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Monitoring of sugars adsorption breakthrough curves with online 
Raman spectroscopy 

Wassim Ammar, Marion Lacoue-Negre , Alain Methivier , Maria Manko * 

IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, 69360 Solaize, France   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Raman spectroscopy for online moni-
toring of sugars separation. 

• Accurate breakthrough curves pre-
dictions with univariate and PLS 
models. 

• Spectra pretreatment essential to 
enhance accuracy and avoid overlaps.  
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A B S T R A C T   

We introduce a new application for online Raman spectroscopy to monitor adsorption breakthrough curves of a 
glucose and xylose mixtures. Univariate and multivariate Partial Least Squares (PLS) calibration models are 
developed for each sugar when they are dissolved in water and in the case of the ethanol addition as a cosolvent. 
The models are validated by performing actual breakthrough experiments in a liquid phase using a column 
packed with a zeolite adsorbent. The first statistical moments of predicted curves are compared to the reference 
curves obtained with offline High-Performance Liquid Chromatography (HPLC). Glucose and xylose univariate 
predictions in the presence or absence of ethanol in the mixture are accurate and no improvements are found 
with the PLS models. Spectral subtraction coupled with the first derivative proved to be effective pretreatments 
to develop robust univariate models.   

1. Introduction 

Lignocellulosic biomass is considered as valuable renewable feed-
stock to produce fuels and chemicals [1,2]. It is composed of three main 
constituents, (i) cellulose a polymer of glucose molecules, hexoses 

(C6H12O6), (ii) hemicellulose a polymer chain of several pentoses 
(C5H10O5), and hexoses such as mannose, arabinose, and xylose, (iii) 
lignin a polyphenolic compound [3]. The chemical composition differs 
from one vegetal specie to another but overall, glucose and xylose are 
the major monosaccharides present in lignocellulosic biomass [3]. 
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Today, the mixture of sugars is commonly transformed by fermen-
tation into alcohol. However, the other and more valuable way of their 
application is to extract pure single monosaccharides to convert them 
into high value-added chemicals. Reactions starting from a pure sugar 
yield better conversion rates and higher selectivities towards the desired 
products, such as ethylene glycol from glucose transformation or 
furfural obtained from xylose [4,5]. A separation step of the sugars 
mixture is therefore necessary. The most cited separation methods 
which found applications for sugars are filtration and adsorption. 
Nanofiltration on piperazine-based membranes is reported to be an 
efficient method to separate glucose and xylose from concentrated 
monosaccharide solutions [6,7]. However, chromatographic adsorption 
with a Simulated Moving Bed process (SMB) is employed at an industrial 
scale to separate glucose and fructose to produce high fructose corn 
syrup (HFCS) for the food industry [9,8]. Compared to nanofiltration, 
the SMB process is more efficient and can achieve 99.9 % of purity while 
the first does not exceed 99.4 % [10]. 

Separation based on adsorption is investigated in literature for many 
monosaccharides and disaccharides [11–13]. using different adsorbents 
(resins, zeolites, active carbons, and amorphous silicas). Two methods 
are mainly used to perform adsorption experiments. The first is called 
the “batch test”, which is a simple way to study the adsorption capacity 
of different adsorbents by mixing a solid with a feed solution (ex. sugar 
in water) over a fixed period time and constant temperature. The con-
centration variation is measured before and after adsorption occurred 
[15,14] The second way, which is closer to industrial continuous con-
ditions, is known as the “breakthrough experiment”. It consists in 
pumping the feed solution through a fixed bed (column packed with an 
adsorbent) and recording the concentration profile at the column outlet. 
Plotting the concentration as a function of time results in a breakthrough 
curve, from which valuable information about the adsorption process 
can be explored like thermodynamic parameters (adsorption heat, 
selectivity and capacity) and mass transfer coefficients [16]. Determi-
nation of the first statistical moment (µ) in particular allows to calculate 
the adsorption capacity, i.e. the adsorbed amount of sugar per mass of 
adsorbent [17]. In general, offline analytical methods are often used to 
measure the concentration of the adsorbed species by analyzing the 
samples collected at the column’s outlet. High Performance Liquid 
Chromatography (HPLC) is considered as the reference technique for 
frontal adsorption tests in the liquid phase thanks to its robustness and 
reliable results. Nevertheless, this conventional approach is costly in 
consumables and time analysis, requiring sampling device and samples 
preparation before analyzing them (filtration, dilution, internal stan-
dard, or even a reagent addition). Online techniques are often an 
alternative for this kind of application, they provide immediate re-
sponses and data ready to be analyzed. For a single component sugar 
aqueous solution, online refractive index (RI) detectors were used to 
study the adsorption of sugars (glucose or fructose) for breakthrough 
experiments [16,19,18]. However, this method is limited to monitor 
sugar mixtures since glucose and fructose have the same refractive in-
dexes regardless of the concentration. Offline HPLC is then used to 
obtain the sugar concentration [20]. 

