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Abstract. In the context of mechanical compaction in sedimentary basins, we introduce a simple model
including lateral deformations with the goal to improve the results obtained under oedometric conditions
(i.e., neglecting horizontal strains) without losing much computational time. The model is based on a modified
vertical porosity-stress law where horizontal strains are inserted and on an elastic stress-strain law with stress-
dependent Young modulus. Though it is not three-dimensional and does not involve plasticity, we manage to
validate the model on a geometrically and lithologically complex test case by comparing our results with those
obtained on the same case using a full-dimensional finite-element simulator. We conclude that our model offers
a significant improvement in accuracy against an oedometric model, with little loss in computational time, and
so provides a useful tool to users who want a quick insight into results before running longer and more accurate
simulations.

Keywords: Sedimentary basin, Mechanical compaction, Horizontal deformation, Geomechanical model,
Finite-volume simulator.

1 Introduction

When modeling the evolution of a sedimentary basin, one
is often interested in determining the changes in rock poros-
ity and permeability taking place over a geological time
interval. Indeed, these quantities control the overpressure
distribution in the basin and need to be predicted, for
instance, for drilling risk assessment [1]. Since permeability
is obtained directly from porosity via the Kozeny–Carman
law [2–4] or other sediment-specific laws [5, 6], we choose
porosity as our main unknown.

Porosity evolution is mainly driven by mechanical and
chemical compaction [7]. Usually, mechanical compaction
is the dominating phenomenon in the upper layers of the
basin, while chemical compaction dominates in the lower
layers. The depth transition between mechanically and
chemically dominated layers depends on lithology, varying
from 0.1 km for carbonates [8, 9] to 1.5 km for sandstone
[10–13]. In the present work, we neglect chemical com-
paction so that our model is best suited, but not limited,
to upper layers.

Because mechanical compaction is mostly driven by
gravity through burial, it is often described as a vertical,

thus one-dimensional, phenomenon in basin models
[14–17] and simulators [18–20]. This approach provides good
accuracy in oedometric contexts, where the horizontal
strains are negligible. However, since possibly horizontal
phenomena having a significant influence on porosity occur
[21, 22], e.g., as a result of tectonics, this is not entirely
satisfactory.

One solution is proposed in [7], where Schneider’s poros-
ity-stress law [23, 24] is integrated into the Drucker–Prager
model for plasticity [25], resulting in a three-dimensional
compaction model. This model is tested numerically in
[7, 26–28] using the prototype code A2, which couples the
finite-volume basin simulator ArcTem [11] with the finite-
element geomechanical simulator Code Aster [29] following
an iterative algorithm [30]. (See [31] for further A2 simula-
tions in the context of rock failure.) This approach reaches
very good accuracy but requires long simulation times due
to its three-dimensional formulation.

Here, rather than derive a three-dimensional model such
as in [7], we simply insert the horizontal strains into the
vertical porosity-stress law and so keep a one-dimensional
compaction model without neglecting the remaining dimen-
sions. More precisely, we define an approximated porosity
using a vertical porosity-stress law where the horizontal
strains are added to the vertical stress; we then suppose* Corresponding author: francesco.patacchini@ifpen.fr
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that the approximated porosity is close to the actual one.
For this closeness supposition to be justified, we need to
insert the horizontal strains in a physically motivated way.
In this paper, we propose one formulation based on an elastic
stress-strain constitutive law with stress-dependent Young
modulus. We thus suppose that the basin is an elastic
medium, as opposed to elastoplastic, and consequently place
ourselves in the context of small deformations. We refer
to this method as a simplified geomechanical model,
where “simplified” contrasts with the more complex three-
dimensional, elastoplastic approach of [7]. This simplified
model bears a similarity with that investigated in [32],
namely, that the vertical porosity-stress law is altered
to account for a specific effect: in our case, the three-
dimensional mechanical strain; in their case, the anisotropy.

Ourmain goal is to improve the results obtainedwith the
oedometric assumption, in particular in the more strained
lower layers, without losing significant computational time.
Of course, as already mentioned, this entails simplifying
assumptions, such as purely elastic deformations and a
one-dimensional porosity stress law, so that our approach
is by no means intended to reach the accuracy of any full-
dimensional, elastoplastic model such as presented in [7].
Furthermore, we neglect the effects of the lateral deforma-
tions on the temperature; see for example [33] for a complete
thermal model. Rather, we expect our model to be useful to
users who might need a first, quick idea of the basin’s poros-
ity distribution before deciding whether to pursue more
accurate and longer simulations. Our model is integrated
entirely into ArcTem.

In Section 2, we recall the standard equations underlying
thefluid and solidmechanics of a sedimentary basin;weplace
ourselves in the setting of a single-phase water flow. This sec-
tion canbe skippedby the experienced geomechanics and can
be referred to only for notation. We then discuss in detail
mechanical compaction (simply referred to as compaction
in the sequel) and present our simplified geomechanical
model in Section 3. Then, Section 4 is dedicated to the
numerical results obtained with our model coded in ArcTem
and applied to a large test case modeling the Vaca Muerta
formation of the Neuquén basin in Argentina. This test case,
which features high overpressures, covers a surface of about
35,000 km2 and spans a time interval of 10My. Our results
under both oedometric and non- oedometric conditions are
compared with those obtained using A2 in [26] with the
model derived in [7]. Furthermore, CPU times are given
for various strain configurations. Finally, we summarize
our results and give an outlook in Section 5.

2 Standard porous medium model

We briefly discuss the standard equations that we use to
model the flow and mechanical equilibrium in our porous
medium, i.e., our sedimentary basin. We also give the cor-
responding boundary and initial conditions.

2.1 Model equations

We write / the Eulerian porosity of the medium andVa the
velocity field associated with phase a 2 fs; wg (solid or

water). We write qa the density of phase a and
�qs ¼ qsð1� /Þ and �qw ¼ qwð/Þ the effective densities.
The medium is assumed to be fully saturated with water.

By convention, we orient the orthonormal basis (x, y, z)
anticlockwise so that z points upwards and gravity reads
g ¼ ð0; 0; �gÞ with g > 0. The origin of the corresponding
axis triplet (x, y, z) is situated at the present sea level so
that z = 0 at the sea surface, and the basin can have either
negative or positive z-coordinates.

2 Standard porous medium model

We briefly discuss the standard equations that we use to
model the flow and mechanical equilibrium in our porous
medium, i.e., our sedimentary basin. We also give the
corresponding boundary and initial conditions.

