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Abstract

Homogenization method is applied to topology optimization of a weakly
coupled two physics problem, where structures are made of periodically
perforated material. The microscopic periodic cell is macroscopically
modulated, where the design is characterized by the material density
and its homogenized Hooke’s law at each point of the domain. The
coupling is weak because the two physics involved are solved con-
secutively: first, the coupled fluid is determined using Biot-Darcy’s
law and second, the fluid-structure problem by solving the linear
poro-elasticity system; our aim is to optimize the homogenized for-
mulation of this two-physic problem. This approach permits a com-
putationally low cost of evaluation of load sensitivities using the
adjoint-state method. Numerical two-dimensional test cases are pre-
sented using the alternate directions algorithm. It is demonstrated
how the implementation can address a variety of design problems.

Keywords: Topology optimization, multi-scale, periodic homogenization,
porous medium, adjoint methods, fluid-structure interaction.
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1 Introduction

The ambition to develop simulation methods making it possible to predict the
integrity or properties of use (mechanical, diffusive, thermal, electromagnetic,
vibratory, etc.) of structures (industrial or natural), materials or processes
involved in the development of new advanced technologies is growing consis-
tently. Herein, homogenization-based method is proposed to investigate shape
optimization problems for a weakly coupled model of fluid flow and structure
strain and, making it possible to consider a weak coupling between the two
physics at stake because one can assume that the fluid domain is fixed at first
order. Howbeit, we should bear in mind that this weak coupling is a major
simplification and therefore reduces the computational cost.
A comprehensive overview of shape optimization with the homogenization
method is provided by [1] and, for a general summary of the homogeniza-
tion method, we refer the reader to [2–7] and references therein. Note that,
this approach provides a consistent way for computing effective material with
microstructures (composite materials) and that, once the optimal composite
is obtained by homogenization-based topology optimization method, we might
need to dehomogenize the solution: see [8], for periodically perforated materi-
als. The design method described in this paper is strongly inspired by the works
mentioned above as well as being related to modern production techniques
such as additive manufacturing.
A typical shape optimization problem arising in this context involves an objec-
tive function, depending on the geometries of the fluid and solid subdomains
and, where the whole domain is described by a density function (material den-
sity) that can take on values in the interval [0, 1], which has to be minimized
under some constraints (e.g., volume or mass constraints). This allows to com-
pute the sensitivities with respect to design variables using the adjoint-state
method [1, 9, 10], introducing adjoint states. For these adjoint states, which
are to be solved, its turns out that the coupling is reversed for the adjoint
system: the elasticity is solved first, followed by the fluid model.
Shape optimization that involve pressure-loaded boundaries has been con-
ducted also by [11–23]. In [11, 16–18, 20], the authors deduce the topology or
layout based on boundary motion and, using in [11, 16, 18], the iso-density
method to identify the pressure loading facets: Bézier spline curves were used
to describe the pressure-loaded facets. This allows in [11, 16], to evaluate the
sensitivities with respect to design variables using the finite difference formula-
tion and, in [18], to provide an analytical method to calculate load sensitivities.
Note that in [11, 16, 18], the considered sensitivities were restricted to only
the pressure-loaded boundaries.
In contrast, the works in [17, 19, 20] do not account for load sensitivities
within their topology optimization setting: in [17], the pressure-loaded facets is
predefined and, an additional set of variables is used, which are optimized along
with the design variables; whereas in [20], an element-based search method
is employed to identify the pressure-loaded facets and in [19], an algorithm
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1 INTRODUCTION 3

based on digital image processing and regional contour tracking is proposed
to generate the pressure loading surface.
On the other hand, in [12], the authors deduce the topology optimization
based on binary structures method to design structures that consider buckling
constraints and loaded by design-dependent fluid pressure loads: it adopts
binary design variables and handles multiple constraints solved by an integer
linear programming scheme, where sensitivity filtering method is proposed.
In contrast to methods using boundary motion, in [13–15], the authors deduce
the topology based on level-set methods: an implicit boundary description is
available and, using to identify the pressure load. In [13], the Distance Reg-
ularized Level Set Evolution is proposed to capture the structural boundary
and, using the zero level contour of a level-set function to represent the loaded-
pressure boundary but did not account load sensitivities; whereas in [14], the
Laplace’s equation approach is employed to compute hydrostatic fluid pressure
fields and, also, a flood fill procedure to capture the solid/fluid interface: shape
sensitivities in conjunction with ersatz material interpolation method are used
within their approach. Recently in [15], Hadamard’s method of shape differ-
entiation is applied to shape and topology optimization of a coupled thermal
fluid-structure problem in a level set mesh evolution framework: sensitivity
analysis is performed with respect to the geometry of the interface between the
fluid and solid domain, using the Hadamard’s method of shape differentiation,
introducing adjoint states.
Moreover, unlike boundary motion or level-set methods, in [21, 22], the
authors deduce the topology using density-based approach: shape optimization
problems are transformed to material distribution problems using fictitious
composite materials and, without identifying loading surfaces directly. In [21],
a density-based topology optimization is proposed to design both structures
and compliant mechanisms loaded by design-dependent pressure loads: Darcy’s
law in conjunction with a drainage term is proposed to treat the pressure
loads, which are transferred into a design dependent pressure field using a par-
tial differential equation, which is solved using the finite element method; the
load sensitivities are computed using the adjoint-variable method. Recently in
[22](2023), is developed per the approach first reported in [21], a MATLAB
implementation TOPress, using the method of moving asymptotes.
In contrast, the density-based method presented in [23] is based on true com-
posite materials: two material constituants, substance and void, are considered,
and the microscopic optimal void distribution is considered. An important
feature of the procedure is that the homogenization method is applied to
determine macroscopic constitutive equations for the material with micro-
scopic material constituants. In [23], the porous material is described as the
Biot continuum derived by the homogenization of two decoupled problems:
deformation of a porous solid saturated by a slightly compressible static fluid,
first and, Stokes flow through the rigid porous structure, second. The effective
medium (composite) properties are given by the drained skeleton elasticity, the
Biot stress coupling, the Biot compressibility coefficients, and by the hydraulic
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permeability of the Darcy flow model: these are computed using characteris-
tic responses of the representative unit cell constituted by an elastic skeleton
(solid) and by the fluid channel (void); the adjoint-state method is proposed
to evaluate sensitivities of objective functions constituted by the Biot model
coefficients with respect to the underlying pore shape described by a B-spline
box which embeds the whole representative cell and, where the gradient-based
method is employed to solve the optimization problems: the shape deriva-
tives of the homogenized coefficients are derived using the shape sensitivity
technique and the material derivative approach.
In this article, we present a new approach to design structures loaded by
design-dependent pressure loads and, this falls within the general framework of
density methods where phenomenological laws of equivalent media is derived
by the homogenization method. In this regard, the presented approach falls
within the framework of recent work in [21, 23] where Darcy’s flow model
is used to describe the fluid flow. However, the approach in [21] is different
since the continuous problem does not contain a model that explicitly couples
the fluid pressure to the solid skeleton and thus, it induces difficulties in the
modeling where a volumetric force is added intuitively in the elastic problem
without it being explicitly defined as the result of a continuous physical law.
Moreover, compared to [23], the porous material is described as the Biot-Darcy
continuum derived by the homogenization of a weakly coupled two physics
problem: deformation of a porous solid saturated by incompressible fluid pres-
sure (satisfying Biot-Darcy’s law), first and, Biot-Darcy’s flow through the
rigid porous structure, second. The effective medium properties are given by
the undrained skeleton elasticity, the Biot stress coupling, the Biot coefficient,
and by the hydraulic permeability of the Darcy flow model: these are com-
puted using characteristic responses of the representative unit cell, namely a
perforated hexagonal cell constituted by a solid phase and void; see Fig. 1.
Hence, the fluid pressure can be seen as a pore pressure acting on the solid
part of the ”equivalent porous material” through a Biot coefficient, which is
density-dependent and, where the physical laws derived from the mechanics of
porous media make it possible to link this coefficient to the local (matrix) and
global (porous medium) moduli of compressibility of the solid system. This
allows to provide sensitivities of general ”smooth enough” objection functions
with respect to design variables using the adjoint-state method, introducing
adjoint-states; the homogenized coefficients are derived using the Lagrangian
method and the projected gradient algorithm: in [23], the shape sensitivity
technique and the material derivative approach are employed. Of course, these
shape derivatives are at the basis of our gradient-based alternate directions
algorithm [1], which is used for our numerical simulations. In summary, we
present the following aspects:

• homogenized Biot-Darcy’s law is used to characterize the fluid flow through
a true composite material,

• we weakly couple the fluid loads to the linearized poro-elasticity system for
the solid displacement,

4



2 PERIODIC HOMOGENIZATION 5

• the approach facilitates computationally inexpensive evaluation of the load
sensitivities with respect to design variables using the adjoint-state method,
introducing adjoint-states,

• the flow coefficient, Biot’s coefficient are derived by the homogenization
method,

• the approach avoids explicit description of the pressure loading boundary,
• the robustness and efficiency of the approach is demonstrated through
numerous design problems, using the alternate directions algorithm.

The remainder of this paper is structured as follows: in Section 2, we briefly
recall the necessary ingredients of the homogenization approach and we explain
our strategy. First, choose a parametrized periodicity cell. Second, we compute
its effective properties for the entire range of its parameters. In Section 3, we
give a precise account of the weakly coupled two physics model of fluid flow
and structure deformation. In Section 4, first, we introduce the optimization
problem formulation, which turns out to be a simple parametric optimiza-
tion problem since our periodicity cell is parametrized. Second, we determined
the associated sensitivity analysis. Section 5, is concerned with our topology
optimization algorithm: an alternate direction algorithm, which successively
computes the stress field through the solving of a weakly coupled two-physic
problem. Finally, our numerical results are presented in Section 6: 2-d compu-
tations are displayed of various design problems involving fluid-pressure loaded
structures and small deformation; and we summarize our findings and give an
outlook in Section 7.

2 Periodic homogenization

The mathematical framework of the homogenization theory can be found in [1];
here, we briefly present the principles of this approach and explain our strat-
egy. We restrict our analysis to the 2-d case and to locally periodic-hexagonal
composites. Note that, it should be possible to adapt the whole method (or
at least part of it) to periodic-square cells or to 3-d case. Our aim is to deter-
mine the homogenized physical properties of such materials when varying their
parameter; a preprocessing stage, which can be performed off-line. This is
independent of the objective function, computational domain, applied loads or
boundary conditions. The Hooke’s laws are computed by solving the so-called
cell problems, that describe the deformation at the scale of the microstructure,
which is a very classical task in homogenization theory.

2.1 Set of admissible microstructures

From now on, we restrain our analysis to a simple class of composites already
introduced in [26]: an hexagonal cell perforated by a smooth hexagonal central
hole, known as the smooth honeycomb cell, repeated periodically on the whole
space.
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6 2.1 Set of admissible microstructures

Let Y be the periodic smooth honeycomb cell: similar to the classical honey-
comb cell (an hexagonal cell with perforated hexagonal central hole), except
that the interior corners of the perforated hexagonal hole are rounded (see
Fig. 1 and Fig. 2). As a consequence, if the density θ ∈ [0, 1], tends to 1, the
central smooth hexagon tends to a circle with a diameter going to 0. However,
because of its rounded corners, the smooth honeycomb can not reach com-
plete void: θ going to zero is excluded. In this context, for practical reason,
the smooth honeycomb is (contrary to the classical one, which is parametrized
by the density) parametrized by another parameter h ∈ [0, 1], homogeneous
to a distance. Indeed, in order to design this kind of cell, a parametric curve
Γh which depends on h is introduced and represents the boundary of the
perforated smooth central hole.
We now introduce some notations before giving its polar equation. Let v(t) =
(cos(t), sin(t))T and ni (for i ∈ {0, 1, 2}) represent the normal vectors of the
three diagonals of Y (h), that are:

n0 =

(
0
1

)
, n1 =

(√
3
2
1
2

)
, n2 =

(√
3
2

− 1
2

)
. (1)

The polar equation of the parametric curve Γh (of smooth hexagon hole) is
defined by:

r(t) = h

√
3

2
(

2∑
i=0

|v(t) . ni|k(h))
−1
k(h) with t ∈ [0, 2π], (2)

where k is a positive coefficient, which depends on h: for this work, we took
k(h) = 4 + 20h2. Note that h is homogeneous to a distance, similar to the
parameter

m =

√
3

2
(1−

√
1− θ),

which denotes the relative width of bars with respect to the size of the periodic
cell Y (h); see Fig. 1(b).

(a) Classical honeycomb (b) Smooth honeycomb

Fig. 1 Isotropic design cells (images taken from [26])
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2 PERIODIC HOMOGENIZATION 7

In the following, we give some remarks over the polar equation of the para-
metric curve Γh, which can be extended to other polygons. Let H be a regular
unit hexagon, namely, the set of all points such that the maximal distance of

a point in H from the three diagonals is equal to
√
3
2 . Let M(r, t) be a point,

with its polar coordinate denoted by (r, t). Thus, M is a point in H if and only
if, its polar coordinate (r, t) satisfies

rmax
i

|v(t) · ni| =
√
3

2
. (3)

Hence, the polar equation of H verifies

r(t) =

√
3

2
(max

i
|v(t) . ni|)−1. (4)

As a consequence, we get that

(

2∑
i=0

|v(t) . ni|k)
−1
k →k→∞ max

i
|v(t) . ni|. (5)

Note that, the polar equation of Γh comes from combining the polar equation
of H and the above limit; the parameter h is added in order to adjust the
diameter of its inner hole. Here, our interest for the smooth honeycomb relies
on its smooth rounded corners, known to generate lower local concentration
stress [27, 28] compared to the classical honeycomb.

