define HSoC as an estimate of the consumption
to reach the desired state of charge

HSoC := ηeCmax(SoCf − SoCcurrent) (25)

with ηe the maximum efficiency of the ICE to convert fuel
to battery charge.

Finally, to take into account the possibility of regenerative
braking that can recover the kinetic energy of vehicle, let
us define Hkinetic

Hkinetic :=
ηcm

2
v2max (26)

with ηc a conversion factor of the kinetic energy into fuel
according to the ICE and vmax the maximum speed. Since
the aim is to reach a specific destination with a final
state of charge, the heuristic is taken as the sum of these
estimates. Additionally, taking into account that the fuel
cannot be produced by the vehicle, the final expression is:

H := max(0, Hc +HSoC −Hkinetic) (27)

5. NUMERICAL SIMULATIONS

We now present numerical simulations for the eco-routing
method. Consider a simple road network comprised of a
small ring with congested traffic with a mean speed of 40
km/h, enclosed in a larger ring with fluid traffic with a
mean speed of 100 km/h. This can be considered as a very
simplified model of a typical road network with ring roads
around a city. For the sake of simplicity, each segment of
the presented network has the same topological aspects.
In particular, we are interested in comparing the solution
from the eco-routing, called ‘eco-path’ in the following,
with the fastest path. We first study a specific travel with
a fixed origin and destination, and then give some more
general results on all possible travels in the network.

5.1 Study of a single travel

Fig. 3 shows the eco-path (green, left graph) and fastest
path (orange, right graph) for a given travel with condi-
tions (SoCi = 30%, SoCf = 25%). Note that the consid-
ered vehicle has a low battery capacity, see Cmax in Table
A.1, allowing for relatively significant SoC changes even on
small road segments. The SoC values at the end of each
road segment are indicated on the nodes, while the values
of the objective function in (5) of the problems PsNN′

micro are
displayed along each edge. In this particular example, the

Fig. 3. Eco-path (left) and Fastest Path (right) - (SoCi =
30%, SoCf = 25%)

fastest path takes the 4 fast segments on the outer ring,
while the eco-path uses the slower inner segments to reduce
the consumption, with 7 segments in total.

Path Value Cons. (l) SoCf (%) Time (s) Dist. (km)

Eco 0.41 0.012 21 163 2.14
Fastest 2.66 0.038 4 44 1.22

Table 1. Comparison of Eco and Fastest Path
- (SoCi = 30%, SoCf = 25%).

Table 1 summarizes for both paths the sum of values of the
objective function in (5), consumption, final SoC, time and
distance for a SoCf = 25% constraints. The time is based
on the average speed of each segment. The consumption
and final SoC are calculated by taking the average of
1000 travels simulated with i.i.d. sampling according to
the traffic conditions and using the local optimal policies
determined by the eco-path. For this sample travel the
eco-path consumption is one third of the fastest path,
for a double distance and four times longer time. Note
that the difference in terms of value is greater than the
difference in consumption, which indicates that the eco-
path has a better chance of following the reference SoC
trajectory, since the value function of PsNN′

micro is the sum of
the consumption and penalty for the final SoC constraint
at the end of the segment. This also shows in the final
SoC value, with the eco-path being much closer to the
prescribed SoCf = 25%, reaching 21% while the fastest
path ends up at only 4%.

Fig. 4. Eco-path (left) and Fastest Path (right) - (SoCi =
30%, SoCf = 20%)

Fig. 4 and Table 2 show the same results for a final
constraint SoCf = 20%. The consumption is still one
third of the one of the fastest path, but now with a more
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Path Value Cons. (l) SoCf (%) Time (s) Dist. (km)

Eco 0.28 0.013 19.7 106 1.53
Fastest 1.46 0.036 4 44 1.22

Table 2. Comparison of Eco and Fastest Path
- (SoCi = 30%, SoCf = 20%).

moderate increase in travel distance and time. Also notice
that the final SoC constraint is well satisfied in this case by
the eco-path, reducing the gap between the i.i.d.-simulated
consumption and the value of the eco-routing problem. All
in all, a classical trade-off is observed, with the eco-routing
having a lower consumption and better management of
the state of charge, at the expense of choosing longer and
slower paths.
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Fig. 5. Simulated and reference SoC trajectories for
∆SoC = −10% (left) and ∆SoC = −5% (right).
Markers show the mean and vertical bars show ±σ
of the simulated trajectories.

