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Abstract: Subspace-based fault detection methods are widely used for linear time-invariant
systems. For linear time-periodic systems, those methods cannot be theoretically used, due to
the intrinsic assumptions associated with those methods in the context of linear time-invariant
models. Based on the approximation of time-periodic systems as time-invariant ones, those
methods can still be applied and adapted to perform change detection for time-periodic systems,
through a Gaussian residual built upon the identified modal parameters and their estimated
variances. The proposed method is tested and validated on a small numerical model of a
rotating wind turbine, with detection and isolation of a blade stiffness reduction leading to
rotor anisotropy.
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1. INTRODUCTION

Considering the forecasted increase in the number of wind
farms in the coming years, it is important to implement
reliable fault detection methods based on data collected
during operation for efficient maintenance. The methods
based on subspace identification for Linear Time-Invariant
(LTI) - modelled structures are part of the solution.
And, those methods must be extended to the in-operation
rotating wind turbine rotors, modelled as Linear Time
Periodic (LTP) systems.

Nowadays, it exists some fault detection methods designed
for wind turbines. The first methods are focused on detect-
ing aerodynamic or mass imbalance of the rotor through
tower sensors (Kusnick et al., 2015; Cacciola et al., 2016).
In these methods, the effects of the damage are sought
through the change in the environmental effects on the
structure. Precisely, the consequence of an imbalanced
rotor is the apparition of harmonics of the rotation in the
time series, due to the gravity or wind loads. The main
concern with these methods is that no structural faults of
the rotor can be detected. In the literature, some methods
defined for the detection of structural rotor faults can be
found for example in Tcherniak and Mølgaard (2017). In
this method, the cross-covariance of rotor sensors is used
as a damage feature through a Mahalanobis distance. The
issue with this method is its sensitivity to the operational
conditions that must be mitigated, as in Garćıa Cava et al.
(2022). Also, this approach does not provide localization
information.

For LTI systems, a fault detection method based on a local
approach for change detection can be used as in Döhler
et al. (2016), and its extension to deal with real-world

structures has been demonstrated in Döhler et al. (2014).
With this method, based on a model parametrization, it
is possible to perform change isolation, corresponding to
damage localization in the applicative context (Basseville
et al., 2004). Moreover, the possibility to isolate any
change in the parameterization can be assessed (Mendler
et al., 2020). For detection and localization, the approach
performs a statistical test on a data-driven residual. To be
robust to environmental conditions and take advantage of
the identification of an identified estimate of the modes,
some recent residual was directly designed in Mendler et al.
(2023), using the mode shapes identified with a subspace
identification. Also, the definition of the residual has been
extended with a residual function of an estimated reference
(Viefhues et al., 2022). In the current paper, the proposed
residual should be designed with those two considerations
in mind.

The previously proposed damage detection and localiza-
tion approaches cannot be used for LTP systems, as the
subspace identification methods are not defined for those
systems. In Cadoret et al. (2022a), it has been proven that
LTP systems can be approximated as LTI systems under
non-stationary inputs. Consequently, those systems can be
identified with the classical identification methods, and
the damage detection and localization method designed
for LTI systems can be performed thanks to this model
approximation.

The main contribution of this paper is the extension of
the existing damage detection and localization method to
LTP systems, with a residual designed with the damage-
sensitive feature of the studied structure, namely a wind
turbine rotor. For this purpose, the paper is organized
as follows, Section 2 introduces the dynamical modeling
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With this method, based on a model parametrization, it
is possible to perform change isolation, corresponding to
damage localization in the applicative context (Basseville
et al., 2004). Moreover, the possibility to isolate any
change in the parameterization can be assessed (Mendler
et al., 2020). For detection and localization, the approach
performs a statistical test on a data-driven residual. To be
robust to environmental conditions and take advantage of
the identification of an identified estimate of the modes,
some recent residual was directly designed in Mendler et al.
(2023), using the mode shapes identified with a subspace
identification. Also, the definition of the residual has been
extended with a residual function of an estimated reference
(Viefhues et al., 2022). In the current paper, the proposed
residual should be designed with those two considerations
in mind.

The previously proposed damage detection and localiza-
tion approaches cannot be used for LTP systems, as the
subspace identification methods are not defined for those
systems. In Cadoret et al. (2022a), it has been proven that
LTP systems can be approximated as LTI systems under
non-stationary inputs. Consequently, those systems can be
identified with the classical identification methods, and
the damage detection and localization method designed
for LTI systems can be performed thanks to this model
approximation.

