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Abstract. In this paper, deterministic and robust design optimizations of a permanent magnet-assisted
synchronous reluctance motor were performed to study the impact of different uncertain input parameters
on the design. These optimizations were carried out using a surrogate model based on 2-D finite element
simulations. Different robust optimizations considering geometric and magnetic uncertain parameters were
compared to the deterministic optimization. It was noticed that both geometrical and magnetic properties
tolerances greatly impact the machines’ mean torque and torque ripple, whereas the magnetic properties
tolerances had a more significant impact on the mean torque. In such a case, robust optimization is essential

to find optimal and robust electric motor designs.

Keywords: Synchronous machines, Robust design optimization, Manufacturing uncertainties, Surrogate

models, Finite element analysis.

1 Introduction

With the increasing concerns over climate change, many
measures have been adopted to reduce greenhouse gas
emissions. For transportation systems, in order to replace
internal combustion engine vehicles, Electric and Hybrid
Vehicles (EV, HEV) have been intensively developed. In
these vehicles, the electrical machine is one of their main
components.

Among the different types of electrical machines used in
electric vehicles, Permanent Magnet Assisted Synchronous
Reluctance Machines (PMaSynRelM) are one of the most
used machines nowadays [1-3]. Unlike Surface-Mounted
Permanent Magnet Synchronous Machines (SMPMSM),
PMaSynRelM exploits two types of torque: hybrid torque
generated using permanent magnets and, reluctance torque
which makes a profit of the machine’s saliency. Since
SMPMSMs only generate hybrid torque, they depend solely
on permanent magnets to achieve the required perfor-
mances. For all these machines, optimization is often used
to find the best design respecting all the required
specifications.

* Corresponding author: adan.reyes-reyes@ifpen.fr

Many optimization methodologies applied to electrical
machines can be found in the literature [4-7]. Most of these
methodologies can be described as deterministic since they
do not consider any uncertainties in the input parameters.
However, in practice, there are many discrepancies between
the nominal (obtained wvia data sheets) and real (measure-
ments) values of these parameters. These differences can
be caused by manufacturing and assembly tolerances in
the prototype as well as by the lack of precision in the mag-
netic properties of used materials. These variabilities can
lead to degraded performances compared to the nominal
performances simulated in the design phase. To reduce such
deviations, the parameter uncertainties should be consid-
ered in the optimization procedure.

In opposition to deterministic optimization, robust
optimization considers two types of input parameters:
certain parameters also known as controllable parameters,
and uncertain parameters. Controllable parameters are
the same ones used in deterministic optimization whereas
uncertain parameters are specific to robust optimization
techniques. This type of parameter can take varying values
due to the associated uncertainties: it is then modeled by a
random variable and an associated Probability Distribution
Function (PDF). The presence of random input variables
for the simulator leads to random output variables and
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then, random objective and constraint functions. Various
formulations of the resulting optimization problem are
proposed in the literature [8-10] based on the expectation,
probability, or quantiles of these random variables.

Reliability-Based Design Optimization (RBDO) is a
method used to obtain optimal and safe designs in the sense
that the outputs of certain functions are inside a security
domain, described by constraints. A robust or reliable
design has therefore a high probability of respecting these
constraints. Examples of this approach can be found in [11].

Worst-case optimization considers the extreme values as
objective functions and/or constraints i.e., the maximum or
minimum value of the outputs caused by the uncertainty
propagation [12].

There is another very common formulation that was
also adopted in this work: Robust Design Optimization
(RDO). In this methodology, the expectation (average) of
the objective function is optimized. To limit extreme values,
a second objective based on the variances of the objective
function can be added [13].

The computation of robustness metrics such as expecta-
tions or variances requires a large sample of the uncertain
input variables and thus a large number of simulations.
To limit this high computational cost, especially with the
use of finite element simulations, meta-modeling techniques
coupled with the design of experiments are used to replace
the costly simulations with predictions using the resulting
surrogate models [14].