2.1 Model equations

We write / the Eulerian porosity of the medium andVa the
velocity field associated with phase a 2 fs; wg (solid or
water). We write qa the density of phase a and
�qs ¼ qsð1� /Þ and �qw ¼ qwð/Þ the effective densities.
The medium is assumed to be fully saturated with water.

By convention, we orient the orthonormal basis (x, y, z)
anticlockwise so that z points upwards and gravity reads
g ¼ ð0; 0; �gÞ with g > 0. The origin of the corresponding
axis triplet (x, y, z) is situated at the present sea level so
that z = 0 at the sea surface, and the basin can have either
negative or positive z-coordinates.

2.1.1 Flow

We give here the equations on water and solid flow.
Conservation of mass. For any phase a 2 fs; wg we

have conservation of mass:

@�qa

@t
þ div �qaV að Þ ¼ qa; ð1Þ

where qa is the rate of deposit of phase a due to sedimen-
tation at the top of the basin and Va is the velocity of
phase a.

Darcy’s law. The filtration, or mean percolation,
velocityUw :¼ /ðVw �V sÞ is assumed to be small enough
to follow Darcy’s law, that is,

Uw ¼ gwK �rpw þ �qwgð Þ; ð2Þ
where gw is the water mobility, K the permeability tensor
and pw the water, or pore, pressure.

Densities. The solid density is assumed to be constant
and the water density to follow a law which is linear in pres-
sure pw and temperature T:

qs ¼ qs;0 and qw ¼ qw;0 1 þ aw T � T 0ð Þ þ bw pw � p0ð Þð Þ;
ð3Þ

where T0 and p0 are reference values for the temperature
and water pressure, qs,0 and qw,0 are reference densities,
aw is the water thermal expansion and bw is the water
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compressibility. These laws are justified as long as the
solid phase is incompressible and thermally unexpansible
and the water phase is weakly compressible and weakly
thermally expansible.

Water mobility. Because of our single-phase setting,
the water’s mobility gw is simply the inverse of its viscosity
lw, which we assumed is temperature-dependent. Specifi-
cally, we choose the following law (cf., for example,
Eq. (48) of Ref. [28]):

gw ¼ 1
lw

¼ aw T þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bw þ T 2

p
� cw

� �
; ð4Þ

where aw, bw and cw are fitting parameters. If the basin is
supposed to be isothermal, then the water mobility in (4)
is constant and the water density in (3) only depends on
temperature.

Permeability. The permeability tensor K is given by

K ¼ Kð/ÞA; ð5Þ
where A is an anisotropy tensor and K, the intrinsic per-
meability, follows the Kozeny–Carman law [2–4]:

K /ð Þ ¼

k1/
n1

s20ð1� /Þm1 if / � /0;

k2/
n2

s20ð1� /Þm2 if / > /0;

8>>><
>>>:

where S0 is the specific surface area of the porous medium
and k1, k2, n1, n2, m1, m2 and /0 are constants related to
lithology. To ensure the continuity of K at /0, we impose
the following relation on the parameters:

/n2�n1
0

ð1� /0Þm2�m1 ¼
k1
k2

:

The Kozeny–Carman law is applicable to laminar flows in
sediments with spherical structures [28], which we may
reasonably assume in our illustrative setting. The tensor
A in (5) is a diagonal matrix, where each component
represents the weight of its direction in the permeability
tensor; isotropy of the medium implies that all the compo-
nents of A are equal, which, without loss of generality,
means that A is the identity matrix.

2.1.2 Temperature and mechanical equilibrium

We now discuss the equations for temperature distribution
and mechanical equilibrium in the basin.

Temperature. We suppose that the temperature of
the basin obeys a very simple vertical model, namely,

@T
@z

¼ G; ð6Þ

where G is a known temperature gradient, sometimes
referred to as a geothermal gradient, which may depend
on position and time. We refer the reader to [33] for an
example of geomechanical model including the effects
of large strains on the temperature, which we do not
consider here.

Mechanical equilibrium. We denote by r the
Cauchy stress tensor. This tensor includes both water and
solid stresses and is therefore sometimes referred to as a
total stress tensor. We write

r ¼
rx rxy rxz

rxy ry ryz

rxz ryz rz

0
B@

1
CA; ð7Þ

where ri and rij are the normal and shear stresses for all
i; j 2 fx; y; zg with j 6¼ i. We use the sign convention
according to which normal stress is positive when there
is compression in its direction.

By Cauchy’s momentum equation, mechanical equilib-
rium is given by

div r ¼ �qg þ f ; ð8Þ
where �q :¼ �qw þ �qs is the homogenized density and
f :¼ ðfx ; fy; fzÞ is the vector containing the volumic exter-
nal forces other than gravity. More explicitly, (8) rewrites
as

@rx

@x
þ @rxy

@y
þ @rxz

@z
¼ fx ;

@rxy

@x
þ @ry

@y
þ @ryz

@z
¼ fy;

@rz

@z
¼ ��qg þ f z ; ð9Þ

where we make the assumption that

@rxz

@x
þ @ryz

@y
¼ 0:

This assumption allows us to compute rz from (9) by sim-
ply imposing a Dirichlet condition on it at the basin’s top
(cf. Sect. 2.2.1).

Remark 2.1 We assume that the shear stresses within
the water phase and between the water and solid phases
are negligible with respect to those within the skeleton,
i.e., the effect of water viscosity is not considered in the
computation of the stresses (although it is in the computa-
tion of the flow via (2) and (4)). Thus, in (7), the terms
ryz, rxz, and rxy are in fact the skeleton’s shear stresses. This
is not true of the normal stresses since the water pressure
needs to be taken into account via Biot’s diagonal corrective
term (cf. Sect. 3.1.1 and the seminal references [34, 35]).

2.1.3 Porosity

At this stage, we do not have an expression for the porosity
/, although it intervenes in many of the model equations,
namely, (1), (2), (5), and (8). In a standard model for por-
ous media, one could assume / to be constant, which would
close our model already. However, because of compaction,
this is not satisfactory here. We derive a model for com-
paction, and thus /, in Section 3.4.

2.2 Boundary and initial conditions

We suppose that the sedimentary top is given by the graph
of a function S, that is, for all (x, y) the value S (x, y) gives

The Author(s): Science and Technology for Energy Transition 78, 22 (2023) 3



the vertical position of the top right above point (x, y, z),
for any z � S (x, y). Recall that the z-axis is directed
upwards.