Online spectroscopy is advantageous compared to offline analysis in 
breakthrough tests application. It provides quick reliable data ready to 
be treated and especially it is cost effective due to the reduction of 
consumables usage. Optical spectroscopy in particular is a powerful tool 
for the online monitoring, identification, and quantification of chem-
icals in complex systems [21]. Fourier transform Mid-infrared spec-
troscopy (MIR) and Near-infrared (NIR) spectroscopy for instance have 
found large applications in bioprocess, medical or pharmaceutical fields. 
They are nondestructive, do not require sample preparation, rapid, 
robust, and easily implemented for online analysis thanks to the use of 
optical fiber [22]. 

Regarding vibrational spectroscopies, Raman spectroscopy showed 
promising results in analyzing lignocellulosic components. In addition 
to having the same advantages as infrared spectroscopies, the analyte 

spectra are not hindered by the presence of water. Biomass treatment 
has been successfully followed with different Raman techniques in real 
time to monitor cellulose and lignin, especially in the objective of pro-
posing better pretreatments to maximize yields [23,24]. Shih et al. re-
ported good quantification of glucose and xylose in hydrolysates 
obtained with acidic and basic treatments using univariate and PLS 
regression methods [25]. The most common application employing 
online Raman spectroscopy is the fermentation of sugars into ethanol, 
simple systems with a single carbon source, usually glucose, showed 
good agreement with offline monitoring [27,26,28]. Gray et al. studied 
corn mash fermentation under industrial conditions. Starch, dextrins, 
maltotriose, maltose, glucose, and ethanol were monitored using che-
mometric modeling and the authors reported accurate predictions for 
this complex system [29]. 

In this work, Raman spectroscopy is used for the first time to our 
knowledge to monitor breakthrough curves of sugars’ aqueous mixtures, 
mainly glucose, and xylose, with or without ethanol as cosolvent. The 
aim of this investigation is to compare the efficiency of models devel-
oped by multivariate calibration, based on the PLS algorithm, with 
univariate linear regression models for the quantification of sugars 
during breakthrough experiments. Predictions of breakthrough curves 
are then compared to HPLC ones. 

2. Methods 

2.1. Breakthrough experiments 

Zeolite NaY provided by Arkema was exchanged into barium form 
(BaY) and packed into a 25 cm length column with an internal diameter 
of 0.77 cm. The column was then placed inside an oven in the break-
through tests unit presented in Fig. 1. The setup was composed of two 
pumps, (SHIMADZU LC-40D) the first to deliver the feed solution and 
the second to pump the eluent for the regeneration step (ultrapure water 
in this case). Feed solutions were aqueous mixtures of glucose or xylose 
dissolved in water with or without ethanol as cosolvent. D-glucose and 
D-xylose were purchased from Sigma-Aldrich with a purity > 99 % and 
absolute ethanol from VWR. At the column outlet, a Raman probe was 
placed, and a fractions collector (GILSON 206 fraction collector) was 
installed at the end of the line to collect samples and determine the 
concentrations also with HPLC. 

The adsorbent was initially hydrated by filling the column with 
water at room temperature. Then the feed solution was injected. When 
the adsorption equilibrium was established, (i.e. when the breakthrough 
curve reaches a plateau and the recorded concentration is the same as 
the feed) a four way valve was turned and water was pumped to desorb 
the sugar molecules from the solid. Plotting the column outlet concen-
tration as a function of time gives a breakthrough curve from which the 
retention time, also known as the first statistical moment, is determined. 
The first moment µ (min) was calculated thanks the trapezoidal iterative 
integration method with the following equation: 

μ =

∫ ∞

0

(

1 −
C(t)
C0

)

dt (1)  

where C(t) is the concentration of a given species at the column outlet at 
time t, C0 is the concentration of a given species in the feed. 