The main contribution of this paper is the extension of
the existing damage detection and localization method to
LTP systems, with a residual designed with the damage-
sensitive feature of the studied structure, namely a wind
turbine rotor. For this purpose, the paper is organized
as follows, Section 2 introduces the dynamical modeling

Modal-Based Anisotropy Early Warning in
Wind Turbine Rotor

Ambroise Cadoret ∗,∗∗ Enora Denimal ∗∗ Jean-Marc Leroy ∗

Jean-Lou Pfister ∗ Laurent Mevel ∗∗

∗ IFP Energies nouvelles, 92852 Rueil-Malmaison, France (e-mails:
{ambroise.cadoret,jean-marc.leroy,jean-lou.pfister}.@ifpen.fr)

∗∗ Univ. Gustave Eiffel, Inria, COSYS-SII, I4S, 35042 Rennes, France
(e-mails: {enora.denimal,laurent.mevel}@inria.fr)

Abstract: Subspace-based fault detection methods are widely used for linear time-invariant
systems. For linear time-periodic systems, those methods cannot be theoretically used, due to
the intrinsic assumptions associated with those methods in the context of linear time-invariant
models. Based on the approximation of time-periodic systems as time-invariant ones, those
methods can still be applied and adapted to perform change detection for time-periodic systems,
through a Gaussian residual built upon the identified modal parameters and their estimated
variances. The proposed method is tested and validated on a small numerical model of a
rotating wind turbine, with detection and isolation of a blade stiffness reduction leading to
rotor anisotropy.

Keywords: parameter estimation based methods for FDI, statistical methods/signal analysis
for FDI, signal and identification-based methods, wind turbines, uncertainty

1. INTRODUCTION

Considering the forecasted increase in the number of wind
farms in the coming years, it is important to implement
reliable fault detection methods based on data collected
during operation for efficient maintenance. The methods
based on subspace identification for Linear Time-Invariant
(LTI) - modelled structures are part of the solution.
And, those methods must be extended to the in-operation
rotating wind turbine rotors, modelled as Linear Time
Periodic (LTP) systems.

Nowadays, it exists some fault detection methods designed
for wind turbines. The first methods are focused on detect-
ing aerodynamic or mass imbalance of the rotor through
tower sensors (Kusnick et al., 2015; Cacciola et al., 2016).
In these methods, the effects of the damage are sought
through the change in the environmental effects on the
structure. Precisely, the consequence of an imbalanced
rotor is the apparition of harmonics of the rotation in the
time series, due to the gravity or wind loads. The main
concern with these methods is that no structural faults of
the rotor can be detected. In the literature, some methods
defined for the detection of structural rotor faults can be
found for example in Tcherniak and Mølgaard (2017). In
this method, the cross-covariance of rotor sensors is used
as a damage feature through a Mahalanobis distance. The
issue with this method is its sensitivity to the operational
conditions that must be mitigated, as in Garćıa Cava et al.
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. The Hankel matrix can be factorized

such that Ĥ = OpCq + o(1), where Op denotes the
observability matrix and Cq the controllability matrix.

Then from Op, the matrix estimates of Ã and C̃ are
retrieved. So, the eigenmodes can be computed with the
eigenvalue decomposition of Ã, namely Ã = Ψ [µi] Ψ

−1.
The continuous time eigenvalues λi are deduced from the
discrete time eigenvalues µi by λi = log(µi)/∆t. Finally,

the mode shape matrix is found from Φ = C̃Ψ. Those
estimates define the modal signature.

3. FAULT DETECTION METHOD

3.1 Standard subspace residual

The objective of the fault detection method is to detect a
change in the system parameter, represented as the vector
θ, with behavior assumed as

H0 : θ = θ0 (reference system),

H1 : θ = θ0 +
δ√
N

(damaged system),
(13)

where δ is unknown but fixed and N is the length of the
considered signal.

The change in the parameters will be sought through a
residual ζ ∈ Rl, computed from a subspace identification.
The impact of a change in the parameters on the residual
can be modelled as a change in the mean of the residual
(Döhler et al., 2016), such that

ζ ∼
{
N (0,Σ) : H0

N (J δ,Σ) : H1
, (14)

where δ ∈ Rh is related to the unknown change under
H1, J = ∂ζ

∂θ the sensitivity matrix of the residual with
respect to the parameters and Σ the covariance matrix of
the residual under both H0 and H1. The main assumption
is that effect of the parameter change on the residual is
linear, which is a good approximation for small changes.
So, the detection of important changes is outside the scope
of this method.

Looking at (13) and (14) together implies that, for a given
statistical change δ, the more data are used, the smaller
the change in the parameters can be detected. Conversely,
for a given change in the parameters ∆θ, the more data
are used, the higher the absolute mean of the residual will
be.

Among many possibilities of Gaussian residuals, the resid-
ual was previously defined in Basseville et al. (2000) as

ζ =
√
Nvec

(
UT
2 Ĥ

)
, with Ĥ in Equation (12) and U2 the

left null part of Ĥ.