(a) θ = 10% (b) θ = 50% (c) θ = 80%

Fig. 2 The Smooth honeycomb cell for different values of the density θ

2.2 Cell problem and homogenized elasticity tensor

Here, we only give a few important results on the theory of homogenization;
the interested reader will find more details in [1].
Assume that, in a given macroscopic domain Ω ⊂ RN (N = 2), there is a
periodic distribution of holes inside an isotropic elastic material, with constant
elastic tensor A. Let ϵ > 0 be the periodic size and let Y be the periodic
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8 2.2 Cell problem and homogenized elasticity tensor

pattern: a regular smooth hexagon. The periodicity of Y , is defined by the
same displacement on two opposite and parallel faces; hence, for the hexagonal
cell, there are three directions of periodicity; see Fig. 1. Let Y0 be the solid
part in Y and, we denote by |Y |, the volume of the periodic cell Y ; and, let
Γ be the boundary of the holes (i.e., the interface solid/void) and n be the
normal vector to the boundary Γ.
In addition, assume that whenever ϵ tends to zero, the porous medium can be
considered homogeneous, with effective tensor denoted A∗(x). To compute the
homogenized tensor A∗, one needs the so-called correctors wij , corresponding
to the local displacements in the periodic cell Y , defined for each pair (i, j) ∈
{1, .., N} as the solutions to the following set of equations:

div(A(eij + e(wij))) = 0 in Y0

A(eij + e(wij)) . n = 0 on Γ

y 7→ wij(y) Y0-periodic,

(6)

where eij = 1
2 (ei ⊗ ej + ej ⊗ ei) represents the basis of the symmetric

tensors of order 2. As a consequence, the variational formulation asso-
ciated to (6) is defined as follows: find wij ∈ H1

#(Y,RN ) =
{
w ∈

H1(Y,RN ) | w is Y -periodic
}
such that

∀ϕ ∈ H1
#(Y,RN )

∫
Y

Ae(wij) : e(ϕ) +

∫
Y

Aeij : e(ϕ) = 0, (7)

which admits a unique solution (up to a rigid displacement field). The entries
of A∗(x) are then defined in terms of the correctors wij , solutions of (6), that
are:

A∗
ijkl =

1

|Y |

∫
Y

A(eij + e(wij)) : (ekl + e(wkl)) dy ∀i, j, k, l ∈ {1, .., N} (8)

We emphasize that, to compute the homogenized tensor A∗, only three of its
coefficients are needed (e.g., A∗

1111, A
∗
1122 and A∗

1212) to fully characterize A∗.
However, all the coefficients were computed to demonstrate that the homoge-
nized material is isotropic (or quasi-isotropic). Herein, we use a linear material
model with Young’s modulus E = 12× 109Nm−2 (i.e., 12GPa) and Poisson’s
ratio ν = 0.35. We recall that, if the effective tensor A∗ is isotropic, it can be
written as:

A∗ = 2µ∗I2N + (κ∗ − 2µ∗

N
)IN ⊗ IN , (9)

where κ∗ and µ∗ are the bulk and shear moduli of the homogenized Hooke’s
law A∗, with its first Lamé coefficient defined by: λ∗ = κ∗− 2µ∗

N . I2N and IN in
Eq. (9), represent the fourth order symmetric identity and the identity tensor
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2 PERIODIC HOMOGENIZATION 9

of order N . The entries are defined by:
µ∗ = A∗

ijij

λ∗ = A∗
iijj ∀i, j ∈ {1, ..., N}

κ∗ = A∗
iijj +

2
NA∗

ijij

(10)

where the isotropy of A∗, is satisfied if we have the following relations:

∀i, j, k, l ∈ {1, .., N}



A∗
ijkl = A∗

klij

A∗
iijk = 0

A∗
iiii = A∗

jjjj

A∗
iijj = A∗

kkll; ∀i ̸= j, k ̸= l

A∗
iiii = A∗

ijij +A∗
iijj

(11)

Numerical results

The homogenized tensor A∗(θ) has been computed for the periodic cell Y ,
for discrete values (θi)i=1,...,n of θ: a preprocessing stage, which is performed
offline. Herein, a table of size n = 1000 is built, which is then used to compute
the local composites during the optimization process: a linear interpolation
approach is used to update the homogenized tensor. The errors with respect
to the equalities in (11) are depicted on Fig. 3.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

×10−4

θ

A∗
1112

A∗
2212

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

×10−4

θ

|A∗
1111 −A∗

2222|
|A∗

1122 +A∗
1212 −A∗

1111|

Fig. 3 The errors with respect to the equalities in (11), for different values of the density θ

2.3 Cell problem and homogenized model in conductivity

We now consider a model problem of pressure conductivity, similar to the elas-
ticity system defined in Eq. (2.2). Starting from a microscopic description of a
problem, one seeks a macroscopic or effective model problem in conductivity
K∗ which can be the permeability of a fluid flowing through a porous material
composed of solid and fluid one. We introduce the so-called cell problems, sim-
ilar to the elasticity system. Howbeit, since the considered cell Y is isotropic,

9



10 2.3 Cell problem and homogenized model in conductivity

only one of its coefficient (e.g., (K∗)11) could be computed in order to fully
characterize K∗.
Let (ei)i=1,..,N be the canonical basis of RN and, for each unit vector ei, we
consider the following conductivity problem in the periodic cell Y :{

−div(K(ei +∇wi))) = 0 in Y

y 7→ wi(y) Y periodic,
(12)

where wi(y) is the local variation of pressure created by an averaged (or macro-
scopic) gradient ei. The homogenized conductivity K∗ is then given in terms
of the correctors wi, solutions of (12), defined by:

(K∗)ij =
1

|Y |

∫
Y

K(ei +∇wi) : (ej +∇wj) dy ∀i, j ∈ {1, 2} (13)

where the tensor K∗ describes the effective or homogenized properties of the
heterogeneous microstructure of periodic size ϵ. We recall that, K∗ does not
depend on the choice of domain Ω, source term ff , or boundary conditions
and, Y = Y0 ∪ (Y \Y0) is a disjoint reunion of the solid and void, where K can
be defined as follows:

K(y) =

{
ϵ0 in y ∈ Y0

1 in y ∈ Y \Y0

(14)

where ϵ0 is a given threshold.

Numerical results

The tensor K∗ has been computed over the smooth honeycomb for discrete
values of θ. For this latter, note that K∗ is a matrix of order N , proportional
to the identity matrix:

K∗ = α∗IN , where α∗ = (K∗)11 = (K∗)22,

because the chosen local cell is isotropic and, K∗ can be identified to the scalar
α∗. On Fig. 4, we plot the homogenized flow α∗

||α∗||∞ (which is normalized) in

comparison to the defined flow coefficient K∗
D(θ) = min

(
ϵ0+(1−ϵ0)(1−θ)

θ ,K∞

)
for discrete values (θi)i=1,...,n, with ||α∗||∞ = sup

θi

α∗(θi). See Section 3.1, for

more details. As expected, α∗

||α∗||∞ is a decreasing function with respect to the

density θ. We emphasize that, the residuals |(K∗)11 − (K∗)22| ≤ 10−6 and
(K∗)12 ≤ 10−3 are sufficiently small, which validates the isotropy assumption.
We note that, the homogenized flow coefficient α∗

||α∗||∞ can be approximated

by the determined flow coefficient K∗
D.