We will present in this paper a study on the impact of
uncertain design parameters on the performances of a PMa-
SynRelM motor. It is a 3-phase 10-pole 60-slot PMaSyn-
RelM with a Machaon rotor structure (Fig. 1). It has an
outer stator diameter of 220 mm and an active length of
200 mm. Each pole has 3 flux barriers and 7 PMs. This
machine topology will be used to compare the results of
deterministic and robust optimizations in terms of robust-
ness. To do so, techniques like Design Of Experiments
(DOE), Finite Element Method (FEM) surrogate modeling,
sensitivity analysis, quasi-Monte Carlo methods, and opti-
mization algorithms were used.

The remainder of this paper is as follows: We will first
introduce the surrogate models-based methodology used in
this work. Next, we will analyze the obtained results via
deterministic and robust formulation optimizations. Finally,
we will verify some solutions’ performances obtained by the
metamodels through Finite Element simulations.

2 Optimization workflow

As mentioned before, we will perform in this paper deter-
ministic and robust optimizations in order to study the
sensitivity of a PMaSynRelM machine to design parameter
uncertainties. Figure 2 shows the design parameters for the
stator and the rotor considering one layer. Table 1 lists all
the design parameters to be used in the optimizations as
well as their lower and upper bounds. The manufacturing
tolerance is also given.

Geometrical parameters are not the only design param-
eters that can be uncertain. The characteristics of the
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Fig. 2. Design parameters for one layer (# is the number of the
layer).

magnetic materials used to build a machine, like permanent
magnets and electrical steel, can also present some uncer-
tainties and their characteristics can deviate from those
given in the datasheet.

The permanent magnet model used in our electromag-
netic simulations is a linear model defined by two quanti-
ties: B, which is the remanent induction and H,, which is
the coercitive magnetic field (Fig. 3). We will consider that
the values of B, and H,, can vary between their nominal
characteristics and, in the worst case, lower characteristics
representing a 6.5% degradation. A coefficient f§ between
0% and 6.5% will be used as a random variable describing
the level of degradation in the robust optimizations.

As for the B(H) characteristic, the degradation will be
limited to its “knee” part. A random variable o between 0
(representing fully degraded characteristic) and 1 (nominal
characteristic) will be used to define the degradation level of
the B(H) curve. At maximum degradation (¢ = 0), the
induction level is reduced by 25%. Figure 4 shows a compar-
ison between the initial and degraded B(H) curves.

Figure 5 shows the workflow used to carry out the opti-
mizations. At first, a DOE was built with the upper and
lower bounds of the input parameters shown in Table 1



The Author(s): Science and Technology for Energy Transition 79, 13 (2024) 3

Table 1. Optimization variables.

Input parameter Lower bound x

Upper bound z, Manufacturing tolerance

Slot angle 2.47° 3.27° +0.1°
Beta L1 P1 27.03° 29.66° +0.33°
Beta L1 P2 37.03° 39.66° +0.33°
Beta L2 P1 31.03° 33.66° +0.33°
Beta L2 P2 47.03° 49.66° +0.33°
Beta L3 P1 33.7° 37° +0.33°
Beta L3 P2 59.7° 63° +0.33°
Airgap 0.55 mm 0.65 mm +0.03 mm
Bridge L1 2.6 mm 2.98 mm +0.05 mm
Bridge L2 0.9 mm 1.18 mm +0.05 mm
Bridge L3 0.5 mm 0.62 mm +0.03 mm
Bridge tang 0.4 mm 0.6 mm +0.05 mm
PM characteristic degradation i B(H) curve degradation
— =00% 1
— f=65% B, (f=0%) =048 L5
B, (f = 6.5%) = 0.45 —_—
Lo.4 139 —a=0
[0 g g 14
0.2
0.5
H., (f = 0%) = 3.534e + 05 [0:1
He (B = 6.5%) = 3.304e + 05
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-4e+5 -3e+5 -2e+5 —1le+5 0 0 le+4 2e+4 3e+4 de+4 S5e+4

H (A/m)

Fig. 3. Nominal and degraded PM characteristic.

to fit a surrogate model for each of the considered objective
functions: the mean torque and torque ripple. These two
quantities are computed using the finite element method
with the open-source software FEMM/XFEMM [15]. Dif-
ferent simulations at a fixed maximum current (600 A)
and for a range of the control angle (between 0° and 90°)
were launched. The optimal control angle (giving maximum
torque) was found, and the mean torque and torque ripple
were calculated. The built surrogate models were used to
perform a global sensitivity analysis to detect the most
impacting parameters on the objective functions. This
analysis will allow us to limit the number of parameters
considered as uncertain. At last, and after performing the
meta-model-based deterministic and robust optimizations,
FEM simulations were carried out to verify the results.