To detect a change in the distribution of the residual, the
Generalized Likelihood Ratio (GLR) is used,

GLR (ζ) = −2 log
supθ∈H0

p (ζ|θ0)
supθ∈H1

p (ζ|θ)
. (15)

As the distribution of the residual is assumed to be a
Gaussian law, the GLR is defined as (Benveniste et al.,
1987)

GLR = t = ζTΣ−1J
(
J TΣ−1J

)−1 J TΣ−1ζ, (16)

with δ∗ =
(
J TΣ−1J

)−1 J TΣ−1ζ the value that maximise
the GLR test. From this test, the Fisher matrix can be
defined

F = J TΣ−1J . (17)

From this matrix, it is possible to assess the impact of a
change in each parameter component on the residual. The
diagonal terms give the detectability of each parameter
component and the non-diagonal terms quantify the im-
pact of one parameter component on the others and vice
versa.

The test is following a χ2 distribution such as

t ∼

{
χ2(ν, 0) : H0

χ2(ν, λ) : H1

, (18)

where ν is the number of degrees of freedom of the
distribution equal to the dimension of the parameter space,
and λ is the non-centrality parameter such that

λ = δTFδ. (19)

Based on the properties of the χ2 distribution, the mean of
the test denoted as t̄, will be t̄ = ν under H0 and t̄ = ν+λ
under H1.

From the theoretical distribution of the test (under both
H0 and H1), it is possible a priori to assess the minimal
change that will be detected based on a given confidence
level, 95% in this paper. Here, the method defined in
(Mendler et al., 2021) is used. First, the upper bound of
the interval that contains 95% of the reference test [0, tcrit]
(leading to a probability of false alarm of 5%) is computed,
with ∫ tcrit

0

fχ2(ν, 0)(t)dt = 0.95. (20)

Then, the minimum non-centrality parameter (λmin) is
defined such that∫ tcrit

0

fχ2(ν, λmin)(t)dt = 0.05 (21)

and estimated by minimizing the following function

f(λ) =

∣∣∣∣
∫ tcrit

0

fχ2(ν, λ)(t)dt− 0.05

∣∣∣∣ . (22)

Then, from Equation (19) the associated minimum sta-
tistical change can be assessed and for one parameter
component

δh min =
√
λmin/Fhh, (23)

where Fhh corresponds to the contribution of the h–th
parameter component in the Fisher matrix. From the
minimum 95%-level detectable statistical change, the asso-
ciated minimum 95%-level detectable change in the h–th
parameter component is

∆θh min =
δh min√

N
. (24)

Also, from the value tcrit it is possible to compute the
probability of detection of a statistical change δ and the
associated change ∆θ in the physical parameter θ (∆θ =
θ − θ0). From the distribution of the test and the non-
centrality parameter associated with the change (Equation
(19)), the probability of detection (POD) is defined by

POD (∆θ) =

∫ ∞

tcrit

fχ2

(
ν,N∆θTF∆θ

)
(t)dt. (25)

of the LTP systems, and defines the approximation of
such systems as an LTI system under non-stationary
inputs. Also, it defines an associated identification method,
which is needed to construct the residual used in damage
detection. Then, Section 3 recalls the principle of the
standard subspace damage detection and localization, and
defines a new residual designed for the study of wind
turbine rotors. Finally, Section 4 applies damage detection
to data from a small numerical model of a wind turbine.

2. IDENTIFICATION OF A LINEAR TIME
PERIODIC (LTP) SYSTEM

2.1 Dynamic model

The motion of a constant rotating wind turbine can be
expressed as a linear time periodic system,

M(t)ξ̈(t) + C(t)ξ̇(t) +K(t)ξ(t) = v(t), (1)

where ξ(t) ∈ Rm are the displacements of the structure
at the degrees of freedom (DOF) of the system, and
M(t + T ) = M(t), C(t + T ) = C(t), K(t + T ) = K(t),
respectively the mass, damping and stiffness matrices. T
represents the rotational period. The unknown input v(t)
is assumed to be a Gaussian white noise. In the following,
the mechanical system is expressed in a state space form,
from the definition of the state vector x(t) ∈ Rn where
n = 2m and the observation y(t) ∈ Rr.

x(t) =

[
ξ(t)

ξ̇(t

]
and y(t) = Caξ̈(t) +Cv ξ̇(t) +Cdξ(t), (2)

where Ca, Cv and Cd are selection matrices. A noise w(t)
can be added to the observation. w(t) is assumed to be
a Gaussian white noise. This leads to the following state
space expression:{

ẋ(t) = Ac(t)x(t) +Bc(t)v(t)

y(t) = C(t)x(t) +D(t)v(t) + w(t)
, (3)

with

Ac(t) =

[
0 I

−M(t)−1K(t) −M(t)−1C(t)

]
,

C(t) =
[
Cd − CaM(t)−1K(t) Cv − CaM(t)−1C(t)

]
,

Bc(t) =

[
0

−M(t)−1

]
and D(t) = CaM−1(t).

All matrices are periodic with period T , with Ac(t) ∈
Rn×n, C(t) ∈ Rr×n, Bc(t) ∈ Rn×m and D(t) ∈ Rr×m.