10



3 SETTING OF THE TWO-PHYSIC PROBLEM 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

θ

α∗

||α∗||∞
K∗

D

Fig. 4 The homogenized flow α∗

||α∗||∞
in comparison to the determined flow K∗

D, for dif-

ferent values of the density θ

3 Setting of the two-physic problem

Here, we investigate the weakly coupled model of fluid flow and structure
strain. First, the fluid flow is described using the Biot-Darcy’s law, then,
the linearized poro-elasticity system (for the mechanical displacement) is
characterized.
Let Ω be a fixed domain in RN (N = 2 or 3), filled with composite material
periodically perforated by the hexagonal cell and, characterized by one param-
eter θ: the material density, which has to be optimized. Let n be the normal
vector to the boundary ∂Ω, pointing outward to the domain Ω. The domain
Ω is described by two physical variables which are governed by two coupled
models, that are:

• the motion of the fluid inside the domain, described by the pressure field p,
satisfying the Biot-Darcy’s law

• the deformation of the solid phase, as a result of the stress exerted by the
fluid part, characterized by a mechanical displacement u

The physical equations chosen for the modeling of the state variables p and
u with their relevant set of boundary conditions are now described in strong
form in Section 3.1 and Section 3.2.

3.1 Hydraulic law of Biot-Darcy-type for the pressure
variable

We give a precise account of the weakly coupled fluid model that is based on
the Biot-Darcy’s law; the effect of which is to establish the pressure field as a
function of material density θ.
From a fluid point of view, Darcy’s law describes the fluid ability to flow
through a porous media such as soil, sandstone or rock; it states that the fluid
flowing through a unit area is directly proportional to the pressure drop per
unit length ∇p and, inversely, that the resistance of the porous medium is

11



12 3.1 Hydraulic law of Biot-Darcy-type for the pressure variable

proportional to the flow µ ([31]), which is defined by:

q := −κf

µf
∇p = −K∗

D∇p, (15)

where q, κf , µf , ∇p, and K∗
D characterize the flux (ms−1), permeability (m2),

fluid viscosity (Nm−2s), pressure gradient (Nm−3), and the flow coefficient
(m4N−1s−1) (which defines the fluid ability to flow through a porous medium).
In order to smoothly and continuously distribute the pressure drop in fluid
domain and differentiate between solid and void phase in the whole domain,
the homogenized flow coefficient K∗(θ(x)) (which we numerically compute, see
Section 2.3) is approximated by a smooth function, that is:

K∗
D(θ(x)) := min

(
ϵ0 + (1− ϵ0)(1− θ(x))

θ(x)
,K∞

)
, (16)

where ϵ0 and K∞ are given thresholds; here, ϵ0 = 10−4 and K∞ = 103. We
recall that, an homogenization method was performed on the flow coefficient
and, we notice that the homogenized flow coefficient K∗ can be characterized
by the above function; see Fig. 4. We now assume that the density-dependent
pressure field p, satisfies a Biot’s law, that is:

p := Mm−Mbevol, (17)

where M , m and evol are smooth enough functions related to the material
density θ defined by:

m(θ) := (1− θ)ρ, M(θ) :=
1− θ

κv
− b(θ)− (1− θ)

κs
, evol := ∇ . u, (18)

where ρ, κv, κs and evol = div(u), represent the density of the flux, compress-
ibility of the void and solid phase and, the volume variation of the solid phase
at each finite element; the parameters M and b are the so called Biot modulus
and Biot coefficient. The Biot’s law (17) is assumed to be related to Darcy’s
law (15), defined as follows:

q := mvf = −K∗
D∇p, (19)

where vf represents the velocity of the flux. Thus, the above equation (19),
allows to render gradually the pressure drop from the inner pressure bound-
ary to the outer pressure boundary. Note that this penetrating pressure of
Biot-Darcy’s law is similar to that introduced in [21], which makes this pres-
sure loading boundary a smeared-out version of an applied pressure load on
a sharp boundary. In addition to the Biot-Darcy equation (19), we assume
that the state equation satisfies the law of conservation of mass in view of

12



3 SETTING OF THE TWO-PHYSIC PROBLEM 13

incompressible fluid, that is:

∂m

∂t
:= −div(q) = div(K∗

D∇p) (20)

Consequently, we derive from the Biot’s law (19), the equation:

∂p

∂t
:= M(θ(x))

∂m

∂t
−M(θ(x))b(θ(x))

∂evol
∂t

, (21)

and for sake of simplicity, we assume that our fluid model is stationary and
satisfies the law of conservation of mass (in view of incompressible fluid), that
is:

∂m

∂t
:= −div(q) = div(K∗

D∇p) = 0 (22)

We now assume that our design domain is filled with isotropic composite
material and, as such the Biot’s coefficient b(θ) can be defined as follows:

b(θ(x)) := 1− κs(θ(x))

κ
, (23)

where κ and κs(θ(x)) represent the bulk moduli of the solid phase A and
the homogenized tensor A∗(x). Note that, A∗(x) tends to A when θ(x) tends
to 1; thus, κs(θ) tends to κ; this article should be approached within such
background, that is, we assume that the weakly coupled fluid model is defined
in the particular case of a porous isotropic medium. It is worth to note that
the Biot modulus (18) and coefficient (23) are explicitly defined only in the
case of a linear isotropic elastic matrix microscopically homogeneous which is
the case herein. By using the Biot-Darcy’s law (22), the weakly coupled fluid
model can be defined by:

(Biot-Darcy)


−div(K∗

D∇p) = 0 in Ω,

p = p0 on Γf
D,

qΓ . n = ff on Γf
N ,

qΓ . n = 0 on Γf = ∂Ω\(Γf
D ∪ Γf

N ),

(24)

In (24), ff is an applied Neumann isoflux condition for the pressure variable
p. The boundary of the fluid phase is the disjoint reunion

∂Ω = Γf
D ∪ Γf

N ∪ Γf

of a Dirichlet (or inlet) part Γf
D where the flow enters with a given pressure

p = p0, a Neumann (or outlet) part Γf
N where normal stress is imposed and,

free interface Γf of ∂Ω. At this stage it is assumed that the deformation of the
solid domain is sufficiently small so that no slip boundary conditions hold on:

13



14 3.2 Elasticity with fluid-structure interaction

qΓ . n = 0. Therefore, the variable p depends solely on the material density
θ(x), for all x ∈ Ω.

3.2 Elasticity with fluid-structure interaction

Finally, the pressure variable p determines the displacement u of the solid
part in Ω, which we assume to be isotropic poro-elastic composite material,
with homogenized Lamé coefficients denoted λ∗, µ∗. As a consequence, the
weakly coupled fluid-elastic model is defined by the linear poro-elasticity (of
Biot-Coussy type): 

−div(σ(u)) = −b∇p in Ω,

u = u0 on Γs
D,

σ(u) · n = fs on Γs
N ,

σ(u) · n = 0 on Γs,

(25)

where the homogenized stress and strain tensors are given by:

σ(u) =A∗ : e(u) = 2µ∗e(u) + λ∗Tr(e(u))I, (26)

e(u) =
1

2
(∇u+∇tu) (27)

where I is the identity matrix. Note that, the source term in (25) is the stress
exerted by the fluid part; the boundary ∂Ω is split into a Dirichlet part Γs

D

where a displacement u = u0 is prescribed, a Neumann part Γs
N where a stress

fs is imposed and, a free part Γs.

