Supporting Information: Electrochemical potential-dependent stability and activity of MoS_3 during the hydrogen evolution reaction

Nawras Abidi,[†] Amit Sahu,[†] Pascal Raybaud,^{*,‡,†} and Stephan N. Steinmann^{*,†}

+Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France

‡IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, 69360 Solaize, France

E-mail: raybaud@ifpen.fr; stephan.steinmann@ens-lyon.fr Phone: (+33)4 72 72 81 55

Contents

S 1	Models and methods	S-3
S2	Adsorption Energies in Vacuum	S-4
	S2.1 Hydrogen adsorption on Mo_3S_9 without support	S-4
	S2.2 Hydrogen adsorption on Mo_3S_9	S-6
	S2.3 H, OH and H_2O adsorption on Mo_3S_9	S-7
	S2.4 Hydrogen adsorption on Mo_3S_8	S-10
	S2.5 H, OH and H_2O adsorption on Mo_3S_8	S-11
	S2.6 H, OH and H_2O adsorption on Mo_3S_7	S-13
S 3	Calculations with implicit solvent and explicit electrochemical potential	S-15
	S3.1 Hydrogen adsorption on symmetric Mo_3S_9	S-15
	S3.2 Hydrogen adsorption on symmetric Mo_3S_8	S-17
S 4	Summary of electronic energies of H adsorption and H_2S release with and with	l-
	out water: Comparison between vacuum, 0 charge and 0 potential	S-19
S 5	Charge Injection	S-21

S1 Models and methods

Figure S1: Variation of the total energy as a function of the electrochemical potential of Mo_3S_9 nanocluster on the graphite support.

S2 Adsorption Energies in Vacuum

S2.1 Hydrogen adsorption on Mo₃S₉ without support

The first step of the work consists on adsorbing hydrogen on the different atoms of Mo_3S_9 without the graphite support. We observe that not all of the sites are favourable for hydrogen adsorption. For example, it is impossible to adsorb hydrogen on the different Mo atoms and on S1, S2, S8 and S9.

Figure S2: Mo_3S_9 with the different labels of the atoms. The color code for atoms is yellow for S and greenish for Mo.

	Ads.	Energy	(eV)	 0.44	0.32	-0.08	-0.12	-0.43										
6th H	Site			S6S8S3S4S2S1	S6S8S3S4S2S7	S6S8S3S4S5S5	S6S8S3S4S5S2	S6S8S3S4S3S5										
	Ads.	Energy	(eV)	1.29	1.02	0.80	0.77	0.76	0.70	0.64	0.43	0.41						
5th H	Site			S6S8S4S5S6	S6S8S4S5S8	S6S8S3S4S7	S6S8S4S5S5	S6S8S3S4S1	S6S8S3S4S4	S6S8S4S5S2	S6S8S3S4S2	S6S8S3S4S3						
Ŧ	Ads.	Energy	(eV)	1.51	0.88	0.62	0.47	0.17	-0.11	-0.12	-0.17	-0.32	-0.43					
4th F	Site			S6S8S4S6	S6S8S5S5	S6S8S4S1	S6S8S4S7	S6S8S4S4	S6S8S3S2	S6S8S4S2	S6S8S3S3	S6S8S4S5	S6S8S3S4					
Η	Ads.	Energy	(eV)	1.75	1.17	0.92	0.88	0.77	0.55	0.54	0.53	0.53	0.46	0.41	0.33	0.31	0.29	0.28
3rd	Site			S6S8S9	S6S6S8	S6S8S8	S6S8S7	S6S8S1	S6S8S5	S6S8S2	S6S4S4	S6S3S4	S6S2S3	S8S3S4	S6S3S3	S6S8S4	S6S2S2	S6S8S3
dН	Ads.	Energy	(eV)	0.67	0.62	09.0	0.57	0.53	0.51	0.50	0.47	0.41	0.40	0.38	0.23	-0.20	-0.26	-0.29
2nc	Site			S6S6	S6S3	S7S1	S8S8	S8S5	S6S5	S2S2	S6S2	S4S4	S8S2	S8S3	S4S2	S8S4	S6S4	S6S8
tH	Ads.	Energy	(eV)	0.49	0.40	0.28	-0.23	0.17	-0.29	0.26	0.50	1.29	0.65	0.65	09.0			
1s	Site			 S1	S2	S3	S4	S5	S6	S7	S8	S9	Mo1	Mo2	Mo3			

Table S1: Adsorption energy for different numbers of hydrogen atoms adsorbed on Mo₃S₉. The next hydrogen atom positions were explored after the most stable position found in the previous step. For instance, if the first hydrogen sticks best to site S6, then the next one will likely go to S6Sx, followed by S6S8Sx, and so on.