2.2 Modal analysis of LTP systems

The Floquet theory (Floquet, 1879) was initially intended
for solving linear differential equations with periodic co-
efficients. From this theory, the general solution of the
differential equation reads:

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)Bc(τ)v(τ)dτ, (4)

with Φ(t, t0) the fundamental matrix.

From the fundamental matrix and with some mathemati-
cal operations detailed in Skjoldan and Hansen (2009), it
is possible to express the homogeneous part of the observa-
tion vector (yh(t)) as a finite sum of eigenmodes to obtain

the description of a time-invariant system. Leading to the
following Floquet mode decomposition of the observation:

yh(t) =

n∑
j=1

Yj(t) exp (µjt) qj(t0), (5)

where qj(t0) depends on the initial conditions, µj is called
the characteristic exponent and Yj(t) is the amplitude of
the Floquet modes of the observation and a periodic vector
of period T = 2π

Ω , which can then be expanded into a
Fourier series:

Yj(t) =

∞∑
l=−∞

Yj,l exp (ilΩt) (6)

By combining Equations (5) and (6), the observation
vector can be expressed as an infinite sum of terms:

yh(t) =

n∑
j=1

∞∑
l=−∞

Yj,l exp ((µj + ilΩ) t) qj(t0) (7)

Significant non-zero components of the expansion of yh(t)
are determined by the participation factor (Bottasso and
Cacciola, 2015):

ϕy
j,l =

∥Yj,l∥∑∞
l=−∞ ∥Yj,l∥

. (8)

By defining a minimal participation factor (ϕy
min) an

approximation of the observation (ŷ(t)) is constructed as
a finite sum of eigenmodes,

ŷh(t) =
∑

(j,l),ϕy
j,l

≥ϕy
min

Yj,l exp ((µj + ilΩ) t) qj(t0), (9)

then, ŷh(t) can then be expressed as a sum of ñ eigenmodes

ŷh(t) =
ñ∑

p=1

Yp exp (µpt) qp(t0), (10)

where each index p corresponds to a pair (j, l) and µp =
µj+ilΩ. From the approximation of the observation vector,
the state space expression, and the associated matrices are
defined in Cadoret et al. (2022a), leading to{

zk+1 = Ãzk +Bkvk

yk = C̃zk +Dkvk + w̃k

, (11)

with zk the state vector associated with the approxima-
tion. This system represents a linear system with constant
system matrices under a non-stationary input forcing, pre-
cisely the statistical moments of the input are periodic.
In Cadoret et al. (2022a) it has been proven that the

homogeneous part of this kind of state space (Ã and C̃
in Equation (11)) can be identified with a classical output
only subspace identification method.

The Stochastic Subspace Identification (SSI) (van Over-
schee and de Moor, 1993) aims to identify the eigenmodes
of the system through the sample correlations. Here the
SSI covariance-driven is presented. First, the Hankel ma-
trix filled with correlations must be constructed. It can be
done directly from matrices gathering the observations

Ĥ = Y+
(
Y−)T ∈ R(p+1)r×qr. (12)

Where Y+ ∈ R(p+1)r×N and Y− ∈ Rqr×N are defined in
van Overschee and de Moor (1993). Ĥ can be seen as the

Hankel matrix filled with the correlations R̂i, the estimate

of the correlation Ri = E
(
yky

T
k−i

)
= C̃Ã

i−1
G, where
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G = E
(
zk+1y

T
k

)
. The Hankel matrix can be factorized

such that Ĥ = OpCq + o(1), where Op denotes the
observability matrix and Cq the controllability matrix.

Then from Op, the matrix estimates of Ã and C̃ are
retrieved. So, the eigenmodes can be computed with the
eigenvalue decomposition of Ã, namely Ã = Ψ [µi] Ψ

−1.
The continuous time eigenvalues λi are deduced from the
discrete time eigenvalues µi by λi = log(µi)/∆t. Finally,

the mode shape matrix is found from Φ = C̃Ψ. Those
estimates define the modal signature.

3. FAULT DETECTION METHOD

3.1 Standard subspace residual

The objective of the fault detection method is to detect a
change in the system parameter, represented as the vector
θ, with behavior assumed as

H0 : θ = θ0 (reference system),

H1 : θ = θ0 +
δ√
N

(damaged system),
(13)

where δ is unknown but fixed and N is the length of the
considered signal.

The change in the parameters will be sought through a
residual ζ ∈ Rl, computed from a subspace identification.
The impact of a change in the parameters on the residual
can be modelled as a change in the mean of the residual
(Döhler et al., 2016), such that

ζ ∼
{
N (0,Σ) : H0

N (J δ,Σ) : H1
, (14)

where δ ∈ Rh is related to the unknown change under
H1, J = ∂ζ

∂θ the sensitivity matrix of the residual with
respect to the parameters and Σ the covariance matrix of
the residual under both H0 and H1. The main assumption
is that effect of the parameter change on the residual is
linear, which is a good approximation for small changes.
So, the detection of important changes is outside the scope
of this method.