Remark 1 The above model is a simplified version of a genuine fluid-solid coupling
between the solid and fluid phase. A more accurate description of fluid-structure
interaction would feature a transition regime and inertia regime:

q := mvf + ρCforv
2
f

where Cfor is an inertia parameter of the fluid flow, called Forchheimer coefficient.
For sake of simplicity, we opted for a simplified version, which is justifiable insofar
as we wish to obtain a first qualitative result of microstructure without however,
sizing as accurately as possible the system. Hence, the Forchheimer coefficient Cfor

is neglected.

4 The optimization problem formulation and
its sensitivity analysis

We present the optimization problem formulation associated to the weakly
coupled fluid-structure problem and discuss the sensitivity analysis for such
design problems. The announced goal is the resolution of relaxed unconstrained

14



4 THE OPTIMIZATION PROBLEM FORMULATION AND ITS SENSITIVITY ANALYSIS 15

version of the original optimization problem, that is:

min
θ

J∗(θ, p(θ), u(θ))

s.t

{
gi(θ, p(θ), u(θ)) = 0, 1 ≤ i ≤ p,

hj(θ, p(θ), u(θ)) ≤ 0, 1 ≤ j ≤ q,

(28)

where J∗, gi and hj are arbitrary relaxed shape objective and constraint
functionals. For its resolution, we shall rely on the alternate minimization algo-
rithm [1] detailed in Section 5.1, which (like any other first order optimization
method) requires the knowledge of the shape derivatives of the above function-
als: here, the adjoint-state method is used to determine the sensitivities of the
objective functions and constraints with respect to the design variable θ. It is
worth to mention that, likewise, in [23], the authors employed the adjoint-state
method to evaluate the sensitivities of objective functions (constituted by the
Biot model coefficients with respect to the underlying pore shape described by
a B-spline box which embeds the whole representative cell) and the gradient-
based method to solve the optimization problems; howbeit, the considered
shape derivatives of the homogenized coefficients are different: they rely on the
shape sensitivity technique and the material derivative approach. Herein, the
”shape” is describe by the density θ and, the shape derivatives are performed
using the Lagrangian method and the projected gradient algorithm. In this
context of the adjoint-state method, this means computing the derivative of
the mapping:

θ 7→ J∗(θ, p(θ), u(θ)),

where θ belongs in general to set of admissible design variables Uad, that is:

Uad :=

{
θ ∈ L∞(Ω; R∗

+) | θ(x) ∈ [0, 1],∀x ∈ Ω

}
In contrast, note that in [23], a general optimization variable α is intro-
duced which is related to the effective medium parameters: it determines the
homogenized coefficients for any position x ∈ Ω.

4.1 A fully Lagrangian setting for computing shape
derivatives

Although very common and widely used in the literature, an issue with the
adjoint-state method [1, 9] is that the computation of the shape derivatives
depend very much on the assumptions made on the nature of the considered
objective functional J∗; different type of functionals may lead to different
strong forms for the adjoint equations where this fact is exemplified, which
imposes to redo the analytical derivation whenever the objective function is
modified, and to update the numerical implementation accordingly. Here, we
use a fully Lagrangian setting to compute rigorously the shape derivative of
very general objective functionals in the simplified setting of Section (3.1) and

15



16 4.2 A modified objective functional and Lagrangian derivative

Section (3.2). The shape sensitivities of the state variables p(θ) and u(θ) are
calculated first, in order to obtain the shape derivative of an arbitrary objective
functional in volume form. Then, under sufficient regularity assumptions, the
well-known adjoint-state method together with suitable augmented Lagrangian
functional yield general shape derivative formulas.

4.2 A modified objective functional and Lagrangian
derivative

In a gradient-based topology optimization, it is essential to determine sensitiv-
ities of the objective functional and the constraints with respect to the design
variable(s). The starting remark is that the relaxed functional J∗, although
appearing naturally in the formulation of the optimization problem (28) is not
so convenient for the mathematical analysis. Indeed, the domain of definition
of J∗(θ, ., ., .) is a functional space which depends on the first argument θ. In
order to discuss the precise mathematical settings of our multiphysic system,
we introduce the functional spaces which are required for the fluid-structure,
that are:

V (Γf
D) ={q ∈ H1(Ω) | q = 0 on Γf

D}, for the pressure variable p

V (Γs
D) ={v ∈ H1(Ω)N | v = 0 on Γs

D}, for the displacement u
(29)

and, we consider the subspace

H1/2(Γs
N ) = {v|Γs

N
| v ∈ V (Γs

D)}

and its dual space H−1/2(Γs
N ); as well the affine spaces associated to

the non-homogeneous Dirichlet boundary data u0 ∈ H1/2(Γs
D; RN ) and

p0 ∈ H1/2(Γf
D; R) featured in (3.1)-(3.2). The state variables p and

u are then solutions to the following variational problems: find (p, u) ∈{
p0 + V (Γf

D), u0 + V (Γs
D)

}
, such that

{∫
Ω
K∗

D∇p . ∇q +
∫
Γf
N
ff q dx = 0, ∀ q ∈ V (Γf

D),∫
Ω
σ(u) · e(v) dx−

∫
Γs
N
fs . v ds+

∫
Ω
b∇p . v dx = 0, ∀ v ∈ V (Γs

D)
(30)

In order to address the sensitivity of an arbitrary objective function, the classi-
cal idea is to work within a Lagrangian framework. Therefore, we consider the
corresponding Lagrangian, which is an augmented function of the objective
function, that is:

L(θ̂, û, û, p̂, p̂, ℓ) = J∗(θ̂) +

∫
Ω

û(−div(σ(û) + b(θ̂)∇p̂) dx

+

∫
Ω

p̂(−div(K∗
D(θ̂)∇p̂)) dx+ ℓ(

∫
Ω

θ̂ dx−Θ),

(31)

16



4 THE OPTIMIZATION PROBLEM FORMULATION AND ITS SENSITIVITY ANALYSIS 17

where (θ̂, û, û, p̂, p̂) ∈ L∞(Ω; R)×H1
0 (Ω; RN )2 ×H1

0 (Ω; R)2 are independent
variables and, the positive scalar ℓ is the Lagrange multiplier designed to satisfy
the volume constraint. Note that, the objective function J∗(θ̂) depends upon
the state variables u and p. By integration by parts, we get

L(θ̂, û, û, p̂, p̂, ℓ) = J∗(θ̂) +

∫
Ω

(σ(û) : e(û) + b(θ̂)∇p̂ . û) dx

+

∫
Ω

K∗
D∇p̂ . ∇p̂ dx+ ℓ(

∫
Ω

θ̂ dx−Θ),

(32)

where the homogenized objective function J∗ is assumed to be smooth enough
function, elsewise we cannot apply the adjoint-state method.