2.2.1 Boundary conditions

Integrating the third equation in (9) and (6) tells us to
impose a total vertical stress and a temperature at the
sedimentary top. Denoting by X the basin and by oXtop
its top, i.e., @�top ¼ fðx; y; zÞ 2 �jz ¼ sðx; yÞg, we impose

rz x; y; zð Þ ¼ psup

T x; y; zð Þ ¼ T sup

for all x; y; zð Þ 2 @�top at all times:

(

ð10Þ
Here, psup is the pressure stemming from the weight of sea-
water and atmosphere lying above the basin. On the rest
of the boundary oX, we impose zero-flux conditions, i.e.,

Vw � m ¼ 0 on @�=@�top at all times;

where m is the outward unit normal of X.
Regarding stresses, a note from (9) that these boundary

conditions only close the problem for the vertical stress rz.
Indeed, they do not give us the horizontal stresses rx and ry,
nor do they give us the shear stresses ryz, rxz, and rxy.
Nevertheless, the horizontal stresses can be recovered
from the vertical ones whenever the horizontal strains are
known and a constitutive stress-strain law is imposed
(cf. Sect. 3.4.1). As to the shear stresses, they are not of
interest to us in this paper since we suppose that they do
not impact porosity (cf. Sect. 3.2.1); we, therefore, do not
worry about closing the problem for them.

2.2.2 Initial conditions

The history of the basin is split into a sequence of geological
episodes, called events, during which either a new layer of
sediments is deposited or an old layer is eroded. We gener-
ically write t0 the initial time of any deposit event.

Because each simulation starts at the beginning of a
deposit event and layers are added to the top only, the
initial conditions are already determined by the top bound-
ary conditions given in (10):

rz t0ð Þ ¼ psup t0ð Þ
T t0ð Þ ¼ T sup t0ð Þ

(
in new layer:

3 Compaction

For the sake of presentation, we consider only one sedimen-
tary layer starting from its initial time t0 of deposition and
eventually ending when fully eroded. Modeling the com-
plete basin can then be achieved by applying the single-
layer model in each layer.

As discussed in the introduction, we wish to integrate
horizontal strains in a vertical porosity-stress law to account

for horizontal compaction when oedometric conditions are
not verified. We consider that the horizontal strains are
known time-dependent parameters. The resulting model is
what we refer to as a simplified geomechanical model.

3.1 Relevant stress and strain tensors

We treat our basin as an isotropic (in particular, A is the
identity matrix in (5)), poroelastic material, thus undergo-
ing small deformations. Note that, in this setting, using the
Lagrangian porosity, rather than the Eulerian one, as done
here, would also be relevant since the pore pressure, stresses
and Lagrangian porosity are thermodynamically linked
(cf. Eq. (4.2) of Ref. [36]). Furthermore, the stress and
strain quantities of relevance are the effective stress tensor
and the skeleton’s infinitesimal strain tensor.

3.1.1 Effective stress

Biot’s theory [34] for consolidation couples fluid flow with
rock deformation and introduces the effective stress tensor
r0, which is defined as

r0 ¼ r� pwb;

where b is Biot’s tensor. In [35], the authors link Biot’s
tensor to the compressibility of the medium according to

b ¼ 1� K
Ks

� �
I ¼: bI ;

with Ks and K the moduli of compressibility of the solid
phase and the skeleton, respectively, and I the identity
matrix. Biot’s coefficient b satisfies b ’ 1 for a weakly
compressible solid phase and a highly compressible skele-
ton, in which case we recover Terzaghi’s theory for soil
deformation [37]. For explicit expressions of b depending
on porosity, we refer the reader to [33, 38–40].

The effective stress tensor reads

r0 ¼
r0
x rxy rxz

rxy r0
y ryz

rxz ryz r0
z

0
B@

1
CA;

where r0
i ¼ ri � pwb for all i 2 fx; y; zg. The tensor r0 is

in fact the skeleton’s stress tensor (cf. Remark 2.1).
Note that, by equilibrium with the seawater and the

atmosphere, we have pw = psup, that is, r0
z ¼ rz � pwb ¼

ð1� bÞpsup on the top boundary oXtop; in particular,r0
z ¼ 0

on oXtop when b = 1. Equivalently, we have

r0
z t0ð Þ ¼ 1� bð Þpsupðt0Þ ð11Þ

in particular, r0
z t0ð Þ ¼ 0 when b = 1.

3.1.2 Skeleton’s infinitesimal strain

We denote by e the skeleton’s infinitesimal strain, or defor-
mation, tensor. (In the following, we omit the term
“infinitesimal” when referring to e.) Because the basin is
assumed to be elastic, e coincides in fact with the elastic
strain tensor and satisfies |e| � 1.

The Author(s): Science and Technology for Energy Transition 78, 22 (2023)4



We use the following notation:

e ¼
ex exy exz
exy ey eyz
exz eyz ez

0
B@

1
CA;

where ei and eij are the normal and shear strains for all
i; j 2 fx; y; zg with i 6¼ j. In agreement with our stress
convention, any positive normal strain corresponds to a
compression.

3.2 General compaction law

Given any differentiable time-dependent function f, we
write _f its time derivative, which we also refer to as the rate
of f.

3.2.1 Generic formula

Compaction is characterized by a change in porosity under
a change in compression. Supposing that the porosity rate
does not depend on shear stresses (cf. Remark 2.1), we
may assume that the actual porosity / can be approxi-
mated as / ’ /F , where

_/F ¼ Fð/; r0
nÞ � _r0

n ð12Þ
and F is a continuous, vector-valued function (experimen-
tally fitted), r0

n :¼ ðr0
x ; r

0
y; r

0
zÞ is the diagonal vector of r0

and � stands for the Euclidean inner product. Following
[40] and adapting the terminology therein to our nonplas-
tic setting, we sometimes refer to F as the elastic function,
which, in particular, needs to keep the porosity between
0 and 1. If we were to treat chemical compaction in addi-
tion to mechanical compaction, then we would need to
add a term of the form G /; r0

n

� � � r0
n to the right-hand

side of (12) to account for viscous effects [24, 40, 41].