S2.2 Hydrogen adsorption on Mo₃S₉

These results correspond to the calculation of hydrogen adsorption energies before symmetrization of the various structures.

As for Mo_3S_9 without support, we proceed here to the adsorption of hydrogen on the different sites of Mo_3S_9 on graphite. We started with the first hydrogen and tested different positions. The most promising position is the one with ΔG_H equal to -0.32 eV. Starting from this most stable structure, we added the second hydrogen and we tried several positions as well. In this case, the most stable site has ΔG_H equal to -0.11 eV. We moved to the adsorption of the third hydrogen atom at different sites. The most promising is with ΔG_H very close to 0 eV. Starting from this structure, we proceed to the adsorption of the fourth hydrogen. We observe that the most stable position leads to the formation of H₂S. Fig. S3 summarizes the most promising sites for the adsorption of hydrogen until the formation of H₂S, which gives a new structure, Mo_3S_8 with two hydrogen atoms.

Figure S3: Summary of the most promising sites for the adsorption of hydrogen on Mo_3S_9 until the formation of H_2S and the final structure obtained is Mo_3S_8 with two hydrogen atoms.

S2.3 H, OH and H_2O adsorption on Mo_3S_9

The hydrogen evolution reaction is a process that occurs in an aqueous medium, and as demonstrated in our previous studies, consideration of the adsorption of other species present, such as OH and H_2O , is crucial. Fig. S4 illustrates the adsorption of H_2O and OH on Mo_3S_9 on graphite. After trying different orientations of the water molecule, we find that two H_2O molecules bind to the unsaturated Mo sites. Unlike water, OH could not adsorb.

To capture the hydrogen adsorption in the presence of water, we start with Mo₃S₉ with the two adsorbed water molecules and test again the different positions. We find that the same positions for the different hydrogen atoms are maintained without considering water, but ΔG_H changes (see Fig. S5). Fig. S5 shows that H₂S is also released with water, which converts Mo₃S₉ to Mo₃S₈ with two adsorbed water and two hydrogen atoms.

H20 1-1 -0.22		
H20 1-3 0.33		
0H1-1 0.55		
OH 1-2 0.03 OH 1-3 1.13		
(a) Adsorption energies	(b) H ₂ O 1-1 on Mo	(c) H ₂ O 1-2 on Mo
(d) H ₂ O 1-3 on S	(e) $H_2O 2$ on Mo	(f) OH 1-1 on Mo

00000

00000

(g) OH 1-2 on S

Adsorbate

Adsorption energy (eV)

(h) OH 1-3 on S

Figure S4: (a) Table presenting the adsorption energies of the different species on Mo_3S_9 on graphite, (b), (c), (d), (e), (f), (g) and (h) the different structures mentioned in the table. The figure shows that H_2O is adsorbed on the unsaturated-Mo sites while it could not bind on S. A second H_2O could also be adsorbed on Mo. For OH, it could not bind on Mo and S. Note that not all the sites are reported but the same result is find for the other Mo and S sites. The color code for atoms is white for H; red for O; silver for C; yellow for S and greenish for Mo.

Figure S5: The most promising sites for the adsorption of hydrogen on Mo_3S_9 with presence of water adsorption until the formation of H_2S and the final structure obtained is Mo_3S_8 with two hydrogen atoms and two adsorbed water molecules.

S2.4 Hydrogen adsorption on Mo₃S₈

The same study is now performed for the new structure from the previous section, Mo_3S_8 . Fig. S6 shows that we start with two hydrogen atoms already adsorbed and we added another hydrogen trying all the possible positions. The structures shown in the figure present only the most stable site for each hydrogen until another H_2S molecule is formed again leading to the loss of another sulfur atom to obtain Mo_3S_7 with three adsorbed hydrogen atoms.

Figure S6: The most promising sites for the adsorption of hydrogen on Mo_3S_8 until the formation of H_2S and the final structure obtained is Mo_3S_7 with three hydrogen atoms.

S2.5 H, OH and H₂O adsorption on Mo₃S₈

To evaluate the water effect, we adsorb OH and H_2O onto Mo_3S_8 with two hydrogen atoms. We observe that both OH and H_2O are adsorbed, but the water binding is much stronger. Therefore, the Mo-sites are covered by H_2O .

As in the above section, we now proceed to the structure with explicit water molecules. We start with Mo_3S_8 with two water molecules and two hydrogens (structure in Fig. S7). Again, the positions of the hydrogen molecules are the same as without water, but the difference is in the ΔG_H values (see Fig. S8).

