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Abstract

Deep clustering is an approach that uses deep learning to cluster data, since it involves training a neural
network model to become familiar with a data representation that is suitable for clustering. Deep clustering
has been applied to a wide range of data types, including images, texts, time series and has the advantage of
being able to automatically learn features from the data, which can be more effective than using hand-crafted
features. It is also able to handle high-dimensional data, such as time series with many variables, which can be
challenging for traditional clustering techniques. In this paper, we introduce a novel deep neural network type
to improve the performance of the auto-encoder part by ignoring the unnecessary extra-noises and labelling
the input data. Our approach is helpful when just a limited amount of labelled data is available, but labelling
a big amount of data would be costly or time-consuming. It also applies for the data in high-dimensional and
difficult to define a good set of features for clustering.
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1. Introduction
Clustering for time series is always an interesting
and challenging problem for several main reasons
[2]. While the most popular time series data types
are univariate, multivariate, or tensor fields, the time
sequence data’s high dimensionality and irregular
lengths present numerous difficulties for the conven-
tional clustering techniques in actual use [1]. For con-
ventional approaches, the partition-based methods or
density-based methods are often used in many fields for
their simpleness, but they are also appeared the weak-
nesses [15]. For example, the hierarchical agglomerate
clustering (HAC) method often raise drawbacks such as
the ambiguity in determining the final cluster number

∗This research is done by a finanical aid from Analgesia Institut.
Address: 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
†Corresponding author. duc_trung.hoang@uca.fr

and the difficulty in selecting a suitable distance metric
when merging two clusters. On the other hand, using
the clustering for the time series with k-means methods
also raise some disadvantages, such as the imprecision
of silhouette analysis score or the difficulty to determine
the values of k. Furthermore, the "mean" of time series
with different length could not be well-defined, and
the assumptions on k-means often require the following
conditions:

• Considering the dataset’s balanced cluster size.

• Taking into account the fact that features within a
cluster are independent and have equal variance.

• Hypothesizing on the similar density of available
clusters.

Instead of using the central grouping methods,
the graph-based clustering method such as the
spectral clustering is introduced here. A first approach
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for clustering the time series, based on spectral
decomposition of the affinity matrix and then a low-
dimensional space k-means clustering, could be found
in the works of [3, 35]. The spectral clustering is not
only be able to dual with the high dimensionality of
arbitrary length time series, but also can determine
automatically the optimal cluster number and self-tune
the variance of the Gaussian kernel. Moreover, Wang
et al.’s work [35] provides theoretical support for
the feasibility of our approach. For a large-scale and
high-dimensional data, we refer the spectral clustering
based on iterative optimization method of Zhao et al
[34]. A set of clustering techniques known as "deep
clustering" uses deep neural networks to develop
representations that are conducive to clustering. The
last decade observes the use of deep learning for
the clustering problem as a potentially new research
trends in this domain because of its ability to capture
the non-linearity in the data representations. The
most well-known neural network architectures are
considered as the fully-connected neural network
(FCN), the convolutional neural network (CNN),
the deep belief network (DBN), the autoencoder
(AE), and the generative adversarial net work (GAN)
[27]. Without using neural network, the classical
representations methods such as principal component
analysis (PCA), multidimensional scaling (MDS),
discrete Fourier transform (DFT), or discrete wavelet
transform (DWT) often reduce the form of dimension to
get better loss function and achieve the higher accuracy
of clustering. In [31], the authors investigate on a deep
learning approach for approximate spectral clustering
called "SpectralNet". This is a very first beginning
neural network model to linearize the input data,
then applying directly the spectral clustering for the
encoding part. However, this model does not introduce
better methods to improve the data representations and
enhance the overall loss functions. Other several deep
clustering models could be found in [1, 27]. The deep
clustering convolution neural network for image data
such as the DAE or DCAE model could be found in the
work of Huang et al [20] and Guo et al [17]. Recently,
there are some interesting methods to enhance the
representation methods in the encoding parts such as
the self-organizing map (SOM), the growing neural
gas (GNG), and the generative adversarial networks
(GANs). In the case of missing data, a CRLI model is
proposed by Ma et el with jointly optimization methods
on two parallel branches [24]. There are some deep
clustering model proposed in the specific context of
time series, such as the deep temporal clustering (DTC)
[26] and the deep temporal clustering representation
(DTCR) [23].