Looking at (13) and (14) together implies that, for a given
statistical change δ, the more data are used, the smaller
the change in the parameters can be detected. Conversely,
for a given change in the parameters ∆θ, the more data
are used, the higher the absolute mean of the residual will
be.

Among many possibilities of Gaussian residuals, the resid-
ual was previously defined in Basseville et al. (2000) as

ζ =
√
Nvec

(
UT
2 Ĥ

)
, with Ĥ in Equation (12) and U2 the

left null part of Ĥ.

To detect a change in the distribution of the residual, the
Generalized Likelihood Ratio (GLR) is used,

GLR (ζ) = −2 log
supθ∈H0

p (ζ|θ0)
supθ∈H1

p (ζ|θ)
. (15)

As the distribution of the residual is assumed to be a
Gaussian law, the GLR is defined as (Benveniste et al.,
1987)

GLR = t = ζTΣ−1J
(
J TΣ−1J

)−1 J TΣ−1ζ, (16)

with δ∗ =
(
J TΣ−1J

)−1 J TΣ−1ζ the value that maximise
the GLR test. From this test, the Fisher matrix can be
defined

F = J TΣ−1J . (17)

From this matrix, it is possible to assess the impact of a
change in each parameter component on the residual. The
diagonal terms give the detectability of each parameter
component and the non-diagonal terms quantify the im-
pact of one parameter component on the others and vice
versa.

The test is following a χ2 distribution such as

t ∼

{
χ2(ν, 0) : H0

χ2(ν, λ) : H1

, (18)

where ν is the number of degrees of freedom of the
distribution equal to the dimension of the parameter space,
and λ is the non-centrality parameter such that

λ = δTFδ. (19)

Based on the properties of the χ2 distribution, the mean of
the test denoted as t̄, will be t̄ = ν under H0 and t̄ = ν+λ
under H1.

From the theoretical distribution of the test (under both
H0 and H1), it is possible a priori to assess the minimal
change that will be detected based on a given confidence
level, 95% in this paper. Here, the method defined in
(Mendler et al., 2021) is used. First, the upper bound of
the interval that contains 95% of the reference test [0, tcrit]
(leading to a probability of false alarm of 5%) is computed,
with ∫ tcrit

0

fχ2(ν, 0)(t)dt = 0.95. (20)

Then, the minimum non-centrality parameter (λmin) is
defined such that∫ tcrit

0

fχ2(ν, λmin)(t)dt = 0.05 (21)

and estimated by minimizing the following function

f(λ) =

∣∣∣∣
∫ tcrit

0

fχ2(ν, λ)(t)dt− 0.05

∣∣∣∣ . (22)

Then, from Equation (19) the associated minimum sta-
tistical change can be assessed and for one parameter
component

δh min =
√
λmin/Fhh, (23)

where Fhh corresponds to the contribution of the h–th
parameter component in the Fisher matrix. From the
minimum 95%-level detectable statistical change, the asso-
ciated minimum 95%-level detectable change in the h–th
parameter component is

∆θh min =
δh min√

N
. (24)

Also, from the value tcrit it is possible to compute the
probability of detection of a statistical change δ and the
associated change ∆θ in the physical parameter θ (∆θ =
θ − θ0). From the distribution of the test and the non-
centrality parameter associated with the change (Equation
(19)), the probability of detection (POD) is defined by

POD (∆θ) =

∫ ∞

tcrit

fχ2

(
ν,N∆θTF∆θ

)
(t)dt. (25)
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2π
Ω , with Ω the rotational speed. The model parameters are
identical to those used in Skjoldan and Hansen (2009). In
this example, a detection of a stiffness loss of one blade is
performed, where the monitored physical parameterization
consists in the stiffness of each blade, denoted G1, G2, and
G3, so the number of degrees of freedom, and as such the
mean of the distribution of the GLR test under H0, is
ν = 3. Furthermore, the residual is built using the phase
shift and the amplitude of the bending modes of the rotor,
which are the most damage-sensitive mode shapes, with

vi =
[
pi2 pi3 ai2 ai3

]T
(see Equation (27)).

In the wind turbine field, it is common to have fixed-length
data, here 600s long data sampled at 25Hz will be used.

Fig. 1. Wind turbine model (Skjoldan and Hansen, 2009)

From the model matrices, the sensitivity can be computed,
in this example, the first-order approximation is used.
Then, the covariance matrix of the residual need to be esti-
mated. Here the uncertainty computation method defined
in Döhler and Mevel (2013) is used. Then the covariance
matrices of phases and amplitudes of the mode shapes can
be estimated using the method defined in Cadoret et al.
(2022b). Consequently, with the sensitivity and covariance
matrices, it is possible to estimate the minimum 95%-level
detectable parameter change (Equation (24)) and estimate
the probability of detection of specific changes (Equation
(25)), as a function of the number of data sets used for the
estimation of the reference (nf in Equation (30)).