3.2.2 Porosity-free elastic function

For simplicity, we assume that F only depends on effective
stress:

_/F ¼ F r0
n

� � � _r0
n: ð13Þ

We call (13) the compaction law, which is eventually non-
linear. We can retrieve an expression for /F by integrating
it between the initial time t0 and a time t > t0:

/F tð Þ ¼ /F t0ð Þ þ
Z t

t0

F r0
n sð Þ� � � _r0

n sð Þds: ð14Þ

This completes our standard basin model given in
Section 2 provided we find an appropriate elastic function
F. We first discuss the oedometric case and then general-
ize it to give our simplified geomechanical model.

3.3 Oedometric model

Assume in this section that we are within the oedometric
hypothesis, that is, the strains satisfy

ex ¼ ey ¼ eyz ¼ exz ¼ exy ¼ 0: ð15Þ

3.3.1 Vertical compaction law

Horizontal effects on porosity being negligible in this case,
we choose F in (13) to depend exclusively on the vertical
stress r0

z :

F r0
n

� � ¼ 0; 0;�b r0
z

� �� �
; ð16Þ

where b is a function determined by lithology, so that (13)
becomes

_/S ¼ �b r0
z

� �
_r0
z ; ð17Þ

where the notation /S replaces /F. This law is empirical,
and one-dimensional in that it only takes vertical stress
into account.

3.3.2 Schneider’s law

We choose Schneider’s function for b [24]:

b sð Þ ¼ /1

r1
e�s=r1 þ /2

r2
e�s=r2 ; ð18Þ

where /1, /2 P 0 (porosities) and r1, r2 > 0 (stresses) are
known parameters depending on lithology. The com-
paction law (17) is thus referred to as Schneider’s law
and /S as Schneider’s porosity. Let a be a primitive of
�b, that is,

a sð Þ ¼ /r þ /1e
�s=r1 þ /2e

�s=r2 ; ð19Þ
for some additional parameter /r called the residual
porosity. At t0, we impose

/S t0ð Þ ¼ a r0
z t0ð Þ� �

¼ /r þ /1e
� 1�bð Þpsupðt0Þ=r1 þ /2e

� 1�bð Þpsupðt0Þ=r2 ; ð20Þ

where we refer the reader to (11); this becomes
/S t0ð Þ ¼ /r þ /1 þ /2 if b ¼ 1. Then, (14) yields

/S ¼ a r0
z

� �
: ð21Þ

When positive, the residual porosity helps numerically
avoid Schneider’s porosity becoming negative as vertical
effective stress increases.

Schneider’s law is empirical and its parameters need to
be found by experiment, which makes Schneider’s porosity
a fitted value as opposed to a direct measurement. The dou-
ble exponential formulation allows for a better fit at both
upper and lower sediment layers; indeed, for layers close
to the surface (say, above 1000 m), where the effective stress
is weak, the porosity generally shows steep variations, while
this is not the case at lower depths, where the stress is stron-
ger but the variations flatter. To accommodate both
regimes, the double exponential, with its five parameters,
proves to be a good choice (cf. [7, 40]); in this respect, /1
and /2 represent characteristic porosities at their corre-
sponding stress regimes. This is in contrast with the sin-
gle-exponential law proposed by Athy [42], which is
recovered when /2 = /r = 0 in (18) and (19):

b sð Þ ¼ /1

r1
e�s=r1 and aðsÞ ¼ /1e

� s=r1 :

The Author(s): Science and Technology for Energy Transition 78, 22 (2023) 5



We refer the reader to [43] for an equivalent reformulation
of Athy’s law on permeability rather than porosity. Also,
it is a fact that Athy’s law can be derived as a solution to a
partial differential equation when compaction happens
fast [44].

3.3.3 Erosion

Schneider’s law is adequate to describe compaction in
oedometric conditions. It is less so if erosion is involved,
i.e., if decompaction, eventually followed by recompaction,
occurs. During erosion, the law in (18) can be adjusted to
include decompaction and recompaction as elastic phenom-
ena [24, 40]. We do not discuss this issue further and simply
assume that (18) still holds for erosion.

3.4 Simplified geomechanical model

We now derive the compaction model to handle non-
oedometric conditions. As already mentioned, we suppose
that the horizontal strains ex and ey (and thus their rates
_ex and _ey) are known time-dependent functions.

3.4.1 Stress-strain constitutive law

We start by discussing the relationship between effective
stress and strain (in fact, between their rates).

Generic formula. We suppose that r0 and e verify

_r0 ¼ G ðr0; eÞ : _e;
where G is a continuous function with fourth-order tensor
values, called the stiffness tensor, and : stands for the
tensor product between 3 � 3 � 3 � 3 and 3 � 3 tensors;
we refer the reader to [45] for a practical way to compute
such a product using Voigt’s notation. This relation
would need to be corrected according to finite strain
theory using the spin tensor if we were to consider plastic
strains [33, 39, 46]. Note that in classical infinitesimal elas-
tic theory, G only depends on e and so, by time integra-
tion, r0 is an explicit function of e; when furthermore
the elasticity is linear, G is, in fact, independent of both
r0 and e and Hooke’s law applies.

Strain-free stiffness tensor. Compaction impacts
the form of the stiffness tensor G. Indeed, as shown later
(cf. (34)), assuming / ’ /F with a compaction law of the
form (13) requires G to depend on r0. In fact, in contrast
with classical elasticity, we drop the dependence on e and
only keep that on r0:

_r0 ¼ Gðr0Þ : _e: ð22Þ
Equivalently, writing H(r0) = G(r0)�1, we have

_e ¼ H r0ð Þ : _r0: ð23Þ
We call (22) and (23) the stress-strain constitutive law.
Note that the stress dependence in the stiffness tensor
does not alter the mechanical equilibrium given in (8),
since its resolution is carried out before the constitutive
law is applied.

Hooke-type law. We choose Hooke’s elastic law with
stress-dependent Young modulus for the stiffness tensor,
that is, we rewrite (22) as

_r0 ¼ Eðr0Þ
1þ m

_eþ vE r0ð Þ
1þ mð Þ 1� 2mð Þ tr _eð ÞI ; ð24Þ

where m 2 ½0; 0:5Þ is Poisson’s coefficient and E > 0 is
Young’s stress-dependent modulus. Equivalently, we
rewrite (23) as

_e ¼ 1þ m
Eðr0Þ _r

0 � m
E r0ð Þ tr _r0ð ÞI ; ð25Þ

For simplicity, we refer to both (24) and (25) as Hooke’s
law.