4.3 Sensitivity analysis for the two-physic problem

The sensitivities are evaluated by differentiating the Lagrangian (32) with
respect to state variables u and p in directions ϕu ∈ H1(Ω)N and ϕp ∈ H1(Ω).
Let (u, u) ∈ H1

0 (Ω; RN )2 be a stationary point of L. Then, the derivative of
the Lagrangian (32) with respect to u, in direction ϕu ∈ H1(Ω)N is given by:〈

L
∂u

, ϕu

〉
=<

∂J∗

∂u
, ϕu > +

∫
Ω

(<
∂σ(û)

∂u
, ϕu > : e(û)) dx, (33)

while the derivative with respect to p, in direction ϕp ∈ H1(Ω) is given by:〈
L
∂p

, ϕp

〉
=<

∂J∗

∂p
, ϕp > +

∫
Ω

b∇ϕp . û dx+

∫
Ω

K∗
D∇ϕp . ∇p̂ dx, (34)

which when equations (33) and (34) vanish, are nothing more than the varia-
tional formulation associated to the adjoint-states. Moreover, the derivatives
with respect u and p, in directions ϕu ∈ H1(Ω)2 and ϕp ∈ H1(Ω) are simply
the state equations, that are:〈

∂L
∂u

, ϕu

〉
=

∫
Ω

(σ(û) : e(ϕu) + b(θ̂)∇p̂ . ϕu) dx, (35)

and 〈
∂L
∂p

, ϕp

〉
=

∫
Ω

K∗
D∇p̂ . ∇ϕp dx, (36)

which when equations (35) and (36) vanish, is nothing more than the vari-
ational formulation associated to the state equations (24)-(25): note that to
obtain the adjoint-state equations in [23], the optimality condition for the state
variables is considered and, together with the state variables yield the adjoint
state variables. Finally, the partial derivative of the Lagrangian L with respect

17
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to θ, in direction θ̄ ∈ L∞(Ω; R) at the stationary point (u, u, p, p) is given by:〈
dL
dθ

, θ̄

〉
=<

∂J∗

∂θ
, θ̄ > +

∫
Ω

(
∂σ(û)

∂θ
: e(û) +

∂b

∂θ
∇p̂ . û+

∂K∗
D

∂θ
∇p̂ . ∇p̂ dx

+ℓ

)
θ̄ dx

(37)

Note that, Eq. (37) is defined using the adjoint-state method. As a conse-
quence, the descent direction θ̄ = dθ is defined by solving Eq. (37). The term
< ∂J∗

∂θ , θ̄ > is the partial derivative of the objective function J∗ with respect
to the density θ, in direction θ̄, while the term∫

Ω

(
∂σ(û)

∂θ
: e(û) +

∂b

∂θ
∇p̂ . û+

∂K∗
D

∂θ
∇p̂ . ∇p̂ dx+ ℓ

)
θ̄ dx

is the adjoint. û and p̂ are the adjoint-state variables, solutions to the adjoint
equations (33)-(34) (which we have to solve first). We recall that ℓ is the
Lagrange multiplier designed to satisfy the volume constraint at each iteration
and, such a constraint is routinely handled in elementary calculus of variations:
here, the dichotomy approach is employed.

5 Topology optimization of modulated periodic
composite materials

Here, our numerical algorithm is proposed. We describe how the methodology
applies to the weakly coupled two physics system of (24)-(25).

5.1 Alternate minimization method

The optimization problem (28) is solved using the alternate minimization
algorithm [1].

5.1.1 Minimizing over the stress field

For given design field θ, the minimization with respect to the stress field σ
amounts to solve the poro-linear elasticity problem (25), with a material of
elasticity tensor equal to A∗(x) in Ω and where, the design (θ,A∗) is computed
by linear interpolation over a surrogate model of A∗(θ): a preprocessing stage,
which is performed offline; see Section 2.2.

5.1.2 Minimizing over the density field

The minimization over the density field θ, for a given stress tensor σ, is
performed using the projected gradient algorithm and, as the minimization
problem (28) is not self-adjoint, one needs to define the associated adjoint

18



5 TOPOLOGYOPTIMIZATION OFMODULATED PERIODIC COMPOSITEMATERIALS 19

problem, which is defined using the adjoint-state method; see, Section 4. As a
consequence, the descend direction h = dθ is defined by solving:〈
∂L
∂θ

, h

〉
=<

∂J∗

∂θ
, h > +

∫
Ω

(
∂σ

∂θ
: e(u) + (

∂b

∂θ
∇p . u) +

∂K∗
D

∂θ
∇p̂ . ∇p̂ dx+ ℓ

)
h dx,

(38)

where the descend direction h = dθ has to satisfy the inequality〈
∂L
∂θ

(θ, u, u, p, p, ℓ), dθ

〉
< 0, (39)

which is achieved by choosing

dθ = −
(
∂J∗

1

∂θ
(θ) +

∂σ

∂θ
: e(u) +

∂b

∂θ
∇p . u+

∂K∗
D

∂θ
∇p̂ . ∇p̂ dx+ ℓ

)
(40)

with < ∂J∗

∂θ , h >=
∫
Ω

∂J∗
1

∂θ · h dx. At iteration n, the optimal density θ is then
updated by performing the projected gradient:

θn+1 = P[0,1](θ
n + δdθ), (41)

where δ > 0 is the step size and, in practice, we use an adaptive step size δ,
i.e., at each iteration, if the newly computed composite structure is accepted
(that is, if the current objective function J∗(θn) is lower than previous one
J∗(θn−1)), the step size δ is increased of 20%, else if it is rejected, the step
size is divided by 2. P[0,1] is the projection operator on the interval [0, 1].

Numerically, the partial derivative of the Lagrangian ∂L
∂θ is regularized using

an equivalent H1-norm: ∫
Ω
(
∂L
∂θ

h+ η2∇∂L
∂θ

. ∇h) dx =<
∂J∗

∂θ
, h >

+

∫
Ω

(
∂σ

∂θ
: e(u) +

∂b

∂θ
∇p . u+

∂K∗
D

∂θ
∇p . ∇p+ ℓ

)
h dx,

(42)

where η is a small coefficient, which typically depends on the size of the
elements of the mesh: thanks to this coefficient, we are able to numerically
regularize the partial derivative on a length scale of order η and to limit the
checkerboard effect on the density θ. Note that, equation (42) is solved after
solving the states equations (35)-(36), followed by the adjoint equations (33)-
(34). We recall that, the solution h of Eq. (42) is the descend direction h = dθ
satisfying Eq. (39); the effect of which is to update the optimal density θ by
performing the projected gradient (41).

5.1.3 Complete optimization algorithm.

The alternate directions algorithm is an iterative method, structured as follows:
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1. Initialization of the design variable θ such that :

∀x ∈ Ω, θ0(x) =
Θ∫

Ω
1 dx

2. Iteration until convergence, for n ≥ 0 :
(a) Computation of the state variable pn through the Biot-Darcy model (24),

with the design (θn, A∗(x))
(b) Computation of the stress tensor σn through the poro-linear elasticity

problem (25), with the design shape (θn, A∗(x)) and descend direction
dθn for a given stress tensor σn using formulas (40)

(c) Updating the design variable θn+1 using formulas (41) for the descend
direction dθn and then updating the design (θn+1, A∗(x)), by linear
interpolation.