Now, let us study the SoC a bit more in detail, with
Fig. 5 showing the evolution of the state of charge along
the travel. Orange line is the reference SoC from the
eco-routing solution, while blue line is the average (with
standard deviation indicators) of the 1000 i.i.d simulations,
with the first 100 simulations also plotted in grey lines. For
the condition ∆SoC = −10% (left), the reference SoC is
very well matched by the set of simulations, which means
that the control decisions from the problems PsNN′

micro are
able to satisfy the individual final SoC constraints at the
end of each segment. In this case the penalty terms are
typically close to zero, and the value function is close to
the consumption. For the stricter condition ∆SoC = −5%
(right), the PsNN′

micro solutions begin to have difficulties to
reach the required SoC, which leads to penalty terms in
the value function (as seen in Table 1 and Table 2) and a
growing gap between the reference SoC from the eco-path
and the actual SoC trajectory from the simulated travels.

In order to look a bit more into the influence of the final
SoC condition, we solve the previous test case for ∆SoC
ranging from −10% to +5%. We compare in particular
the final SoC and consumption for the eco-path and the
simulated trajectories. Fig. 6 shows the final SoC (eco-path
reference and simulations average with std indicators). The
reference final SoC basically corresponds to the ∆SoC
constraint (recall that SoCi = 30%). As for the simulated
SoC, for easier constraints such as 10% discharge, it
coincides well with the reference, as already seen above
in Fig. 5. When the final SoC condition tightens, the gap
between the two curves increases, due to the fact that
some of the PsNN′

micro solutions selected for the eco-path
do not satisfy their prescribed SoCs. A way to reduce
these gaps could be to use a smaller discretization for the
initial and final SoC of the PsNN′

micro problems, enabling the
routing algorithm to choose reference SoCs closer to the
maximum feasible ∆SoC on the segments. Note also that

for sufficiently long travels with more opportunities for
recharging the battery, the gap may be compensated along
the way, see the simulations of Le Rhun et al. (2019a).
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Fig. 7 shows the simulated consumption for the eco and
fastest paths. We observe a clear advantage of the eco-
paths overall, with a consumption between one quarter
and one third of the fastest path. The consumption for the
fastest path tends to increase with respect to the ∆SoC,
since the harder final SoC constraint requires an additional
use of the engine. On the other hand, the consumption
of the eco-path appears non-increasing, which is probably
explained by the fact that the eco-path maintains a low
consumption at the expense of an increasing violation of
the final SoC constraints, see Fig. 6. This is related to the
fact that the PsNN′

micro problems manage the reference SoC
constraints thanks to the penalization term, which allows
some trade-off between the consumption and the reference
SoC constraints.
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Fig. 7. Eco-path and fastest path consumption

5.2 Study of all possible travels

Previous simulations focused on a single travel, and we
now perform some simulations while taking into account
all possible travels on the road graph. The symmetry of
the road network leads to a set of 54 travels that are
solved for varying final SoC conditions. Fig. 8 shows the
average time and distance ratio between the eco-path and
the fastest path (i.e. the average of the ratios for each
individual travel).

For harder final SoC constraints, there is a large difference
between the two paths, with the eco-path being (on av-
erage) up to 7 times slower and 4 times longer than the
fastest path. This behavior comes from the eco-path trav-
eling repeatedly along segments that allow for recharging

the battery, in order to meet the final constraint of a 5%
charge. Note that this type of path seems to include cycles
in the ‘physical’ road graph, but these are not cycles in
the weighted graph augmented with the SoC values.