As a direct consequence of (25), we have

tr _eð Þ ¼ 1� 2m
E r0ð Þ tr _r0ð Þ: ð26Þ

The trace of _e is the dilatation or relative volume change of
the skeleton. Also, from the first two equations in (25),
we establish

_r0
x ¼

m
1� m

_r0
z þ

E r0ð Þ
1� m2

_ex þ m_ey
� �

;

_r0
y ¼

m
1� m

_r0
z þ

E r0ð Þ
1� m2

_ey þ m_ex
� �

;

ð27Þ

and so, by summing these two equations and adding _r0
z ,

we get

tr _r0ð Þ ¼ 1þ m
1� m

_r0
z þ

E r0ð Þ
1� m

_ex þ _ey
� �

: ð28Þ

Initially, recalling (11), we impose

r0
x t0ð Þ ¼ r0

y t0ð Þ ¼ m
1� m

r0
z t0ð Þ ¼ m

1� m
1� bð Þpsup t0ð Þ;

ð29Þ
which becomes r0

x t0ð Þ ¼ r0
y t0ð Þ ¼ 0 when b = 1.

Oedometric case.We briefly return to the oedometric
case (cf. (15)). Stress and strain tensors. Both equations in
(27) and (28) imply

_r0
x ¼ _r0

y ¼
m

1� m
r0
z and tr _r0ð Þ ¼ 1þ m

1þ m
_r0
z : ð30Þ

Thus, (26) gives

_ez ¼ tr _eð Þ ¼ 1þ mð Þð1� 2mÞ
1� mð ÞEðr0Þ _r0

z : ð31Þ

Then, the oedometric rates of effective stress and strain
tensors read as

_r0 ¼

m
1� m

0 0

0
m

1� m
0

0 0 1

0
BBB@

1
CCCA _r0

z and _e ¼
0 0 0

0 0 0

0 0
1þ mð Þð1� 2mÞ
ð1� mÞEðr0Þ

0
BB@

1
CCA _r0

z :

ð32Þ
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Young’s modulus. To find an expression for Young’s modu-
lus, we use Schneider’s law. Let us first note that, by solid
incompressibility (cf. [1] for example),

_/ ¼ �ð1 � /Þ trð_eÞ ¼ � ð1 � /Þ _ez : ð33Þ
Then, using (17), (21), and (31), and recalling the
assumption that the porosity is well approximated by
Schneider’s porosity, we get

E r0ð Þ ¼ 1þ mð Þð1� 2mÞ
1� m

1� aðr0
zÞ

bðr0
zÞ

: ð34Þ

Thus, we see a posteriori, given the form of Schneider’s
function (18) and its primitive (19), that E must indeed
depend on effective stress (specifically, on the vertical
effective stress r0

z), even under oedometric conditions.
Note also that the choice of taking Young’s modulus as

stress-dependent over Poisson’s coefficient in (24) and (25)
is arbitrary and is only motivated by the fact (34) is a
simpler expression than its equivalent for m.

3.4.2 Approximated problem

To determine the porosity, we introduce an approximated
problem for the strains for which the oedometric hypothesis
(15) holds and therefore Schneider’s vertical law (17) and
(18) is applicable.

More precisely, we take a stress-strain pair (r*, e*)
whose components verify

e�x ¼ e�y ¼ e�yz ¼ e�xz ¼ e�xy ¼ 0 ð35Þ

and

r�
i t0ð Þ ¼ r0

i t0ð Þ for all i 2 x; y; zf g; ð36Þ
where we refer the reader to (11) and (29).

Approximated porosity. Because the oedometric
hypothesis (35) is satisfied by the approximated strain
tensor, Section 3.3 motivates the use of the following com-
paction law to define an approximated porosity /*:

_/� ¼ �b r�
z

� �
_r�
z ; ð37Þ

where b is given by Schneider’s function (18). We further
require that

/� t0ð Þ ¼ / t0ð Þ; ð38Þ
with /(t0) given in (20).

Approximated tensors. We let r* and e* satisfy the
constitutive relation

_e� ¼ H r�ð Þ : _r�;

where we recall that H is given by (25). We directly get
the analog of (26):

tr _e�ð Þ ¼ 1� 2m
E r�ð Þ tr _r�ð Þ:

Also, following the computations in Section 3.4.1, we yield

_r�
x ¼ _r�

y ¼
m

1� m
_r�
z ; ð39Þ

and

tr _r�ð Þ ¼ 1þ m
1� m

_r�
z ; ð40Þ

in agreement with the oedometric forms given in (30).
Approximating assumption. The assumption we

wish to make is that the approximated porosity /* is close
to the actual porosity / (or at least the empirical one /F
given in (13)), that is,

j/� � /j � 1; ð41Þ
so that / can be replaced by /* wherever needed. Thanks
to (38), this is equivalent to

d :¼ j/� � _/j � 1: ð42Þ
For this approximation to be justified given (37), we still
need to choose an appropriate vertical approximated
stress r�

z .
Vertical approximated stress. To account for the

horizontal effects of compaction, r�
z must include the hori-

zontal deformations ex and ey. Moreover, for consistency,
it should coincide with r0

z in oedometric conditions.
Convex combination. We ask for a convex combina-

tion of rates of horizontal stresses to be preserved, that is,
for some k 2 ½0; 1� we let

1� kð Þ _r�
x þ k _r�

y ¼ 1� kð Þ _r0
x þ k _r0

y ð43Þ

Given (27) and (39), this yields

m
1� m

_r�
z ¼

m
1� m

_r0
z þ

E r0ð Þ
1� m2

1� kð Þ þ mkð Þ_ex

þðkþ mð1� kÞÞ_eyÞÞ;
where we recall that E(r0) is Young’s stress-dependent
modulus. Then,

_r�
z ¼ _r0

z þ
E r0ð Þ

m 1þ mð Þ ð_ex þ _ey � ð1� mÞðk_ex þ ð1� kÞ_eyÞÞ;

ð44Þ
note that this formulation only holds if m 6¼ 0.