2.1 Surrogate models

To reduce computation time, surrogate models have been
built for each of the objective functions. To build such mod-
els, there are three steps to follow: build a DOE, train the
metamodel, and check its predictivity with a test set. The
chosen DOE is a maximin Latin Hypercube Sampling
(LHS) which is a technique that covers well the search

H (A/m)

Fig. 4. Nominal and degraded B(H) curve.

space while preserving good projection properties [16]. This
DOE was built with 234 points using the bounds described
in Table 1. As for the surrogate model, it is a universal
Kriging with a linear trend function. For mean torque, a
tensorized Matérn 5/2 covariance function has given the
best predictivity. As for Torque ripple, a tensorized abso-
lute value exponential kernel was used since the Torque
ripple function is not that smooth. Kriging was chosen as
a metamodel since it is very good at learning nonlinear
objective functions and has demonstrated good perfor-
mances in electrical machine optimization [17]. Finally, to
evaluate the accuracy of the metamodel, a Normalized Root
Mean Square Error (NRMSE) was computed on a valida-
tion test set:

||yreal - ypredH ~ 100% (1)

HyrealH

zero indicates a good model fit. The obtained NRSME of
the Kriging model for mean torque is 0.2% and for torque
ripple is 8%. These results were obtained with a train and
test sets composed of 175 and 59 samples, respectively.
Torque ripple depends not only on mean torque but also
on torque amplitude which makes this function more

NRSME =
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Fig. 5. Optimization workflow.

difficult to model than mean torque. We consider those
metamodels sufficiently accurate for performing the sensi-
tivity analysis and the optimization procedures.

2.2 Sensitivity analysis

For the robust optimizations, we have decided not to con-
sider all the geometric parameters given before as uncertain
parameters. Only the most impacting ones will be consid-
ered. To do so, a sensitivity analysis will be performed
[18]. For this work, the Sobol Indices were chosen as they
measure the global impact of the input variables on the out-
put functions. Such indices represent the amount (or per-
centage) of the total output variance attributable to each
subset of input variables. For instance, in the simplest case
of one output variable Y and two inputs X; and X,, we find
three factors causing the total variance of Y: due to the vari-
ation of X; alone, due to the variation of X, alone, and due
to the variation of X; and X, simultaneously. Dividing these
three quantities by the total variance of Y, we can obtain
three percentages that can be directly considered as sensitiv-
ity measures. The largest is the value of these indices, the
largest is their importance. The commonly used ones are
the first order indices (S;) representing the contribution to
the variance of Y due to the variation uniquely of X
and the total indices (StoTar,;) representing the contribu-
tion to the variance of Y due to the variation of X; and all
its interactions with the remaining input variables:

o VARXi(EX~i[Y|Xi])
i VAR(Y) ’

(2)

08- = Total Order

07 Bl First order
06 -
05 -
04
03 -
02

01

00 - l _ - _ _ —-— —_—
Slot_angle Beta_L1_P2 Beta_L1 _P1 Beta L2 P2 Airgap Bridge L1 Bridge_L2

Fig. 6. Mean torque Sobol’ indices.

Ex [VARx(Y|X.)]
VAR(Y) ’ ®)

S TOTAL; —

where X~;, = X1,.. ., X;_1,X;1,,Xnz and N, is the number
of optimization parameters. We computed the indices
using the Kriging surrogate models. The results of the
sensitivity analysis applied to mean torque and torque
ripple are presented in Figures 6 and 7. Only the most
important geometrical inputs are displayed for better
visibility. It was found that the stator slot width open-
ing angle (Slot _angle) and the flux barrier opening angles
for barriers 1 and 2 (Beta L1 P1, Beta L1 P2,
Beta L2 P1, and Beta L2 P2) have the biggest
impacts on the mean torque as well as on the torque rip-
ple. We can also see in Figure 6 that the total order Sobol
indices for torque ripple are higher than the first-order
ones. This means that torque ripple is more sensitive to
the interaction between the variables (Beta L1 P1 and
Beta L1 P2 for example) than to one variable alone.
This is not the case for the mean torque, where the
predominant indices are first-order ones.