Motivated by the existing approaches, we propose
an improved spectral clustering based on bidirectional

dilated recurrent neural networks, namely DSTR, for
large-scale and high-dimensional time series data.
Even though an outcome variable exists or some
basic information regarding the clusters is available
in many circumstances, one may still wish to run a
cluster analysis. Using another approach from [23], we
employ a novel model that extends conventional cross
entropy minimization to an ideal transport problem
by maximizing the information between labels and
input data indices. In reality, clustering after using
latent representation via the neural network is an
unsupervised task that may lead to enhance the model’s
complexity and may give the trivial solutions [32].
To increase the information between data indices and
labels, we add the restriction that the labels must induce
an equi-partition of the data. This appears to transform
the task into a semi-unsupervised problem.

2. State of the art
Problem statement : Considering the time series
X = {xi}Mi=1 = {x1, x2, ..., xM }. Each time series has
the same lengths d, i.e: xi = [xi,1, xi,2, ..., xi,d] for
all i ∈ [1,M], and that leads to a data matrix
A = [x1, x2, ..., xM ]. The goal of our problem is to
cluster the set X into a finite partition C = {C1, ..., Ck}
of k clusters in a way that maximizes the similarity
between objects within a cluster while minimizing the
dissimilarity between objects in different clusters. Then
Ci is called a cluster where A = ∪Mi=1Ci and Ci ∩ Cj = ∅
for all i , j. Lets us denote X be the pairwise constraint
matrix and F be the function that map the set X into k
clusters, then the map result is resulted by C. The most
representative approaches for the classical problem
of time series clustering could be classified into the
following main categories: hierarchical based method
that agglomerate each item and merge the clusters
from the bottom-up, partitioning based method that
decompose a data set into a set of disjoint clusters from
unlabeled objects such that each cluster contain at least
one element, model-based method that recover the
original model from a set of data and could fit the data
well, density-based method, grid-based method, and
multistep method.

Deep clustering is a machine learning technique that
combines unsupervised learning (e.g., clustering) with
deep learning. It is often used to learn meaningful
representations of data in an unsupervised manner, and
it can be implemented using any of the aforementioned
architectures. In practice, the taxonomy function R
contains two modules: the representation module
and the clustering module, which play central roles
in modern deep clustering. Normally, we have the
following four kinds of deep clustering problem:

• The one view deep clustering problem:R(X)→ C.
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• The partially supervised deep clustering problem:
R(X,X )→ C.

• The multi view deep clustering problem:
R(X1, ...,Xn) → C where Xi be the ith view of
X.

• The domain adaptation deep clustering problem:
R(Xi ,Xi ,Xj ) → C where (Xi ,Xi) be the identified
source and Xj be the target domain without labels.

When performing traditional clustering tasks, it
is frequently believed that all of the data are one
view or simple modal, which have the same shape
and structure. There are five different types of one
view deep clustering algorithms: the DAE, the DNN,
the VAE, the GAN, and the GNN types [42]. When
the data to be processed only include a tiny amount
of prior restrictions, standard clustering techniques
cannot effectively use the prior information [42]. The
multi-view deep clustering uses the consistent and
supplementary information present in multi view
data, incorporating these frameworks with DEC type,
subspace clustering-based, and GNN type, to enhance
clustering performance [42]. The approaches for deep
clustering based on transfer learning such as DNN
type or GAN type aim to improve the effectiveness
of existing clustering tasks using data from pertinent
tasks [42].

Model-based approaches: The most well-known
architectures for the deep clustering are Fully Con-
nected Neural Network (FCNN), Convolution Neural
Network (CNN), and Recurrent Neural Network (RNN)
[1]:

• FCNNs are a type of feedforward neural network
that consists of layers of interconnected "neu-
rons," where every neuron in one layer is coupled
to every neuron in the following layer. FCNNs are
generally used for tasks that involve input data
with a fixed-size feature vector, such as image
classification or regression.

• CNNs, a particular type of neural network, are
particularly well suited for the tasks requiring
data with a spatial structure, such those involving
images. CNNs are composed of layers of con-
volutional filters, which are used to learn local
patterns in the data, as well as pooling layers,
which are used to reduce the spatial resolution
of the data and increase the network’s ability to
generalize.