The choice for the parameter k is arbitrary at this point.
We impose that only the rate of x-stress should be preserved
(i.e., k = 0) if only the rate of x-strain is nonzero and vice-
versa (i.e., k = 1) if only the rate of y-strain is nonzero.
Therefore, we choose

k ¼ j_eyj
j_ex j þ j_eyj ;

and (44) becomes

_r�
z ¼ _r0

z þ
E r0ð Þ

m 1þ mð Þ
_ex þ _ey � 2 1� mð Þ_ex _ey

_ex þ _ey

� �
if _ex _ey > 0;

_ex þ _ey
� �

if _ex _ey � 0:

8><
>:

ð45Þ
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Remark 3.1 In oedometric conditions, we note that
_r�
z ¼ _r0

z and, thanks to (36), that r�
z ¼ r0

z ; furthermore,
(17) and (37) give /� ¼ /.

Other possible choices. There are various viable
conditions to impose other than (43). For example, we
could preserve the stress trace, i.e., the first invariant:

trð _r�Þ ¼ trð _r0Þ; ð46Þ
which, thanks to (28) and (40), would lead to

_r�
z ¼ _r0

z ¼
E r0ð Þ
1þ m

_ex þ _ey
� �

:

This relation, as opposed to our choice (45), disregards the
relative magnitude of the horizontal-strain rates, but
makes sense when m = 0. Interestingly, thanks to (40)
and (46), we have E(r0) tr(e) = E(r* ) tr(e* ), where tr
(e) and tr(e* ) are the relative volume changes for the
actual and approximated problems, respectively. Note
that this trace-preserving approach, coupled with the
approximated compaction law (37), yields a model equiv-
alent to replacing r* by tr(r0) in (37) and appropriately
rescaling the parameters of Schneider’s law by a factor
depending on Poisson’s coefficient. This approach should
be explored in the future since the trace invariance
between the original and the approximated problem is a
physically desirable property.

In view of the above discussion, we note that a general
expression for the rate of vertical approximated stress is the
following additive adjustment of the rate of vertical effective
stress:

_r�
z ¼ _r0

z þ f _ex ; _ey
� �

E r0ð Þ; ð47Þ

for some strain-dependent, continuous function f such
that f ð0; 0Þ ¼ 0. For instance, in our case (cf. (45)), we
have

f _ex ; _ey
� � ¼

1
vð1þ mÞ

_ex þ _ey � 2ð1� mÞ_ex _ey
_ex þ _ey

� �
; if _ex _ey > 0;

_ex þ _ey
� �

; if _ex _ey � 0:

8><
>: ð48Þ

One could also integrate geometrical constraints related
to the basin’s shape into the function f. We leave a
detailed study of the many possible choices of f to for
future work.

Porosity. We split the elastic function F in the com-
paction law (13) according to

F ¼ Fo þ Fno; ð49Þ
where Fo follows the oedometric formulation given in (16),
that is,

Fo r0
n

� � ¼ ð0; 0;�bðr0
zÞÞ: ð50Þ

Recalling / ’ /F , this leads to a decomposition of the
porosity as

/ ¼ /o þ /no; ð51Þ

where /o and /no satisfy _/o ¼ Foðr0
nÞ � _r0

n and
_/no ¼ Fnoðr0

nÞ � _r0
n and are the oedometric and non-oedo-

metric contributions to the porosity change _/; in particu-
lar, there holds

_/o ¼ �b r0
z

� �
_r0
z ;

where b is Schneider’s function (18).
Young’s modulus. To close our approximated prob-

lem, and therefore our simplified geomechanical model
given by (37)–(41)–(45), we need to determine an expres-
sion for Young’s stress-dependent modulus. To this end,
we split oedometric and non-oedometric contributions in
porosity, effective stress, and strain.

Effective stress and strain. Similarly as for the
porosity, we split the effective stress and strain tensors as

r0 ¼ r0
o þ r0

no and e ¼ eo þ eno;

where, according to the stress-strain constitutive law (23),
we have

_eo ¼ H r0ð Þ : _r0
o and _eno ¼ H r0ð Þ : _r0

no ð52Þ
with H given in (25). From (27) and (32), we choose

_r0
o ¼

m
1� m

0 0

0
m

1� m
0

0 0 1

0
BBB@

1
CCCA _r0

z : ð53Þ

From (52) and (53), we get

tr _eoð Þ ¼ 1þ mð Þð1� 2mÞ
ð1� mÞE r0ð Þ _r0

z : ð54Þ

Stress-dependent modulus. From (33), there holds

_/ ¼ � 1 � /ð Þtr _eð Þ ¼ � 1 � /ð Þtr _eoð Þ � 1 � /ð Þtr _enoð Þ:

By identification with (51), we, therefore, find that /o and
tr(eo) satisfy

_/o ¼ � 1� /ð Þtr _eoð Þ: ð55Þ
Then, (54) and (55) lead to

E r0ð Þ ¼ 1þ mð Þ 1� 2mð Þ
1� m

1� /
bðr0

zÞ
: ð56Þ

Our simplified geomechanical model for compaction is there-
fore finally given by (37)–(41)–(45)–(56), summarized by

/ ¼ /�;

_/� ¼ �b r�
z

� �
_r�
z ;

_r�
z ¼ _r0

z þ
Eðr0Þ

vð1þ mÞ
_ex þ _ey � 2ð1� mÞ_ex _ey

_ex þ _ey

� �
if _ex _ey > 0;

_ex þ _ey
� �

if _ex _ey � 0;

8><
>:

E r0ð Þ ¼ 1þ mð Þð1� 2mÞ
1� m

1� /
bðr0

zÞ
:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð57Þ
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Validity of the model. Let us come back to the question
of the validity of the assumption that /� ¼ / (cf. (41) and
(42)). When there are no horizontal strains, we already
know from Remark 3.1 that our model is such that
_/� ¼ _/. and so d ¼ 0 (cf. (42)). However, we would like
to quantify how small _ex and _ey need to be for d to be rea-
sonably small and thus our model to be valid. Answering
this question requires the use of advanced analytical tools,
which is out of the scope of this paper. Instead, we validate
our model numerically on a complex test case in Section 4.