Finally, the most impacting variables 5 parameters:
Slot _angle, Beta L1 P1, Beta L1 P2, Beta L2 PI,
and Beta L2 P2 will be considered as uncertain variables
in the robust optimizations. The dispersion of these vari-
ables will be then integrated into the robust optimizations
by considering a perturbation vector U.

2.3 Robustness metrics

To perform a robust optimization, one or several robustness
measures can be used as objectives or constraints. In this
section, we will recall some of them. Consider Figure 8. This
figure shows a possible Probability Density Function (PDF)
of the torque ripple considering perturbations on one (or
some) input design parameters. The alpha-quantile ¢, is
the output value for which a given sample has a probability
equal to o of being less than or equal to ¢,. For example, in
Figure 8, the 10% quantile (¢0%) has a torque ripple value
around 5.5%. This means that 10% of the considered
samples have a torque ripple less than or equal to 5.5%.
The expectation (E) is equal to the average value of the
output variable and would coincide with the 50% quan-
tile in a perfectly symmetric PDF. We can quantify how
spread out the output values are by means of the Standard
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Fig. 8. Example of a torque ripple PDF.

Deviation (STD), which measures the mean square disper-
sion around the expectation.

3 Deterministic and robust optimizations

We will present in this section the results of different
optimizations: a deterministic and a robust optimization.
For the deterministic optimization problem, we have:

min,x [fi(2), ()], (4)

where f; is the opposite of the mean torque (in order to
maximize it) and f; the torque ripple; X is the controllable
parameters space defined in Table 1. For the robust opti-

mization problems, two formulations have been
considered:
— Expectations optimization:
min,cy [Eylfi(z+ U)], Eylf(z+ U)]]. (5)
— Worst-case optimization:
min, y[max,ofi (z + ©), max,ofh(z + )], (6)
where Q= [—uu, U] X -« X [—Uuniy Uunz]- (7)

Uy, is the manufacturing tolerance of the parameter number
J, and z; and =,; are the lower and upper bounds for the

optimization variable z;, respectively. The tolerance for
each geometrical parameter is given in Table 1. Based on
the sensitivity study in the previous section, only 5 geomet-
rical parameters will be considered as uncertain. Their
uncertainties were considered following uniform distribu-
tions, i.e., U; ~ Unif(—uy, u,;). For parameters with no
considered uncertainties, u, is simply equal to 0.

The goal of the first robust formulation is to optimize
the mean torque and torque ripple’s expectations in a
Pareto sense. In the worst-case formulation, the objective
is to limit the worst possible value of the mean torque
and torque ripple caused by uncertainties (equivalent to
qioo% and goy respectively). By adopting such a formula-
tion, the designer can be sure that all the manufactured
machines will exceed the performances found on the Pareto
front. On the other hand, a formulation using expectations
does not guarantee that.

To solve these optimization problems, the genetic algo-
rithm NSGA 2 was used [19]. This algorithm has shown
good performances in other studies of electrical machine
optimization as in [20]. We used a DOE maximin LHS to
compute samples of z + U to calculate the objective func-
tions’ expectations with a quasi-Monte Carlo method.
When it comes to the Worst-case formulation, we have
two options: computing samples of z + U and taking the
maximum value of these samples as an estimator of max,qq
flx + w) or obtaining the absolute maximum value with an
optimization algorithm. In this work, the last solution was
adopted using a Particle Swarm Optimization (PSO) [21]
algorithm for the embedded mono-objective optimizations.
By doing so, we will obtain more accurate worst-case
estimates.

To study the impact of the two different types of
uncertainties (related to geometrical parameters and
material properties) on the performances of the PMaSyn-
RelM machine, we will perform in the following sections
two groups of optimizations: the first one will only consider
geometrical parameters as uncertain parameters (U,) while
the second one will also consider the magnetic material
characteristics as uncertain as described before (U,, U,,).