Table 1. Minimum 95%-level detectable change
(∆θmin) and probabilities of detection (POD)
function of the number of data sets used for

the estimation of the reference

nf ∆θmin POD(1.5%) POD(2%) POD(2.5%)

5 1.94% 77.24% 96.12% 99.74%
10 1.86% 81.09% 97.43% 99.88%
25 1.81% 83.44% 98.08% 99.93%
50 1.79% 84.22% 98.27% 99.94%
100 1.78% 84.61% 98.37% 99.95%
200 1.78% 84.80% 98.41% 99.95%

In Table 1, the minimum 95%-level detectable parameter
change and the probability of detection of different changes
in the parameters are assessed. For simplicity, the relative
change in one parameter component (∆θ = ∆θ/θ0) will be
used until the end of the paper. With Table 1, it can be
seen that increasing the accuracy of the reference estimate
has an impact on the minimum 95%-level detectable
parameter change (which is the same for all the parameter
components) and on the probabilities of detection. But it
can be seen that from nf = 25, increasing furthermore the
accuracy of the reference does not improve significantly

the minimum 95%-level detectable parameter change and
the POD estimations, with a maximum gain of 0.03% on
∆θmin. So for the rest of the paper, a reference estimated
with nf = 25 will be used. Also, the minimum identifiable
parameter change and the probability of detection are
coherent. As 1.5% is below ∆θmin, the probability of
detection is below 95%, in contrast 2% and 2.5% are higher
than ∆θmin, with an associated POD higher than 95%.

The minimum 95%-level detectable parameter change and
the probability of detection have been assessed. Now,
damage detection will be performed to validate the pre-
vious theoretical study. To do so, the test is performed on
data corresponding to 4 states of the model, namely the
reference one and three different damaged states, with a
graduated stiffness reduction of G3, precisely 1.5%, 2%,
and 2.5%.

After performing the damage detection test (1000 times
per damaged state), the parameter change is detected
790 times for the first damaged state, 973 times for
the second, and 999 times for the third, with respective
empirical POD of 79.0%, 97.3%, and 99.9%. Those results
are in agreement with the theoretical POD computed a
priori (see Table 1 at nf = 25) for ∆G3 = 2% and

2.5%. For ∆G3 = 1.5%, the empirical POD is lower
than the theoretical one, it might be due to the value
of the simulated change being lower than the 95%-level
detectable parameter change. Also, with the histograms
of those tests, it is possible to compare them with the
theoretical distributions of the tests, see Figure 2. With
this figure, it can be seen, that for each state of the
structure, the histograms of the tests are matching with
the theoretical distributions. Also, the mean of the tests
can be studied. In Table 2, the theoretical and empirical
means are compared. For the different structure states, the
theoretical and empirical means are close, which confirms
the theoretical statistical modeling. Consequently, from
the probabilities of detection, the histograms, and the tests
means, the damage detection test is assessed to perform
as predicted.

Fig. 2. Comparison of the theoretical distributions and the
histograms of the damage detection tests

Table 2. Theoretical and empirical means of
the damage detection tests, t̄th and t̄emp re-

spectively

Reference ∆G3 = 1.5% 2% 2.5%

t̄th 3 14.83 24.03 35.86
t̄emp 2.79 13.67 22.94 35.25

3.2 New residual for wind turbine rotor

As the objective is to detect a structural change in a wind
turbine rotor, some specific quantities can be chosen to
define a new residual. Based on previous works (Tcherniak,
2016), the phase shift and the amplitude of the rotor bend-
ing mode shapes are one of the most sensitive indicators
of changes in the rotor. Those two quantities are defined
as follows

pij = arctan

(
ℑ
(
ϕi
j

)

ℜ
(
ϕi
j

)
)

and aij =

√
ℜ
(
ϕi
j

)2
+ ℑ

(
ϕi
j

)2
,

(26)
with pij and aij respectively the phase shift and the

amplitude of the j–th DOF of the i–th mode shape (ϕi
j). It

has to be noted that one DOF has to be chosen to define
the reference. In this paper the first DOF is the chosen
reference, with pi1 = 0 and ai1 = 1 for all the mode shapes.
Let us define the vector vi that gathers the phase shifts
and the amplitudes of the i–th mode shape (defined with
r outputs)

vi =
[
pi2 pi3 . . . pir ai2 ai3 . . . air

]T
. (27)

With this vector, it is possible to express a new residual

ζi =
√
N (v̂i − vi) ∈ R2(r−1), (28)

where v̂i is an estimate of vi using a data of length N .
Then, a residual that gathers the information of n mode
shapes can be defined, such that

ζ =
[
ζT1 . . . ζTn

]T
=

√
N

(
V̂ − V

)
∈ R2n(r−1), (29)

where V =
[
vT1 . . . vTn

]T
is the vector regrouping the

phases and amplitudes of n mode shapes.