When the final SoC constraints are easier to meet, the
average time and distance of the eco-path and fastest path
tend to be closer. Indeed, allowing an increased discharge
of the battery will reduce the consumption of the fastest
path, up to the point that it actually becomes identical to
the eco-path.
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6. CONCLUSION

Simulations on a simple road network indicate that the
eco-routing method computes optimal paths with a con-
sumption significantly lower than the fastest path solu-
tions. This reduced consumption comes with an expected
trade-off in terms of travel distance and time. Consider-
ing an upper bound for time and/or distance would be
a natural extension of the method, in order to obtain
solutions that can fit the expectations of the drivers. Also,
the accuracy of the reference SoC trajectory computed
by the eco-routing tends to decrease for stricter final SoC
conditions. Increasing the weight of the penalty term for
the final SoC constraint would also improve this accuracy,
however at the expense of a higher consumption overall.
Another direction for improvement would be to use a finer
SoC discretization for the initial and final conditions of the
optimization problem on each road segment for expected
consumption calculation, as the error analysis has shown
that the values of the discretized problem approximate
the one of the original problem up to the order of the
discretization step size.

Appendix A. VEHICLE MODEL

Neglecting the slope effect, for a given speed v and accel-
eration a, we can express the torque and rotation speed at
the wheel as:

Tw(v(t), a(t)) = (ma(t) + α2v
2(t) + α1v(t) + α0)rw

ωw(v, a) =
60v

2πrw
with m the vehicle mass, rw the wheel radius, and
α0, α1, α2 defining a quadratic approximation of the road-
load force. We note Gi

R,G
i
Eff ,Paratio, Paeff the ratio

and efficiency for the gears and powertrain, and R the
motor/engine reduction ratio. Then we get the torque at

the primary shaft Tprim and the rotation speed of the
engine ωe and motor ωm:

Tprim(v, a) = max

(
Tw(v, a)

ParatioPaeffGi
RG

i
Eff

, Tmin

)

ωe(v, a) = ωw(v, a)ParatioG
i
RG

i
Eff

ωm(v, a) = ωw(v, a)ParatioG
i
RG

i
EffR

Table A.1. Parameters used in simulations

m rw α0 α1 α2

1190kg 0.31725m 113.5 0.774 0.4212

i 1 2 3 4 5

Gi
R 3.416 1.809 1.281 0.975 0.767

Gi
Eff 1 1 1 1 1

Paratio Paeff R Cmax(C)

59/13 0.95 3.3077 5335200
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the battery, in order to meet the final constraint of a 5%
charge. Note that this type of path seems to include cycles
in the ‘physical’ road graph, but these are not cycles in
the weighted graph augmented with the SoC values.

When the final SoC constraints are easier to meet, the
average time and distance of the eco-path and fastest path
tend to be closer. Indeed, allowing an increased discharge
of the battery will reduce the consumption of the fastest
path, up to the point that it actually becomes identical to
the eco-path.
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6. CONCLUSION

Simulations on a simple road network indicate that the
eco-routing method computes optimal paths with a con-
sumption significantly lower than the fastest path solu-
tions. This reduced consumption comes with an expected
trade-off in terms of travel distance and time. Consider-
ing an upper bound for time and/or distance would be
a natural extension of the method, in order to obtain
solutions that can fit the expectations of the drivers. Also,
the accuracy of the reference SoC trajectory computed
by the eco-routing tends to decrease for stricter final SoC
conditions. Increasing the weight of the penalty term for
the final SoC constraint would also improve this accuracy,
however at the expense of a higher consumption overall.
Another direction for improvement would be to use a finer
SoC discretization for the initial and final conditions of the
optimization problem on each road segment for expected
consumption calculation, as the error analysis has shown
that the values of the discretized problem approximate
the one of the original problem up to the order of the
discretization step size.
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