3.1 Robust optimizations considering uncertainties
on geometrical parameters

Figure 9 shows a comparison between the deterministic
(blue) and the expectations optimization (red) Pareto
fronts. The expected performances of the deterministic
Pareto front have been reevaluated (pink): The design vari-
ables were perturbed by adding sampled values of the
uncertain variables. These expected values represent the
average mean torque and average torque ripple for each
machine obtained by the deterministic Pareto optimization
considering a posteriori uncertainty on the input parame-
ters. As we can notice, a deterministic optimization does
not guarantee a robust design: For the same average mean
torque, the average torque ripple of a batch of machines
issued from the deterministic optimization (pink) shows
higher values than that of a batch of machines issued from
the robust optimization (red).

The Pareto front of the worst-case optimization (green)
is presented in Figure 10. As in Figure 9, the deterministic
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Pareto front was also added (blue). The worst-case perfor-
mances of the deterministic Pareto front have been evalu-
ated (light green) thanks to a posteriori uncertainty on
the input parameters and PSO maximization. Once again,
these results show the importance of robust optimization
in limiting the performance degradation that a sample of
machines can have.

To go deeper into this analysis, we empirically com-
pared the distribution of different designs. For this purpose,
we show in Figures 11 and 12 boxplots of a subset of points
selected from the deterministic and robust Pareto fronts
shown in Figures 9 and 10, respectively. Each pair of box-
plots in Figure 11 represents a comparison of the distribu-
tion of torque ripple values between a deterministic
machine (pink in Fig. 9) and a robust machine (red in

Fig. 9) falling in one of the zones (Agfp, Bgfp, ngp, Dgfp,

Egﬁp). The “Exp” index means that the design is issued from
a robust optimization based on the expectance formulation.
The “Ug’ is to say that the considered uncertainties are geo-
metrical parameters. The same boxplots are represented in
Figure 12. However, this time, the designs were selected
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Fig. 11. Boxplots showing comparisons of predicted torque
ripple values between deterministic (blue) and robust (red)
machines from Figure 9 with similar predicted mean torque
expectation values.
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Fig. 12. Boxplots showing comparisons of predicted torque
ripple values between deterministic (blue) and robust (green)
machines from Figure 10 with similar predicted mean torque
worst-case values.

from the deterministic Pareto front in Figure 10 (light
green) and the robust one (dark green). All the boxplots
in Figures 11 and 12 show the values of sy (ql),

and ¢50%, which is the median of the sample (¢2) and

qr59% (¢3) as represented in Figure 11 (boxplot zone C’gfp).
We can observe in Figure 11 that for each pair of machi-
nes, the robust one shows better overall performance than
the deterministic one. For example, for the machines in
zone Agfp, we can notice that the median of the determin-
istic machine is almost the same as the ¢3 value of the
robust machine (4.5%). This means that there is a 50%
chance for a deterministic design to have a torque ripple
value higher than 4.5%. For the robust design, the probabil-
ity is only 25%. We can also notice that the expectation and
Standard Deviation (STD) of the torque ripple associated
with the robust optimization solution (4.3%, and 0.35%,
respectively) outperform the expectation and STD obtained
by the posterior analysis of the deterministic solution (4.6%,
0.56%, respectively). These results stress the importance of
robust optimizations when dealing with uncertainties.
Figure 12 also shows pairs of boxplots comparing
predicted torque ripple values between deterministic (light
green) and robust (dark green) machines from Figure 10
with the same minimum (worst-case) predicted mean
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torque value in each zone. For all the selected zones, the
worst-case torque ripple value (maximum value for a batch)
of a robust design is lower (or equal) than a deterministic
one. Besides this, robust solutions also have much lower
STD values than deterministic solutions, especially for

. U
zones with low worst-case mean torque. In zone A, for

example, the robust machine (first green boxplot in
Fig. 12) has an STD of 0.26% and a worst-case torque ripple
of 6.7% compared to 0.54% and 7.2%, respectively for its
deterministic counterpart (first blue boxplot in Fig. 12).
Both optimizations lead practically to the same design for

. . . U
high values of worst-case mean torque like in zone E ..

This can also be seen in Figure 11 with the Pareto fronts
of the deterministic and robust optimizations getting very
close with increasing torque.