In real operational conditions, it can be difficult to know
the theoretical value of V , so an estimate (V̂ 0) of this
quantity in the reference state can be used instead. In this
paper, an average of (nf ) different estimates is used

V̂ 0 =
1

nf

nf∑
j=1

V̂ (j), (30)

where V̂ (j) is an estimate of V using the j–th data set.
From this, similarly to Viefhues et al. (2022), a residual

(ζ̃) function of the estimated reference can be defined,

ζ̃ =
√
N

(
V̂ − V̂ 0

)
= ζ −

√
N

(
V̂ 0 − V

)
. (31)

3.3 Residual distributions

V̂ is an estimate of V using data of length N . Then, the
distribution of the residual ζ (Equation (29)) is defined by
the following distribution

ζ =
√
N

(
V̂ − V

)
∼

{
N (0,Σ) : H0

N (J δ,Σ) : H1
, (32)

with the assumption that the effect of the parameter
change on V is linear.

Now, let us take into account the estimated reference into
the distribution of the residual (ζ̃ in Equation (31)). First,

as V̂ (j) is computed using a data set of length N
√
N

(
V̂ (j) − V

)
∼ N (0,Σ) . (33)

As the different estimates are computed with disjointed
data, they are independent, so,

nf∑
j=1

√
N

(
V̂ (j) − V

)
∼ N (0, nfΣ) . (34)

Consequently, using Equation (30) the distribution of the
estimated reference is

√
N

(
V̂ 0 − V

)
∼ N

(
0,

Σ

nf

)
. (35)

Finally, as the data used for the computation of the esti-
mates V̂ and V̂ 0 are different, V̂ and V̂ 0 are independent.
So, the distribution of the residual ζ̃ is

ζ̃ ∼
{
N (0,Σ (1 + 1/nf )) : H0

N (J δ,Σ (1 + 1/nf )) : H1
. (36)

3.4 Damage localization by fault isolation

Once the fault detection is performed, it is possible to
determine the parameter component that has changed.
For such purpose, the direct localization/isolation test
(Basseville et al., 2000) is evaluated, where each parameter
component is individually tested for change. This test
assumes that the change is restricted to one statistical
change component δh (J δ = Jhδh), where Jh corresponds
to sensitivity of the parameter component of index h.
Leading to

th = ζTΣ−1Jh

(
J T
h Σ−1Jh

)−1 J T
h Σ−1ζ, (37)

with the following distribution

th ∼

{
χ2(1, 0) : H0

χ2(1, λ) : H1

, (38)

with the degree of freedom of the damage localization
test equal to one because only one parameter (denoted
by h) is tested each time. For the direct test on the
other parameter components (that have not changed),
their respective distribution is th̄ ∼ χ2

(
1, λ̄

)
under H1,

with λ̄, the non centrality parameter defined as (Döhler
et al., 2016)

λ̄ = δ2hFhh̄F
−1
h̄h̄

FT
hh̄, (39)

where Fhh̄ = J T
h Σ−1Jh̄ and Fh̄h̄ = J T

h̄
Σ−1Jh̄. It means

that under H1, when the changed parameter component
is tested, the test mean (denoted as t̄h) will be t̄h = 1 +
λ, whereas t̄h = 1 + λ̄ when an unchanged parameter
component is tested.

4. APPLICATION: DETECTION OF STIFFNESS
LOSS

Rotor anisotropy is defined as the difference of parameters
(physical properties) between the blades, leading to de-
pendent parameters. A damage detection and localization
method adapted to wind turbine rotor fault has been
defined, and now it will be tested on a small wind turbine
model.

In this application, a theoretical model of wind turbine
defined in Skjoldan and Hansen (2009) is used (see Figure
1). The model is composed of 3 DOF of blade bending, and
two DOF of nacelle bending. The matrices of the system
M(t), C(t) and K(t) are periodic matrices of period T =
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Ω , with Ω the rotational speed. The model parameters are
identical to those used in Skjoldan and Hansen (2009). In
this example, a detection of a stiffness loss of one blade is
performed, where the monitored physical parameterization
consists in the stiffness of each blade, denoted G1, G2, and
G3, so the number of degrees of freedom, and as such the
mean of the distribution of the GLR test under H0, is
ν = 3. Furthermore, the residual is built using the phase
shift and the amplitude of the bending modes of the rotor,
which are the most damage-sensitive mode shapes, with

vi =
[
pi2 pi3 ai2 ai3

]T
(see Equation (27)).

In the wind turbine field, it is common to have fixed-length
data, here 600s long data sampled at 25Hz will be used.

Fig. 1. Wind turbine model (Skjoldan and Hansen, 2009)

From the model matrices, the sensitivity can be computed,
in this example, the first-order approximation is used.
Then, the covariance matrix of the residual need to be esti-
mated. Here the uncertainty computation method defined
in Döhler and Mevel (2013) is used. Then the covariance
matrices of phases and amplitudes of the mode shapes can
be estimated using the method defined in Cadoret et al.
(2022b). Consequently, with the sensitivity and covariance
matrices, it is possible to estimate the minimum 95%-level
detectable parameter change (Equation (24)) and estimate
the probability of detection of specific changes (Equation
(25)), as a function of the number of data sets used for the
estimation of the reference (nf in Equation (30)).