2.2. Raman spectroscopy 

The Raman measurements were carried out using a dispersive 
spectrometer RXN2 from Endress + Hauser equipped with a 785 nm 
diode laser and a Peltier cooled charge coupled device (CCD) array de-
tector. The optic fiber was connected to a Process Elite Flowcell Ballp-
robe® from Marqmetrix placed at the column’s outlet. Data acquisition 
was performed using IC Raman 4.4, spectra were collected in a spectral 
range from 100 to 3400 cm− 1. The exposure time was 14 s, and 2 
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accumulations were performed for each spectrum. Cosmic ray filter was 
applied as well. 

2.3. HPLC 

Samples were injected (20 μl) into a REZEX RCM-Monosaccharide 
Ca2+ (8 %) column. The mobile phase (ultrapure water, obtained with 
a Millipore Milli-Q® lab water system) was pumped thanks to Waters 
1515 isocratic pump with a flow rate of 0.6 mL.min− 1. Waters 2414 
refractive index detector was used, and the temperature of the column 
was 90 ◦C. 

2.4. Modeling 

In this work two approaches of modeling were tested: a univariate 
and a multivariate one with two different systems. The first system was 
composed of glucose and xylose dissolved in water and the second was 
additionally enriched with a co-solvent, ethanol. The spectral regions 
used for pretreatment were specific depending on the system. 

2.4.1. Databases 
Two systems were of interest in the study. The first was the 

adsorption from a mixture of glucose and xylose in BaY when the sugars 
were only dissolved in water. 36 aqueous standard sugars solutions with 
concentrations from 15 g⋅kg− 1 to 250 g⋅kg− 1 were used to build the 
calibration model. 

The second system was the same two sugars adsorption in presence 
of ethanol as a cosolvent. 32 standard solutions were considered with 
sugars concentrations ranging from 5 g⋅kg− 1 to 150 g⋅kg− 1. Ethanol 
content was between 1 % and 60 % corresponding to concentrations in 
the range of 10 g⋅kg− 1 and 480 g⋅kg− 1. 

Single component solutions and mixtures (binary and ternary in 
presence of ethanol) were used in both systems for the calibration sets. 
All reference concentrations for the two systems were measured with a 
Mettler Toledo semi-microbalance MS with a precision of 0.1 mg. 

Two breakthrough experiments were performed for validation. The 
first test was done with an aqueous mixture of 100 g⋅kg− 1 glucose and 
100 g⋅kg− 1 xylose, and the second with 100 g⋅kg− 1 glucose, 100 g⋅kg− 1 

xylose and 50 g⋅kg− 1 of ethanol. The predicted concentrations coming 
from the application of univariate and multivariate models on the 
spectra recorded during these tests were compared with HPLC mea-
surements. The first moments µ (min) calculated with each model were 
confronted to the HPLC ones considered as validation references. 

2.4.2. Univariate modeling 
Univariate modeling for glucose and xylose in the first system was 

done by taking the height of the peaks between 974 and 1000 cm− 1 for 
xylose and between 1128 and 1217 cm− 1 for glucose. Peaks in the 
spectral regions 603–635 cm− 1, 878–895 cm− 1 and 1124–1192 cm− 1 

were considered for xylose, ethanol, and glucose respectively in the 
second system. Baselines in the same spectral regions were taken to 
determine the heights. For each model, the spectrum of the 100 g⋅kg− 1 

solution of the non-targeted sugar was subtracted from all the calibra-
tion system as a first step of spectral pretreatment. The first derivative 
was applied next. These pretreatments resolved peaks overlaps since the 
two sugars have close chemical structures. Overall, five individual uni-
variate models were developed for the two systems using IC Raman 4.4. 
The Root Mean Square Errors of Calibration (RMSEC) were calculated 
for all univariate models according to Equation (2) as well as calibration 
correlation coefficients (R2). 

RMSEC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Yi − Ŷi )

2

N

√
√
√
√
√

(2)  

where Yi is the reference concentration, Ŷi the predicted concentration 
and N the number of data in the calibration set. 