The worst-case optimization has allowed to limit the
performance degradation of the least performant machine
in a sample, it has led to worse expectance values of torque
ripple than those obtained by deterministic optimization.
Instead of using the worst-case as an objective function, it
could be used as a constraint in a constrained optimization
problem while still using the expectations as an objective.
Such formulation allows having good machine samples
(expectation-wise) while limiting the worst performances
we can have. Given that the quantile and worst-case are
related (as the worst-case is equal to the 100% quantile in
a minimization scheme), and we have found that the
worst-case value could be set as a constraint; a quantile
formulation (like 95% quantile) could be used as a more
permissive constraint. This is important because finding
samples having a 100% chance of satisfying a constraint
could be difficult, especially when the tail of the PDF of
the quantity of interest is large.

3.2 Robust optimizations considering uncertainties on
geometrical parameters and material properties

In order to evaluate the impact of magnetic material uncer-
tainties on the performances of the PMaSynRelM motor,
Figures 13 and 14 show the results of two robust optimiza-
tions performed using respectively the expectations and
worst-case formulations. This time, the uncertain parame-
ters are both the geometric parameters and the magnetic
material properties. We added the same figures the Pareto
fronts from Figures 9 and 10 for comparison.

Compared to results obtained considering only U, as
random variables, we can notice that the introduction of
magnetic material uncertainties in the robust optimizations
only affects the mean torque while the torque ripple stays
almost the same. We can observe that the main effect of
degradation of the material’s magnetic properties is a hori-
zontal translation towards lower values of the mean torque
compared to the solutions obtained when we only consid-
ered U, as random variables. In order to look deeper into
this result, we present in Figure 15 the evolution of the
estimated mean torque (metamodel) for machine Agjp in
Figure 9 in respect to o and f. As it can be seen, the mean
torque metamodel has a linear behavior with respect to
these two properties, and its maximum value is found when
no degradation is applied (¢ = 1 and f = 0). At o = 0 and

7
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Fig. 13. Pareto fronts obtained by expectations optimization
(brown) and expectations obtained by posterior perturbations
from deterministic optimization results (orange) where uncer-
tainties come from geometrical and materials’ properties per-
turbations (Ug, Um). Red and pink sets of points come from
Figure 9. Dark gray zones highlight points with similar mean
torque expectation values.

114 °
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Fig. 14. Pareto fronts obtained by worst-cases optimization
(darkcyan) and worst-case obtained by posterior perturbations
from deterministic optimization (cyan) where uncertainties
come from geometrical and materials’ properties perturbations
(Ug Uy). Green and light green sets of points come from
Figure 10. Dark gray zones highlight points with similar mean
torque worst-case values.

p = 1 (full degradation), the torque is around 411 N-m with
a 20 N-m decrease.

To confirm this observation all over the search space
(X,), a subset of 5000 points was analyzed (this subset
was created using LHS maximin over X, including as a

. U .
reference to the machine related to zone Ay} and coming

from the expectations Pareto front, for which the relation-
ship is linear (as seen in Fig. 15). For all these points, the
second partial derivative with respect to U, was evaluated.
The derivative results at some U,, values are given in
Figure 16. Each boxplot in this figure represents the deriva-
tive values for all 5000 points at a fixed o« and f (values
given on the horizontal axis). We can notice little variation
for each boxplot, which means that the second derivatives
are very similar all over the X, search space. Moreover,
the derivative values are all close to zero. This confirms that
the mean torque can be considered as a linear function with
respect to U,
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Fig. 15. Mean torque as a function of o and f for the design in
zone Agﬁp in Figure 9.
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Fig. 16. Boxplots showing the variability (with respect to a
batch of Xg samples) of the mean torque metamodel second
partial derivative (with respect to Um) evaluated at a given
value of Um. The blue horizontal lines stand for the machine
related to zone Aggp and coming from the expectations Pareto
front.