Table 1. Minimum 95%-level detectable change
(∆θmin) and probabilities of detection (POD)
function of the number of data sets used for

the estimation of the reference

nf ∆θmin POD(1.5%) POD(2%) POD(2.5%)

5 1.94% 77.24% 96.12% 99.74%
10 1.86% 81.09% 97.43% 99.88%
25 1.81% 83.44% 98.08% 99.93%
50 1.79% 84.22% 98.27% 99.94%
100 1.78% 84.61% 98.37% 99.95%
200 1.78% 84.80% 98.41% 99.95%

In Table 1, the minimum 95%-level detectable parameter
change and the probability of detection of different changes
in the parameters are assessed. For simplicity, the relative
change in one parameter component (∆θ = ∆θ/θ0) will be
used until the end of the paper. With Table 1, it can be
seen that increasing the accuracy of the reference estimate
has an impact on the minimum 95%-level detectable
parameter change (which is the same for all the parameter
components) and on the probabilities of detection. But it
can be seen that from nf = 25, increasing furthermore the
accuracy of the reference does not improve significantly

the minimum 95%-level detectable parameter change and
the POD estimations, with a maximum gain of 0.03% on
∆θmin. So for the rest of the paper, a reference estimated
with nf = 25 will be used. Also, the minimum identifiable
parameter change and the probability of detection are
coherent. As 1.5% is below ∆θmin, the probability of
detection is below 95%, in contrast 2% and 2.5% are higher
than ∆θmin, with an associated POD higher than 95%.

The minimum 95%-level detectable parameter change and
the probability of detection have been assessed. Now,
damage detection will be performed to validate the pre-
vious theoretical study. To do so, the test is performed on
data corresponding to 4 states of the model, namely the
reference one and three different damaged states, with a
graduated stiffness reduction of G3, precisely 1.5%, 2%,
and 2.5%.

After performing the damage detection test (1000 times
per damaged state), the parameter change is detected
790 times for the first damaged state, 973 times for
the second, and 999 times for the third, with respective
empirical POD of 79.0%, 97.3%, and 99.9%. Those results
are in agreement with the theoretical POD computed a
priori (see Table 1 at nf = 25) for ∆G3 = 2% and

2.5%. For ∆G3 = 1.5%, the empirical POD is lower
than the theoretical one, it might be due to the value
of the simulated change being lower than the 95%-level
detectable parameter change. Also, with the histograms
of those tests, it is possible to compare them with the
theoretical distributions of the tests, see Figure 2. With
this figure, it can be seen, that for each state of the
structure, the histograms of the tests are matching with
the theoretical distributions. Also, the mean of the tests
can be studied. In Table 2, the theoretical and empirical
means are compared. For the different structure states, the
theoretical and empirical means are close, which confirms
the theoretical statistical modeling. Consequently, from
the probabilities of detection, the histograms, and the tests
means, the damage detection test is assessed to perform
as predicted.

Fig. 2. Comparison of the theoretical distributions and the
histograms of the damage detection tests

Table 2. Theoretical and empirical means of
the damage detection tests, t̄th and t̄emp re-

spectively

Reference ∆G3 = 1.5% 2% 2.5%

t̄th 3 14.83 24.03 35.86
t̄emp 2.79 13.67 22.94 35.25
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To finish the application, the damage localization is per-
formed. Two cases can be studied, one with a POD lower
than 95% (∆G3 = 1.5%) and one with a POD higher
than 95% (∆G3 = 2%). In Table 3, the means of the
localization tests corresponding to 1.5% and 2% of stiffness
loss of the third blade are compared with the theoretical
means. One can see that in both cases, the empirical and
theoretical means are close. Consequently, it confirms that
the localization test means is coherent with the theoretical
distribution for all considered cases. So, the localization
test is performing as it theoretically should.

Table 3. Theoretical and empirical means of
the damage localization tests, t̄h th and t̄h emp

respectively, function of the tested parameters

Simulated
damage

Tested
parameter

G1 G2 G3

∆G3 = 1.5%
t̄h th 3.66 4.61 12.83
t̄h emp 3.36 3.88 11.67

∆G3 = 2%
t̄h th 5.72 5.63 22.03
t̄h emp 5.50 6.29 20.89

5. CONCLUSION

In this paper, based on the approximation of the linear
time periodic system established recently and the selec-
tion of a sensitive parameterization, it has been possible
to define a new residual following the guidelines of the
former subspace-based damage detection methods for the
rotating wind turbine rotors. Then this new residual has
been extended with an expression function of an estimated
reference, which makes it easier to be computed in real
conditions. Finally, damage detection and localization pro-
cedures have been tested and validated, with an example
on a small model of wind turbine.
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