Still, to give an idea of how to answer the question
analytically, we give a formal computation in this direction.
Using again / ’ /F (cf. (13)), we have

d ¼ F r0
n

� � � _r0
n þ b r�

z

� �
_r�
z

		 		 � jðFno r0
n

� �þ 0; 0; b r�
z

� �� b r0
z

� �Þ� �
� _r0

n þb r�
z

� �		 		 _r�
z � _r0

z j � jFno r0
n

� � � _r0
nj þ jb r�

z

� �� b r0
z

� �jj _r0
z j

þb r�
z

� �
E r0ð Þjfð_ex ; _eyÞj � jFno r0

n

� � � _r0
nj þ jb r�

z

� �� b r0
z

� �jj _r0
z j

þ 1þ mð Þ 1� 2mð Þ
1� m

b r�
z

� �
b r0

z

� � jfð_ex ; _eyÞj;
where the first line comes from (13) and (37), the second
line from (49) and (50), the third line from (47), and the
fourth line from (56), and the fact that / < 1. Recall that
f is given by (48) in our case. We thus see that if we have a
control on how close bðr�

zÞ is to bðr0
zÞ, then the second and

third terms in the right-hand side of the last inequality
can be bounded by j _r0

z j; j_ex j and j_ey j. The first term, how-
ever, depends on the non-oedometric contribution to the
porosity, on which we do not have any information.
Hence, for the moment, this analysis is inconclusive.

4 Simulations

We now discuss the numerical results obtained with our
simplified geomechanical model (57) for compaction coded
entirely in ArcTem.

4.1 Neuquén basin

We test our model on the Vaca Muerta formation of the
Neuquén basin in Argentina. Its geological history involves
many episodes of tectonic and sedimentary deformation,
which makes it an attractive site to test compaction models.

We subdivide the basin’s history into 30 events starting
at �200My and ending at the present day. These events
include the deposition of sediments such as sandstone and
carbonate over the first 20 events and their erosion at the
top of the basin in the last 10 events. We use the same geo-
metrical, lithological, and mechanical parameters as in [26]
and validate our results by comparison with those obtained
there using the code A2. We refer the reader to [26] for a
detailed account of the basin’s history and sediments’ prop-
erties; importantly, the basin shows high overpressures, and
drained conditions with hydrostatic pressure in the upper
layers, in contrast with the lower layers.

The main characteristics of the basin, summarized in
Figure 1, are as follows:

	 Spatial dimensions: 195 km East-West and 180 km
North-South;

	 Spatial discretization: 100 620 finite-volume cells;
	 Sediments: 7 groups of different materials;
	 East-West strain: 4% from�10My to�8My (2 events)
and 2% from �8My to present day (8 events).

4.2 Code A2

As mentioned in the introduction (Sect. 1), and the refer-
ences therein, code A2 iteratively couples a finite-volume
basin simulator (ArcTem) with a three dimensional finite-
element mechanical simulator (Code Aster). More specifi-
cally, during predefined time events, both the basin and
mechanical codes carry out their own, independent, time
discretizations as well as porosity and pressure evaluations,
the former using Schneider’s law and the latter using
Prager–Drucker plasticity model. At the end of each event,
these porosities are compared: if, within a given tolerance,
they are equal, then the simulation continues to the next
event; if they are too far apart, porosity and pressure are
corrected within the basin code using an additive term on
the effective vertical stress and the time event is recom-
puted until convergence, i.e., until an agreement between
the basin and mechanical codes. Code Aster has the advan-
tage of being more precise than ArcTem because of its
three-dimensional treatment of compaction; however, it is
costlier and requires a fixed mesh. Furthermore, ArcTem
can accommodate degenerate hexagonal cells, whereas
Code Aster needs to reshape such cells and thus requires
additional unknowns, which increase the computational
cost of running the code A2 against our simplified geome-
chanical model (cf. Sect. 4.4.3 below for CPU times).

4.3 Parameters

We give in Table 1 the parameters chosen for our simula-
tions and involved in the model equations given through
Sections 2 and 3. As already mentioned, these parameters
coincide with those used in [26].

In addition, the horizontal strain rates, measured in s�1,
are of the form

f xð Þ ¼
0; t < �10My;

ai; �10My � t < �8My;

bi; �8My � t;

8><
>:

where, for i 2 fx; yg, the parameters ai and bi are
selected from the list below:

(zero) ax = bx = ay = by = 0.
(ref) ax = 0.02, bx = 0.0025 and ay = by = 0.
(dble) ax = 0.04, bx = 0.005 and ay = by = 0.
(xy) ax = ay = 0.01 and bx = by = 0.00125.
(neg) ax = � 0.0025, bx = �0.0003125 and ay = by = 0.

Choice (zero) refers to oedometric conditions, where lat-
eral deformations are neglected. Choice (ref) corresponds
to that in [26] and to experimentally observed data
(cf. Sect. 4.1), and thus gives us a reference point for our
simulations. The other three choices, namely, (dble),
(xy), and (neg), are variations of the reference case, where
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we either double the horizontal strains, spread them
evenly along the x- and y-directions, or apply negative ones,
i.e., apply for an extension.

4.4 Results

We first compare the results of our simulations with those
given in [26] using A2, where we make use of (zero),
(ref), and (dble). Then, we show additional results where
the horizontal strains follow (xy) and (neg). All the results
are given at the present day, i.e., at the end of the simula-
tions. Finally, we give the CPU time for each simulation.

4.4.1 Comparison with [26]

Figure 2 compares our results with [26] (A2) under the
reference strains (ref) along Well 10 (W10); there, we dis-
play the horizontal total stresses, the water pressure, and

the porosity. We also show experimental data points for
the pressure and the porosity under this same condition
(ref) and give the respective results when no horizontal
strains are imposed, i.e., when the oedometric condition
(zero) holds. We see that our porosity stays very close in
the lower layers to that obtained with A2. In the upper
layers, the porosities diverge slightly but both stay within
the data cloud. The results are not as positive for the
horizontal stresses and the pressure; indeed, although the
trends are very similar to those with A2, the values gradu-
ally separate as depth increases. Still, there is a significant
improvement when switching from (zero) to (ref), in
particular for the porosity, which shows that our simpli-
fied model does account for horizontal effects and is an
improvement compared to an oedometric model, as desired,
albeit underestimating the horizontal stresses and the
pressure.

To get an indication of how our model behaves
with deformation magnitude and how the underestimated

Fig. 1. Geometrical and lithological model of the Neuquén basin (from [7]). (a) Representation of the mesh with a five-time vertical
exaggeration (left); several longitudinal and transversal sections of the basin colored by sediment groups (right) and (b) lithology and
burial evolution of each sedimentary group during the Mesozoic and Cenozoic eras at Well 10 (W10).
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horizontal stresses and pressure can be impacted, we
present in Figure 3 our results along W10 when the strain
condition (dble) holds, i.e., when the horizontal strains
are doubled with respect to the reference ones (ref). The
results are still showing underestimated values of the hori-
zontal stresses and the pressure, although less significantly
and in deeper layers (compare Figs. 2 and 3). There is also
a compelling improvement in the porosity, which is now
closer to the A2 result and more centered within the data
points. The consistent misfit in lateral stresses may be
due to the particularly high overpressure encountered in
the Vaca Muerta formation, which may reach about
35 MPa (cf. Figs. 4 and 5 below). The way this overpressure
dissipates laterally through the rock certainly affects lateral
compaction and thus lateral stress variations [26]; this
would need to be further investigated.