[(X,, Un) ~

Having shown that the metamodel constructed for the
mean torque can be approximated to a linear function with
respect to U, let us calculate the variability of the operator
A(X,) with respect to X, According to our linear approxi-

9(X,) + A(X,) Up. (8)

mation, the operator A(X,) is equivalent to the partial

derivative with respect to U, of the mean torque’s meta-
model. Figure 17 shows the results in the same manner as
Figure 16, this time for the first derivative with respect to
U,,. Once again, no significative variations are observed
for all the boxplots meaning that the first partial derivative
with respect to U, is almost independent of X,. The matrix
A(X,) can be considered as independent of Xg:

A(X, U) =~ g(X,) + AU, (9)

In the same way, we observe that this first derivative is also
almost independent of U, (the derivative values are very
close for all the boxplots). This is consistent with what
was mentioned about the second derivative in Figure 16.

m:lr):?r (X- U’{”lud)

-0.08

T
Zone A%,
-0.085
g, —0.0o [
2
e/
—0.095
£
R

atorque

_0.1.
-0.105 %

(0.66,3.22)

(0.85,6.28) (0.04,3.68) 0.6,5.32) (0.47,0.27)

ixed
U

Fig. 17. Boxplots showing the variability (with respect to a
batch of Xg samples) of the mean torque metamodel first partial
derivative (with respect to Um) evaluated at a given value of
Um. The dark cyan horizontal lines stand for the machine
related to zone Agzp and coming from the expectations Pareto
front.

So far, we have shown the linear behavior of the mean
torque (f;) with respect to U,,. However, this does not
explain the results obtained in Figures 13 and 14. According
to our approximation, the expectation of f; with respect to
U,, and U, as well as its expectation with respect to U,
alone are written as follows:

E(Ug,Um)[ (X, + Uy, Um)] ~ Ey, [Q(Xg + Uy)] + Apy,
(10)

EUg[ I(Xg + Ug; Unom)] ~ EUg [g(Xg + Ug)] + AUnam
(11)

with s, the mean of U, uncertain variables. And, for the
worst-case:

WC(Ug,UM) [ 1(X9 + Uy, Um)]

~ WCy,[g(X, + U,)| + WCy,[AU,], (12)

WC Ug[ 1(Xg + Ug» Unum)] ~ WCU(] [g(Xq + U(/)] + A U'n,r)m~
(13)

We note that the approximate expression for the expecta-
tion of f; with respect to U, (11) where U, is equal to the
nominal material properties U,,,, and the same expecta-
tion, but with respect to U, and U, (10) are the same
except for terms that do not depend on X The same is true

for the worst-case expressions of f; (12) and (13). This

means that their maximum values will be for the same X,
but with shifted torque values (for the case of U, and U,
with respect to the case of U, only).

3.3 Results verification by FEM simulation

All the results presented in the previous sections were based
on surrogate models. We will therefore verify in this section
some results using FEM simulations. Figures 18 and 19
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Fig. 18. Boxplots showing comparisons of torque ripple
between FEM simulations and surrogate model predictions:
deterministic (blue) and robust (red) machines with similar
predicted mean torque/ mean torque expectation values.
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Fig. 19. Boxplots showing comparisons of torque ripple
between FEM simulations and surrogate model predictions:
deterministic (blue) and robust (green) machines with similar
predicted mean torque worst-case values.

show the same boxplots based on the metamodels as in
Figures 11 and 12. However, this time, FEM simulations
were used to produce the same boxplot for comparison.

Only two zones are represented in these figures : Ag" and

ngp The STD values were also added for comparison.

The results from Figure 18 confirm what we have

already noticed using the meta-models. For both zones
AUg and EY/ Eip>
better solutions than the deterministic optimization in
terms of robustness. For zone A E;’p, both machines have
practically the same FEM-computed mean torque ripple
with a smaller STD for the robust design. As for zone

ngp, the robust design presents a lower expected mean

torque. The FEM-computed ¢3 value of the robust design
is also equal to the median of the deterministic one
(5.8%), meaning that 75% of the produced machines using
the robust design would have a torque ripple lower than
5.8% wvs. only 50% for the deterministic design. Although
the results in Figure 18 were obtained from the robust opti-
mization based on the expectance formulation, the design in
zone E g also present a particularly lower torque ripple in a
worst- case scenario, with 8.4% wvs. 9.9% for the determinis-
tic design.

the robust optimization presents similar or

As seen in Section 3.1, using the optimization formula-
tion with the worst-case scenario tends to reduce the STD
of the robust designs compared to the deterministic ones,
especially at low torque. This is also confirmed by FEM

. . . . . . U
simulations in Figure 19. For the machines in zone A7,

the robust design has a notably lower FEM-computed
STD compared to the deterministic one (0.4% wvs. 0.78%).
As for the worst-case torque ripple value, both designs
possess similar FEM-computed performances, around
7.3%. As for zone E %"C, similar results were obtained with
deterministic and worst-case optimizations with a torque
ripple of 11.8% and 11.6% respectively.