6 Numerical results and discussion

We introduce our numerical results in the two physics context detailed in
Section 3. A variety of 2-D test cases are presented to demonstrate that our
alternate minimization algorithm produces physically correct results. The algo-
rithm (5.1.3) has been implemented in FreeFem++[34], where all the unknowns
are discretized using P1 finite elements and, the workspace Ω is discretized with
triangular elements in 2-D. For all our computations, a linear material model
with Young’s modulus E = 12 × 109Nm−2 and Poisson’s ratio ν = 0.35 are
considered. The void (θ = 0) is replaced with a very compliant material: the
smallest admissible value of θ is fixed at 10−4, in order to avoid singularities
of the effective tensor when the elasticity problem is solved.
We propose four test cases: first two are inspired from similar examples in
[20, 21] and, the last two are new to the best of our knowledge. For the first
three examples hereby, we aim to minimize the compliance of the solid body
under pressure loads and volume constraint, that is:

J∗(θ, u(θ)) =

∫
Ω

A∗e(u) : e(u) dx, such that
1

|Ω|

∫
Ω

θ dx = Θ (43)

6.1 Pressurized arch

This example was originally introduced and solved in [20, 21]; the bounding
box of the structure is a rectangle of dimensions Lx(m)×Ly(m), fixed on the

lower-left and lower-right edges, on a zone of width
Ly

8 , while submitted to
a pressure load p = 105Nm−2 (bar) on its lower boundary Γf

p . For all other

boundaries of this device, the pressure is null (p = 0) on Γf
p0
; see Fig.5 for a

schematic of this test case.
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Fig. 5 Setting for the compliance minimization problem of 6.1 issued from [20, 21]
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Fig. 6 Convergence history for the compliance minimization problem of Section 6.1

On Fig. 6, we plot the convergence history for the objective function (43):
smooth and rapid convergence is observed. The output of the alternate mini-
mization algorithm for a volume constraint set to Θ = 20% of the total volume
is displayed by Fig.7; the optimal density, pressure field, solid displacement and
von Mises stress at the final state are depicted. For this latter, the density θ is
represented with a gray scale: regions where θ = 1 are black (pure material),
whereas white regions correspond to voids and, the gray regions correspond
to the homogenized material with microstructures (periodically perforated by
hexagonal cells).
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22 6.2 Pressurized piston

(a) Density (b) Pressure

(c) Displacement (d) von Mises

Fig. 7 (a) The optimal density, (b) pressure field p (bar), (c) displacement u, and (d) von
Mises stress for test case 6.1

The topology of the result is similar to that obtained in previous literature
[21], for similar problem but with different design (i.e., black and white design)
and optimization setting (i.e., a density-based method). We note that, the
algorithm tends to distribute more material in areas with high pressure gra-
dients, of which one can clearly see a silhouette in the ”shape” of an arch,
although contains a large composite zone in its center. For the pressure field,
we notice that the boundary conditions are respected: regions with high pres-
sure gradients are located mainly on the arch and elsewhere, the pressure is
diffuse.

6.2 Pressurized piston

This second example was originally introduced and solved in [21, 35]. The
computational domain is a rectangle of dimensions Lx(m)×Ly(m), fixed on the
left and right edges (in direction x) and on a small surface of its lower-middle
wall (in both directions xy), while submitted to pressure load p = 105Nm−2

(bar) on the upper wall Γf
p . For all other boundaries of this device, the pressure

is null; see Fig. 8 for a schematic of this test case. Again, our aim is to minimize
the mechanical efforts induced in the solid structure by the stress imposed by
the fluid, subjected to the volume constraint (43). For this calculation, the
volume fraction is set to Θ = 30%.
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Fig. 8 Setting for the compliance minimization problem of 6.2 issued from [21, 35]
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Fig. 9 Convergence history for the compliance minimization problem of Section 6.2

On Fig. 9, we plot the convergence history for this calculation: smooth and
relatively rapid convergence is observed. For this latter, Fig. 10 displays the
optimal density, pressure field, solid displacement and von Mises stress at final
state. The topology of the result is similar to that obtained in previous litera-
ture [18, 21, 36, 37], for similar problems but with different design (i.e., a black
and white design) and optimization settings (i.e., density-based methods).
Again, we emphasize that, the algorithm tends to distribute more materials
in areas with high pressure gradients, of which one can clearly see a silhou-
ette in the ”shape” of a piston, with a large composite zone at its center. For
the pressure field, we note that the boundary conditions are respected: regions
with high pressure gradients are located mainly on the piston and elsewhere,
the pressure is diffuse.
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24 6.3 Pressurized MBB

(a) Density (b) Pressure

(c) Displacement (d) von Mises

Fig. 10 (a) The optimal density, (b) pressure field p (bar), (c) displacement u, and (d) von
Mises stress for test case 6.2

6.3 Pressurized MBB

Our third example is new, to the best of our knowledge. However, this test
case is equivalent to very known pure-mechanical version in the literature, that
is, the MBB-beam. The computational domain is a rectangle of dimensions
Lx(m)× Ly(m), fixed on the left edge (in direction x) and on a small surface
of its lower-right boundary (in direction y), while submitted to pressure load
p = 105Nm−2 (bar) on a small part of its upper boundary Γf

p . On the lower

boundary Γf
p0
, the pressure is null and the remaining boundaries are free of

boundary conditions; see Fig. 11, for a schematic of this test case.

Ly = 0.1 m

Lx = 0.3 m

Γf
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Γf
p

pin

Γs
D

Fig. 11 Setting for the compliance minimization problem of Section 6.3
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Fig. 12 Convergence history for the compliance minimization problem of Section 6.3

(a) Density (b) von Mises

(c) Pressure (d) Displacement

Fig. 13 The optimal density, (b) von Mises stress, (c) pressure field p (bar), and (d)
displacement u for test case 6.3

Once again, our aim is to minimize the mechanical efforts (43) and, for this
calculation, the volume fraction is set to Θ = 30%. On Fig. 12, we plot the
convergence history for this calculation: smooth and relatively rapid conver-
gence is observed. For this latter, Fig. 13 depicts the topology of the final
design and the resulting von Mises stress, pressure field and solid displace-
ment, under pressure loads at the final state. Very interestingly, we retrieve
the fact that the topology of the result is similar to that obtained in the case
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26 6.4 Two dimensional counter-flow exchanger

of pure-elastic, under mechanical load; see Fig 14, for the optimal MBB-beam
design in pure-elastic case, wherein, the solution is autopenalized.
Once again, we note that, the algorithm tends to distribute more materials in
areas with high pressure gradients, of which one can clearly see a silhouette
in the ”shape” of a beam, with a large composite zone at its center. For the
pressure field, we note that, the boundary conditions are respected: regions
with high pressure gradients are located mainly on the edges of the beam and
elsewhere, the pressure is very diffuse. We emphasize that, for all the three
examples above, similar topology optimization is observed for the design of the
least compliant structure, under pressure loads and volume constraints: our
alternate minimization algorithm tends to distribute more materials in areas
with high pressure gradients, as we expected.