2.4.3. Multivariate modeling 
Raman spectra were exported from IC Raman to PLS_Toolbox version 

9.0 (Eigenvector) for MATLAB (R2021b version) to develop the multi-
variate models. The PLS regression was used [30]. The spectral region 
250–1600 cm− 1 was used to model glucose and xylose in both systems, 
whereas the information between 800 and 1600 cm− 1 was considered 
for ethanol. The pretreatment of the spectra was adapted for the PLS 
modeling, and different from the univariate modeling. No spectral 
subtraction was done on the spectra prior to PLS modeling. For all 
models, a Savitzky-Golay first derivative (window points: 15 and order: 
2) was used as pretreatment on the raw spectra. The optimal number of 
latent variables (LV) was selected considering the values of Root Mean 
Square Error of Cross Validation (RMSECV) obtained by cross validation 
of calibration data. Venetian blinds cross-validation was applied using 2 
splits for glucose and xylose in the first system and 2, 10 and 4 splits for 
glucose, xylose, and ethanol respectively for the second. The RMSEC and 
R2 were also calculated for each multivariate model. 

Fig. 1. Adsorption breakthrough tests unit.  
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3. Results and discussion 

3.1. Spectral interpretation 

Developing reliable models requires as a first step an analysis of 
spectral data. The spectra acquired for the first system composed of 
glucose and xylose dissolved in water are displayed in SM (Figure S.1) 
in the spectral region 100–1600 cm− 1 showing the quality of the signal 
and the complexity of the spectra with overlapped bands. To pinpoint 
the bands related to each component of interest, Fig. 2 shows Raman 
spectra of 150 g⋅kg− 1 aqueous solution of glucose, 150 g⋅kg− 1 aqueous 
solution of xylose and an aqueous mixture of 150 g⋅kg− 1 of each sugar in 
the spectral region 100–1600 cm− 1. These spectra provide evidence 
regarding the presence of distinguishable peaks for each constituent, 
allowing for quantitative analysis and the development of univariate 
models. Thus, considering the mixture spectra in the low wavenumber 
region, a band at 535 cm− 1 is observed for xylose which corresponds to 
C–C–C bending and ring deformation. The band at 445 cm− 1 arises from 
the same latter reasons for glucose, the bending of C–C-O at the –CH2OH 
group gives the peak at 350 cm− 1. At the anomeric region (where the 
anomeric carbon is involved), the bending of O-C-O for xylose is iden-
tified at 600 cm− 1 and the stretching of C-O at 845 cm− 1 for glucose. In 
the fingerprint region, the peak at 980 cm− 1 for xylose arises from 
bending of C-O–H bonds [31]. 

3.2. Univariate and multivariate calibration modeling 

Although specific peaks can be isolated as described in the previous 
section, the most intense regions in the mixture spectrum cannot be 
exploited due to the hindrance of sugars between each other. An 
example of the correlation between the raw intensity of the band at 445 
cm− 1 attributed to glucose and the reference concentration of glucose 
for the first system (glucose and xylose in water) is showed in SM 
(Figure S.2). This result demonstrates the linear correlation between the 
intensity and the concentration but points out, the importance of spec-
tral pretreatments for univariate modeling. 

Fig. 3 presents the selected peaks for univariate models’ develop-
ment after pretreatments. For the quantification of glucose, the spec-
trum of 100 g⋅kg− 1 xylose is subtracted from the spectra prior to 
derivation to avoid the peaks overlaps since both sugars (xylose and 
glucose) have very close chemical structures. The feed composition used 

for the breakthrough curves tests was limited to 100 g kg-1of each sugar 
as well.This reduces xylose contributions in the mixture spectra and 
makes glucose unique peaks more apparent and therefore improve 
univariate modeling as displayed in Fig. 3: A for the first system and C 
for the second system. The spectral range 1115–1215 cm− 1 is used to 
quantify glucose at 1140 cm− 1. Identical methodology is used to build 
the rest of univariate models to identify a unique peak for each con-
stituent. The peak around 990 cm− 1 is chosen when xylose is dissolved 
in water (Fig. 3B) and for the second system, when ethanol is added to 
the mixture leading to increased overlapping, the band around 610 cm− 1 

is used instead (Fig. 3D and Fig. 4). Finally, ethanol concentration is 
monitored by using the intense 888 cm− 1 peak resulting from stretching 
of C–C bond, with the subtraction of the xylose spectrum as shown in 
Fig. 3E. 