Regarding the precision of the meta-models compared
to FEM simulations, some differences can be noticed. This
lack of precision, especially for torque ripple, is somehow
expected with a strategy using fixed metamodels in opti-
mization, especially with the difficulty of fitting a torque
ripple metamodel as seen in Section 2.1. A vast number
of simulations is needed in this case to obtain an acceptable
level of accuracy. An alternative approach could be to use
an adaptative strategy to update the surrogate model with
additional simulations during the optimization. The addi-
tional simulations will guide the algorithm towards the
optimal zones while improving the meta-models’ accuracy.
By using this kind of approach, additional FEM simulations
are performed only in promising points in the search space,
limiting computational time and increasing the precision for
optimal designs. This will be the subject of a future study.

Finally, we note that surrogate-based optimizations
require much less computational time compared to FEM-
based optimizations. For example, 17 h were needed to
finalize the DOE simulations (Intel(R) Xeon(R) W-2195
CPU @ 2.30 GHz and 18 cores). The deterministic
optimization using the meta-model took only 13 s for
300 iterations and 150 particles. Doing the same optimiza-
tion using FEM simulations would have taken around
3 months to complete.

4 Conclusions

We have presented in this paper a comparison between
different optimizations performed on a Permanent Magnet
Assisted Synchronous Reluctance Machine. The first opti-
mization used a deterministic formulation considering the
design parameters as certain. In order to study the sensitiv-
ity of the machine to parameters uncertainties, robust opti-
mizations were performed considering some geometric and
magnetic parameter as uncertain. Two different formula-
tions were adopted for the robust optimizations. In the first
one, we used the expectations of the mean torque and
torque ripple as objective functions. In the second formula-
tion, the objective functions were defined as the worst-case
values. In order to reduce computation time, surrogate
models have been built for each of the objective functions.
These surrogate models have been also used to perform a
Sobol indices-based sensitivity analysis to detect the most
impacting input parameters. Objective functions’ expecta-
tions were computed with a quasi-Monte Carlo scheme
while worst cases were calculated with an embedded
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Particle Swarm Optimization algorithm. Both geometrical
and magnetic property tolerances were shown to substan-
tially influence the machines’ performances, with the
magnetic property tolerances having a greater impact on
mean torque. More precisely, we found that the magnetic
material properties tolerances affect the mean torque lin-
early. We have shown that the considered magnetic material
degradation has almost the same impact on the perfor-
mances over all the search space: The Pareto front of the
robust optimization considering both types of uncertainties
(geometrical U, and magnetic material properties U,,) is

simply obtained by shifting horizontally (toward lower
torque values) the Pareto front of the robust optimization
with only the geometrical parameters (U,) as uncertain.
This result cannot be generalized since the search space in
this paper has been restricted to a small region around a
reference design.

It should also be noted that while the predicted values of
mean torque were consistent with Finite Element Method
simulations, some differences were observed for torque
ripple. This problem will be addressed in future work by
using an adaptive strategy, like Bayesian Optimization, to
update the surrogate models with additional simulations
during the optimization. Nevertheless, the Finite Element
Method simulations have globally confirmed the trend of
the predicted results using the metamodels. The compar-
ison of Pareto fronts has shown that robust solutions
outperform deterministic solutions in terms of different
robustness criteria such as quantiles, expectation, worst-
case, and standard deviation values. However, in a con-
strained optimization problem, it is recommended to use
the worst-case as a constraint and not as an objective. In
a real problem like a production factory, the worst-case,
which is very conservative, is replaced by a quantile. Such
formulation allows increasing the average performance of
a batch of prototypes for example, while ensuring that only
a small percentage of them would not respect the defined
requirements.

The aforementioned aspects show the importance of
developing and applying new optimization techniques to
electrical machines when dealing with uncertainties.
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