Figure S7: (a) Table presenting the adsorption energies of the different species on Mo_3S_8 on graphite with two adsorbed hydrogen, (b), (c), (d) and (e) the different structures mentioned in the table. The figure shows that H_2O is strongly adsorbed on the unsaturated-Mo sites compared to OH. The color code for atoms is white for H; red for O; silver for C; yellow for S and greenish for Mo.

Fig. S8 shows that the last adsorbed hydrogen molecule forms a H₂S molecule that could be released with $\Delta G_{release}$ equal to 0.09 eV (value at $P_{H_2S} = 1$ bar, at $P_{H_2S} = 10^{-5}$ bar, H₂S energy is equal to -0.21 eV), and we obtain Mo₃S₇ with two water molecules and three hydrogen atoms.

Figure S8: The most promising sites for the adsorption of hydrogen on Mo_3S_8 with presence of water adsorption until the formation of H_2S and the final structure obtained is Mo_3S_7 with three hydrogen atoms and two adsorbed water molecules.

S2.6 H, OH and H₂O adsorption on Mo₃S₇

At this level, we directly consider the structure of Mo_3S_7 with the adsorbed water molecules and hydrogen atoms. We observe that a new Mo site is available. We tested the adsorption of H, OH and H₂O at this site. We find that the adsorption of water and OH is more favorable than that of hydrogen (see Fig. S9).

Adsorbate	Adsorption energy (eV)
H2O	-0.44
он	-0.70
н	-0.39

(a) Adsorption energies

Figure S9: (a) Table presenting the adsorption energies of the different H, OH and H_2O on Mo_3S_7 on graphite with two water molecules and three hydrogen atoms strongly adsorbed, (b), (c) and (d) the different structures mentioned in the table. The figure shows that all the species could be adsorbed on the unsaturated-Mo but the most strong binding is with OH. The color code for atoms is white for H; red for O; silver for C; yellow for S and greenish for Mo.

The hydrogen atoms at the terminal S are strongly adsorbed, with ΔG_H equal to about -1 eV. Therefore, we turn to the adsorbed water molecules to see if we can have a cycle between water and OH to produce H₂. Fig. S10 shows that only one water molecule can be dissociated to OH and H to release H₂ via the Heyrovsky mechanism. The second cycle is not possible as ΔG_2 is very positive. This means that the site is definitely blocked by H₂O. In summary, Mo₃S₇ on graphite is a stable structure formed from Mo₃S₉ on graphite after the loss of two sulfur atoms by the release of H₂S. To assess its catalytic activity, we proved that we should consider not only hydrogen adsorption but also OH and water. We found that only three sulfur atoms are promising for hydrogen adsorption, but ΔG_H is very strong. Therefore, their participation in the production of H₂ is not possible. The molybdenum sites are covered by water, and only one H₂O could dissociate to OH + H, and after a Heyrovsky step we can produce H₂.

(a) Dissociation of one H_2O to OH+H (b) Dissociation of the second H_2O to OH+H

Figure S10: The production of H₂ from H₂O. ΔG_1 is a Volmer step and ΔG_2 is a Heyrovsky step. The cycle is feasible when ΔG_1 and ΔG_2 are both close to 0 eV.

S3 Calculations with implicit solvent and explicit electrochemical potential

S3.1 Hydrogen adsorption on symmetric Mo₃S₉

Fig. S11 shows the energy profile at 0 V considering only hydrogen as adsorbate. The first hydrogen is adsorbed at one of the top S with ΔG_H equal to -0.34 eV to form Mo₃S₉_H. The second hydrogen is adsorbed at the other top S with ΔG_H equal to 0.02 eV. Then, the third and fourth hydrogen atoms are adsorbed on the Bridge S₂ with ΔG_H equal to -0.15 eV and 0.13 eV, respectively. Once four hydrogens are adsorbed, the S-S bond is broken and the release of H₂S occurs by -0.16 eV at P_{H_2S} = 1 bar. Considering HER conditions, H₂S pressure is much lower (P_{H_2S} = 10⁻⁵) and the energy at this pressure decreases to reach -0.46 eV. Thus, This the conversion of Mo₃S₉ into Mo₃S₈ is very exergonic. In other words, HER is unlikely on Mo₃S₉, but HER conditions lead to the release of H₂S and the conversion of Mo₃S₉ to Mo₃S₈.

Figure S11: Reaction energy profile on Mo_3S_9 at 0 V. The first four steps correspond to hydrogen adsorption and the last step is the release of H_2S . The color code for atoms is white for H; yellow for S and greenish for Mo.