In Figure 4, we reproduce the profile obtained in [26] of
the overpressure (i.e., the difference between the water
pressure and the hydrostatic pressure) at the bottom of
the basin and over a cross-section at the center of the basin.
It shows both results when no horizontal deformations and
when reference horizontal deformations are applied. Figure 5

presents our results for comparison with Figure 4. Again,
in accordance with Figures 2 and 3, we see that we under-
estimate the overpressure under the strain condition (ref)
and get much closer to the A2 results when (dble) holds
instead.

The noted underestimating behavior should not dimin-
ish the fact that the results given under (ref) and (dble)
still show great improvement compared to the oedometric
simulation (zero), in particular for the overpressure, pres-
sure, and porosity in the undrained region of the basin,
i.e., in the deep layers.

4.4.2 Additional results

To illustrate the flexibility of our simplified model, Figure 6
shows the horizontal stresses, the pressure, and the porosity
along W10 when the horizontal strains are spread evenly
in the x- and y-directions (cf. (xy)) and when negative
horizontal strains are applied (cf. (neg)), i.e., when there
is a horizontal extension rather than a compression. As
expected, condition (xy) yields higher horizontal stresses
and pressure and lower porosity than (zero), whereas

Table 1. Chosen parameters of the model equations.

Parameter Value (or interval of) Unit

Densities qs,0 [2645, 2710] kg�m�3

qw,0 1161.1 kg�m�3

aw 3.9 � 10�4 �C�1

bw 4.5 � 10�4 MPa�1

T0 15 �C
P0 0.1 MPa

Water mobility aw 21.5 Pa�s��C�1

bw 8078 �C2

cw 1200 �C
Permeability S0 [1.7 � 1012, 5 � 107] m2

/0 0.1 %
k1 20 –

k2 0.2 –

n1 5 –

n2 3 –

m1, m2 2 –

Geothermal gradient G [0.046, 0.068] �C � m�1

External force f (0, 0, 0) kg � m�2 � s�2

Boundary conditions psup 0.1 MPa
Tsup [18, 26] �C

Biot’s coefficient b 1 –

Schneider’s law /r [0.01, 0.04] %
/1 [0.29, 0.56] %
/2 0 %
r1 [1.6, 40] MPa
r2 10 MPa

Poisson’s coefficient m 0.24 –
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Fig. 2. Comparison with A2 under the strain condition (ref) and results under (zero) along W10 (data points and A2 results
from [26]).
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Fig. 3. Results under the strain condition (dble) along W10 and comparison with A2 (data points and A2 results from [26]).
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Fig. 4. A2 overpressure at bottom and over central cross-section under no horizontal strains (top) and reference horizontal strains
(bottom) (from [26]).

Fig. 5. Overpressure at bottom and over central cross-section under the strain conditions (zero), (ref), and (dble).
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Fig. 6. Results along W10 under the strain conditions (zero), (xy), and (neg).
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condition (neg) yields similar horizontal stresses and pres-
sure and higher porosity. Note that, although the total
horizontal strain in (xy) is the same as in (ref), the results
are different (compare Figs. 2 and 6); this illustrates that
our simplified model takes the direction of the strains into
account when they are positive (cf. (45)).

When running simulations with (neg), we identified a
limitation of our approach. Namely, when the horizontal
extension is large, the pressure locally becomes very small
while the porosity becomes very large, which prevents
the simulation from converging. We were not able to
impose any extension stronger than that given in (neg).
This nonconvergence was not observed in any of the men-
tioned compression settings, where the deformations could
actually be significantly increased, albeit with the drawback
of higher numerical cost, which we discuss just below.

4.4.3 CPU times

Table 2 lists the CPU times required to run our simulations.
We note that the difference in CPU time between a purely
vertical model (i.e., an oedometric model, where no horizon-
tal deformations are taken into account) and our simplified
model goes from 24.9% to 61.6%, depending on the magni-
tude of the horizontal strains. This is a very attractive fea-
ture given that for a full-dimensional, finite element
approach, as used in [26], the computational time loss in
comparison to an oedometric model is much higher. The
computational time, as communicated to us by the A2 team
from [26], for a full-dimensional run with the strain condi-
tion (ref) lies between 2.5 h and 6.5 h on 72 processors,
depending on the chosen underlying linear solver; in con-
trast, the times given in Table 2 were obtained on a single
processor on a personal laptop computer.

5 Conclusion and outlook

The model proposed in this paper to describe mechanical
compaction is based on an alteration of Schneider’s vertical
porosity-stress law and an elastic stress-strain constitutive
law involving a stress-dependent Young modulus. It coin-
cides with classical modeling in oedometric conditions and
provides a computation of porosity in non-oedometric
conditions which is simpler, although not as accurate, com-
pared to a full-dimensional, elastoplastic model. On the test
case given by the Neuquén basin, our simplified model,
coded in the finite-volume simulator ArcTem, shows rea-
sonable accuracy in pressure, porosity, and vertical stress

along a drilling well, as well as in overpressure at the
bottom and over a vertical cross-section at the center of
the basin. Overall, our model tends to underestimate the
horizontal stresses, the pressure, and the overpressure. Still,
it shows significant improvement compared to an oedomet-
ric model, in particular in the lower, undrained compart-
ment of the basin, and it produces very advantageous
computational times. Therefore, it may offer a quick way
to get pre-validating results before spending the time and
computational resources required by a three-dimensional,
finite-element simulator.

Although the model shows promising first results, it
would still benefit from further numerical validation
by comparing results on different wells, cross-sections, and
test cases altogether. From the modeling and analytical
point of view, other choices of approximated stresses need
to be investigated, i.e., other functions f in (47) need to
be tested; also, the analytical validation of the model
requires additional work to show that the approximated
porosity is indeed close to the actual one for a given range
of horizontal stresses and strains (cf. the computation at
the end of Sect. 3.4.2).
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