To go further, multivariate modeling using PLS regression was 
applied to predict the molecules of interest, and to compare the per-
formance with univariate models. The results of the PLS models devel-
oped to predict glucose and xylose with and without ethanol in the 
mixture are presented in Table 1. The regression plots are shown in 
Fig. 5. It can be observed that the five models have high R2 value, over 
0.997, and acceptable gaps between RMSEC and RMSECV are obtained 
for both sugars reflecting good quality. Differences of 0.1 g⋅kg− 1 and 0.5 
g⋅kg− 1 are calculated for glucose and xylose respectively in absence of 
ethanol in the solution and 3 LV are used. In case of the second system, 
gaps of 1.2 g⋅kg− 1 and 0.8 g⋅kg− 1 are found, and 5 LV are employed to 
create the monosaccharides’ models. The best ethanol model is built 
with 8 LV and a difference of 2.4 g⋅kg− 1 between RMSEC and RMSECV 
(2.4 g⋅kg− 1) is obtained. 

Overall, PLS modeling lowers RMSEC values and improve correlation 
coefficients compared to univariate models which suggest better pre-
dictions. The comparison of calibration results obtained with univariate 
and multivariate modeling with the reference concentrations is pre-
sented in Fig. 5. Both methods yield similar results with slight im-
provements using PLS modeling. This improvement can be seen for 
instance in the calibration data of the system with ethanol which con-
tains mixtures with fixed concentrations of 100 g⋅kg− 1 glucose and 100 
g⋅kg− 1 xylose with ethanol content ranging from 10 % to 60 %. Fig. 5C 
shows that univariate model at 100 g⋅kg− 1 glucose predicts concentra-
tions ranging from 92 g⋅kg− 1 to 109 g⋅kg− 1. The addition of ethanol 
dampens glucose signature peaks which results in the decrease of the 
measured concentration. PLS model gives more accurate measurements 

Fig. 2. Raw Raman spectra of individual aqueous sugar solutions and a mixture of glucose and xylose in the spectral region 1600–100 cm− 1.  
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Fig. 3. Pretreated Raman spectra to identify characteristic peaks for (A) glucose, (B) xylose dissolved in water and (C) glucose, (D) xylose, (E) ethanol in the 
ternary system. 
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since it is built from information in the selected spectral range rather 
than from one peak compared to univariate modeling. This information 
is related not only to glucose but also to variations of the other com-
ponents in the spectra. A curvature at high ethanol concentrations can 
be seen for the univariate model (Fig. 5E). This indicates that at high 
ethanol concentrations, the chosen peak saturates the detector, giving 
PLS modeling a useful application in this case because it explores 
additional regions. However, for the low concentration range (0–––300 
g⋅kg− 1) the univariate model stays linear with no saturation impact 
which results in choosing this model for further validation. 

3.3. Models validation 

To validate the approach, the application of the developed models on 
an external dataset, meaning that it has not been used to calibrate the 
models, is mandatory. In this work, we used representative datasets by 
recording Raman spectra during actual breakthrough experiments using 
the two systems mentioned above as feed solutions. Working with the 
acquisition parameters detailed in the experimental section resulted into 
108 points per breakthrough curve in 55 min. In parallel, around 50 
samples were collected during each experiment and analyzed with 
HPLC. Since the sampling time of HPLC and the acquisition times of 
recorded Raman data do not match, we could not calculate the Root 
Mean Square Errors of Prediction (RMSEP) values taking the HPLC re-
sults as references as it is normally done. Thus, to validate and evaluate 
the predictive quality of the models, the first statistical moment 
(Equation (1) was calculated and compared for both analytical methods. 
Two breakthrough experiments were performed, the first was a test with 
an aqueous mixture of 100 g⋅kg− 1 glucose and 100 g⋅kg− 1 xylose, the 
second with 100 g⋅kg− 1 glucose, 100 g⋅kg− 1 xylose and 50 g⋅kg− 1 

ethanol. 
Fig. 6 shows the precited breakthrough curves employing the 

developed univariate and PLS models. The latter give smoother curves 
compared to univariate predictions for sugars. Nonetheless, the opposite 
observation is found for ethanol. In the case of the first system, uni-
variate models presented in Fig. 6A predict xylose and glucose first 
moments of 19.8 min and 22.5 min respectively. These results match 
well with the µ values determined with HPLC (19.8 min and 22.4 min for 
xylose and glucose respectively). A good agreement is found as well with 
univariate models in presence of ethanol. Fig. 6C shows first moments of 
18.2, 20.4 and 23.5 min for ethanol, xylose, and glucose respectively 
versus 18.1, 20.3 and 23.3 min with HPLC in the same latter order. 