S3.2 Hydrogen adsorption on symmetric Mo_3S_8

We now proceed with the study of $Mo_3S_{8-}2H$ obtained in the last step of the energy profile of Mo_3S_9 . We consider the hydrogen adsorption without water. Fig. S12 shows the energy profile of hydrogen adsorption starting from $Mo_3S_{8-}2H$ with the two hydrogen atoms adsorbed on terminal S at 0 V. The next hydrogen is adsorbed onto the other S of Bridge S₂ with ΔG_H equal to 0.28 eV. The S-S bond is broken and another H is strongly adsorbed onto the other sulfur with ΔG_H equal to -0.45 eV. At this level, we observe that hydrogen production is possible by a Tafel step, and we again obtain $Mo_3S_{8-}2H$ with a release energy at 0 V equal to 0.17 eV. This competes with the formation of H_2S after adsorption of another hydrogen on sulfur with ΔG_H equal to 0.25 eV. From this structure, we can either release H_2 this time via the Heyrovsky step and return to $Mo_3S_{8-}4H$ with energy equal to -0.25 eV or by Tafel with energy equal to 0.2 eV to form again $Mo_3S_{8-}3H$ or as shown in the profile, a release of H_2S to go from $Mo_3S_{8-}5H$ to $Mo_3S_{7-}3H$. This last scenario is endergonic considering $P_{H_2S}=1$ bar with energy equal to 0.39 eV. However, as we mentioned before under HER conditions we assume $P_{H_2S}= 10^{-5}$ which decreases the energy to release H_2S to 0.1 eV.

To conclude, the adsorbed hydrogen atoms on Mo_3S_8 could lead either to the release of H_2 via Tafel or Heyrovsky steps, as explained above, or to the release of H_2S and the reconstruction of Mo_3S_8 to give Mo_3S_7 with three adsorbed hydrogen atoms. The most favorable scenario is the Heyrovsky mechanism, then the H_2S release and the less probable is the Tafel mechanism.

Figure S12: Hydrogen adsorption profile on Mo_3S_8 at 0 V. The color code for atoms is white for H; yellow for S and greenish for Mo.

S4 Summary of electronic energies of H adsorption and H_2S release with and without water: Comparison between vacuum, 0 charge and 0 potential

System	Process	Species	Vacuum (eV)	0 Charge (eV)	0 Potential (eV)
		H1	-0.52	-0.51	-0.54
		H2	-0.31	-0.40	-0.18
	ri Adsorption	H3	-0.22	-0.10	-0.35
		H4	-0.21	-0.32	-0.08
Mo_3S_9	H ₂ S Release	H_2S	0.48	0.47	0.47
)	I	ΗĪ	-0.81	-0.80	-0.81
	U Advantion is succession of tration	H2	-0.78	-0.78	-0.80
	IT AUSOLPHION IN PRESENCE OF WAREL	H3	0.07	0.08	0.08
		H4	-0.65	-0.66	-0.65
	H ₂ S Release in presence of water	H_2S	0.49	0.50	0.48
		H1	-0.73	-0.67	-0.51
		H2	-0.04	-0.26	-0.04
	H Adsorption	H3	0.11	0.12	0.08
		H4	-0.66	-0.66	-0.65
Mo_3S_8		H5	0.09	0.10	0.05
)	H ₂ S Release	H_2S	0.99	0.96	1.03
		H1	-0.78	-0.77	-0.79
		H2	-0.78	-0.78	-0.79
	H Adsorption in presence of water	H3	0.37	0.56	-0.08
		H4	-1.01	-1.20	-0.57
		H5	0.49	0.72	-0.07
	H ₂ S Release in presence of water	H_2S	0.72	0.58	1.05
	OH Adsorption in presence of water and hydrogen	OH 1	-0.78	-0.85	-0.55
	H ₂ O Adsorption in presence of water and hydrogen	H_2O3	-0.73	-0.55	-1.17

Table S2: Electronic energies for different systems

S-20

S5 Charge Injection

Figure S13: Variation of Δq , for the Volmer and Heyrovsky step as a function of the electrochemical potential for MoS₂ S-edge and Mo₃S₈. Δq would be 1.0 for a strictly proton coupled electron transfer. A value close to zero corresponds to a protonation step.

Figure S14: Variation of Δq , for the Volmer and Heyrovsky step as a function of the electrochemical potential for MoS₂ Mo-edge and Mo₃S₇. Δq would be 1.0 for a strictly proton coupled electron transfer. A value close to zero corresponds to a protonation step.