Fig. 14 The optimal design (autopenalized) in pure-elastic case, under mechanical load.

6.4 Two dimensional counter-flow exchanger

Finally, our last example, which is new to the best of our knowledge (although
inspired from an example in the literature [38]). The computational domain
is a two-dimensional counter-flow exchanger of dimensions 0.2(m) × 0.22(m).
A fluid of a density q0,1 (kgm2s−1) is entering at the lower-left part of the
domain, with the corresponding pressure load on the opposite lower-right side,
whereas a fluid of a density q0,2 (kgm2s−1) is also entering at the upper-right
side of the domain, with the corresponding pressure load p0 (bar) at the oppo-
site upper-left side. All the other boundaries are insulated from the outside:
zero Neumann boundary conditions hold for the pressure, while homogeneous
Dirichlet boundary conditions are applied on the boundary of a small non opti-
mizable rectangle ω of dimensions 0.2m× 0.02m; the setup is seen in Fig. 15.
On Fig. 16, we displayed the numerical values of the parameters involved.
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Γs
D : u = 0

ω

Γf
D : p = p0

Γf
D : p = p0

Γf
N : ∂p

∂n = q0,1

Γf
N : ∂p

∂n = q0,2

ly = 0.044

ly = 0.044

Fig. 15 Setting of the 2-D counter-flow exchanger of Section 6.4. The brown layers at the
walls stand for zero Neumann boundary conditions for the pressure; homogeneous Dirichlet
boundary conditions hold on ∂ω.

p0 q0,1 q0,2

1.5 3 5

Fig. 16 Numerical values of the physical parameters in the 2-D counter-flow exchanger 6.4

Here, we aim to achieve a trade-off between the minimization of the compliance
(imposed by the fluid pressure) and the maximization of the hydraulic power
(transmitted to the system), subject to a volume constraint, that is:

J∗(θ, u(θ)) = α

(∫
Ω

A∗e(u) : e(u) dx

)
︸ ︷︷ ︸

Elastic strain energy

+(1− α)

(∫
Ω

q . ∇p dx

)
︸ ︷︷ ︸
Hydraulic power

,

s.t.
{

1
|Ω|

∫
Ω
θ dx = Θ

(44)

for some fixed coefficient α ∈ [0, 1]: the relative weight given to each term in
(44); wherein, q := −K∗∇p, characterizes the flux (kgm2s−1). For this calcu-
lation, we consider two configurations: first, a test case with volume constraint
set to Θ = 20%, second, a test case without volume constraint, for different
values of α.
Fig. 17-18 display the optimal densities for some fixed values of α, in both con-
figurations: with or without volume constraint. Very interestingly, we retrieve
the fact that in the first configuration, the optimal distribution of the density
is very diffuse in the case α < 0.5, whereas, its becomes more dense in the
case α ≥ 0.5. Consequently, the algorithm seems to be driven by the hydraulic
power in the case α < 0.5, then, by the elastic strain energy, in the case
α ≥ 0.5. However, in the second configuration, the optimal distribution is very
diffuse in general and becomes less diffuse for α ≥ 0.5: the algorithm seems to
be driven by the hydraulic power.
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(a) α = 0.25 (b) α = 0.40 (c) α = 0.50 (d) α = 0.77

(e) α = 0.80 (f) α = 0.85 (g) α = 0.90 (h) α = 0.95

Fig. 17 Optimal densities for different values of α, with a given volume fraction Θ = 20%

(a) α = 0.25 (b) α = 0.40 (c) α = 0.50 (d) α = 0.77

(e) α = 0.80 (f) α = 0.85 (g) α = 0.90 (h) α = 0.95

Fig. 18 Optimal densities for different values of α, without volume constraint

For the pressure field in both configurations, we notice that the boundary con-
ditions are respected: regions with high pressure gradients are located mainly
at the boundaries under fluid-pressure loads and elsewhere, its becomes very
diffuse. We emphasize that, in both configurations, the topology of the result
tends to achieve a trade-off between the minimization of the compliance (of
the solid) induced by the fluid and the maximization of the hydraulic power,
as we expected prior to our analysis. However, in the second configuration
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(where volume is unconstrained), we note a gain of volume fraction but not
necessarily a gain in performance; see Fig. 20 and Fig. 21.

α 0.25 0.40 0.50 0.77 0.85 0.90 0.93 0.95

J∗(α) −4.51 −0.06 0.962 5.055 5.025 6.533 10.17 0.163

Fig. 19 The converged objective function with respect to α, under the volume constraint
Θ = 20%

α 0.25 0.40 0.50 0.77 0.85 0.90 0.93 0.95

J∗(α) −4.51 −2.54 −1.83 −0.57 −0.55 −1.47 0.026 0.286

Fig. 20 The converged objective function with respect to α, with no volume constraint

0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

α

Θ

Fig. 21 The final volume history with respect to α, in the second configuration: no volume
constraint.

The corresponding objective history, in both configurations are depicted on
Fig. 19 and Fig. 20. On Fig. 21, we plot the final volume with respect to α,
in the second situation, while on Fig. 22 and Fig. 23, we show the conver-
gence history for α = 1/2, in both configurations. On Fig. 24, we display the
corresponding pressure field for both configurations, for α = 1/2.
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Fig. 22 The convergence history for α = 1/2, under the volume constraint Θ = 20%
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Fig. 23 The convergence history for α = 1/2, without volume constraint

(a) volume constrained (b) volume unconstrained

Fig. 24 The pressure field p (bar) at final state for both configuration: with and without
volume constraint, for α = 1/2
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7 Conclusion and perspectives

In this study, we have demonstrated the relevance of shape and topology opti-
mization for generating unconventional design problems involving two-physic
interactions using the homogenization method. In our proposed method, Biot-
Darcy’s law is employed to characterize the pressure (of the fluid flow); the
effect of which is to weakly couple to the solid phase by solving the associated
PDEs using the standard finite element method. The porosity of each finite
element is related to the material density through a smooth enough function
to ensure a smooth transition between void and solid phases; the physical
parameters are numerically computed in the case of isotropic porous medium.
The method facilitates calculation of the load sensitivities with respect to the
design variables, using the computationally inexpensive adjoint-state method
[1, 9]; it is noticed that considerations of load sensitivities within the approach
does alter the composite designs and are particularly important when design-
ing multi-physic systems. In contrast to methods that use explicit boundary
tracking, the Biot-Darcy’s model offers the potential for relatively straight-
forward extension to 3-D problems. The effectiveness and robustness of the
proposed homogenization method is verified by minimizing several arbitrary
objective functionals.
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(Eyrolles, 1985) 319-369.

[25] Pantz, O. and Trabelsi, K., A post-treatment of the homogenization
method for shape optimization, SIAM Journal on Control and Optimiza-
tion, 47(3) (2008) 1380–1398.

[26] Geoffroy-Donders, P., Homogenization method for topology optimization
of structures built with lattice materials, PhD thesis, Université Paris
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archives-ouvertes.fr (2019, Thèse, École Polytechnique Université Paris
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