First moments of 19.9 min and 22.3 min are obtained for xylose and 
glucose respectively in case of the first system as shown in Fig. 6B using 
PLS models. When ethanol is added to the mixture (Fig. 6D), values of 
18.1, 20.4 and 23.3 min are found for ethanol, xylose, and glucose 
respectively. Overall, chemometric models give close results relative to 
HPLC and no major improvements are observed compared to univariate 
models. Less than 1 % error is obtained for all models compared to HPLC 
curves. The beginnings of the curves at the start of the breakthrough, 
when solutes start to exit the column, are well predicted, Raman spec-
troscopy is known to be limited at low concentrations because of low 
signal to noise ratios and signal decrease with water and ethanol [32]. 
Nevertheless, PLS model for ethanol does not fit perfectly at the begin-
ning and the end of the curve, ie. when adsorption equilibrium is 
reached, this is most likely due to a mismodeling of the calibration set. 
The concentration range of ethanol calibration set is large (ranging from 
10 g⋅kg− 1 to 480 g⋅kg− 1), which can negatively impact the models’ 
development. Therefore, it is recommended as shown in some studies in 
the literature to use separate calibrations sets for high and low 

Fig. 4. Spectral subtraction effect on univariate modeling to isolate glucose peak (1115–1215 cm− 1) in presence of ethanol. (A) spectra with first derivative and 
without subtraction of the spectrum of 100 g⋅kg− 1 xylose aqueous solution, the model has a correlation coefficient (R2) of 0.976 and a calibration error RMSEC of 
47.1866 g⋅kg− 1 (B) spectra with first derivative and subtraction of the spectrum of 100 g⋅kg− 1 xylose aqueous solution, the model has a correlation coefficient (R2) of 
0.989 and a calibration error RMSEC of 2.4774 g⋅kg− 1. 

Table 1 
Univariate and multivariate calibration results.    

Univariate PLS  

Concentration range 
(g⋅kg− 1)  

RMSEC  R2 LV  RMSEC  RMSECV  R2 cal. 

glucose / xylose 
glucose 15 – 150  2.7000  0.996 3  2.5614  2.6622  0.997 
xylose 15 – 250  3.4764  0.997 3  2.8912  3.4278  0.998 
glucose / xylose / ethanol 
glucose 5 – 150  2.4774  0.989 5  1.2330  2.4384  0.999 
xylose 5 – 100  2.2750  0.994 5  1.4068  2.2392  0.999 
ethanol 10 – 480  3.7435  0.996 8  1.3200  3.6855  0.999  
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concentrations in order to improve the accuracy [33–35]. 
In the two breakthrough experiments, xylose curve precedes glucose 

one indicating that the adsorbent has an affinity to glucose which delays 
its exit from the column. In Fig. 6A and Fig. 6B, the two components 
breakthrough the column at the same time around 12 min and the 
adsorption equilibrium is established at 34 min for xylose and 40 min for 
glucose. In case of the second system, ethanol exits the column at 7 min, 
xylose, and glucose at 11 min. The adsorption equilibrium is established 
at 25, 34 and 43 min for ethanol, xylose, and glucose respectively. The 
addition of 5 % ethanol increases the first moment of both sugars from 

19.8 min to 20.3 min for xylose and from 22.4 min to 23.3 min for 
glucose. Consequently, the adsorbed amounts will also increase. This 
cosolvent effect was shown in the literature when studying the adsorp-
tion of sucrose in faujasite-type zeolites, the authors used the batch 
method for the adsorption study [36]. 

4. Conclusions 

This work demonstrates the employment of Raman spectroscopy for 
online monitoring of adsorption breakthrough experiments for sugars 

Fig. 5. Regression plots for univariate and multivariate models for (A) glucose, (B) xylose dissolved in water and, (C) glucose, (D) xylose and (E) ethanol in the 
ternary system. 
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separation. Adsorption of lignocellulosic monosaccharides, glucose, and 
xylose in a BaY zeolite with and without ethanol in the feed mixture was 
studied. Univariate and multivariate models proved accurate compared 
to reference HPLC analysis. Univariate models, which are simple to 
implement, provide robust results at the concentration range used in this 
study (from 0 to 100 g⋅kg− 1 for sugars). Preprocessing is essential to 
enhance accuracy and to avoid overlapping interference in the mea-
surements, first derivative coupled with spectral subtraction of non- 
targeted components proved to be efficient to develop univariate 
models. The developed methods can be applied to screen different ad-
sorbents in order to evaluate their potential for a separation application. 
The presented approaches can be extended to monitor more complex 
matrixes containing more than two sugars. 
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