• RNNs are a particular kind of neural network
that function well for tasks that need sequential
data, including time series forecasting or natural
language processing. RNNs are composed of

"recurrent" units, which allow the network
to process data with an arbitrary length by
maintaining a hidden state that is updated at each
time step.

The FCNN architectures could be considered as Deep
Embedded Clustering (DEC) (see Xie et al. [32]) and
Improved Deep Embedded Clustering (IDEC) (see Guo
et al. [18]). Meanwhile, the loss function is referred
to the deep clustering model’s optimization objective.
While the DEC model propose a unique clustering loss,
namely Kullback-Leibler (KL) divergence, the IDEC
generalize it by adding a reconstruction in the total
loss function L = λLnetwork + (1 − λ)Lclustering where λ ∈
[0, 1]. The total loss function for the IDEC model is a
weighted sum of the network loss and the clustering
loss, where the weighting factor λ determines the
relative importance of each term. When λ = 0, the
model is equivalent to the DEC model, and when λ = 1,
the model is equivalent to an autoencoder. By varying
λ, it is possible to trade off the reconstruction error for
the clustering quality, or vice versa. There are several
variations of the IDEC model that have been proposed
in the literature. Some examples include:

• The Structural Deep Clustering Network (SDCN),
which incorporates structural information into
the clustering process by adding a graph convo-
lutional layer to the IDEC model (see Bo et al [6]).

• The Deep Embedded Regularized Clustering
(DEPICT) model, which adds a regularization
term to the overall loss function of the IDEC
model to encourage the latent representation to be
smooth and continuous (see Dizaji et al [13]).

• The Deep Clustering Network (DCN), which
extends the IDEC model by adding a deep
autoencoder to the network architecture and
using a new clustering loss function based on the
minimum entropy principle (see Yang et al [38]).

• The Deep Adaptive Image Clustering (DAIC)
model, which combines the IDEC model with
an adversarial learning framework to improve
the robustness and generalization of the learned
representations (see Chang et al [8]).

• The Deep Clustering with Convolutional Autoen-
coder (DCCAE) model, which uses a convolu-
tional autoencoder as the encoder-decoder com-
ponent of the IDEC model, and a new clustering
loss function based on the maximum mean dis-
crepancy (MMD) criterion (see Guo et al [18]).

There are many well-known configurations of
convolutional neural networks (CNNs) that have been
proposed in the literature. Some examples include:
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• LeNet: a classic CNN architecture that includes
a number of convolutional and pooling layers,
followed by a small number of fully linked
layers. LeNet was among the first CNNs to be
utilized successfully for tasks like handwritten
digit recognition (see Lecun et al [11]).

• AlexNet: a CNN architecture with three fully
linked layers and five convolutional layers, and
it was the first time that CNN has triumphed
in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) (see Krizhevsky et al [21]).

• VGG: A number of convolutional layers precede
a few fully linked layers in the architecture, and
it is known for its good performance on image
classification tasks (see Simonyan et al [29]).

• ResNet: a CNN architecture that was introduced
by Wang et al. in their paper "Deep Residual
Learning for Image Recognition." It consists of
a series of residual blocks, which are composed
of convolutional layers and shortcut connections,
and it is known for its ability to train very deep
networks without suffering from the vanishing
gradient problem. (see Wang et al [36]).

• Dilated convolutional neural networks (DCNN):
a type of CNN that use "dilated" convolutions,
which have a larger effective receptive field than
standard convolutions. Dilated convolutions can
be used to increase the context captured by
the network without increasing the number of
parameters or the computational cost, and they
have been shown to be effective in tasks such as
semantic segmentation and image restoration (see
Franceschi et al [16]).

For the recurrent neural network, we have more
configurations such as the Deep Temporal Clustering
(DTC) (see Madiraju et al [26]), the Bidirectional Long
Short Term Memory (BLSTM), the Bidirectional Gate
Recurrent Unit (BGRU), the Dilated Recurrent Neural
Network (see Ma et al. [23]).

There are many different configurations of recurrent
neural networks (RNNs) that have been proposed in the
literature. Some examples include:

• Deep Temporal Clustering (DTC): a RNN archi-
tecture that was introduced by Madiraju et al.
in their paper "Deep Temporal Clustering: Unsu-
pervised Learning of Temporal Patterns." It is
designed for unsupervised learning of temporal
patterns in data, and it consists of a RNN encoder
and a clustering layer (see Madiraju et al [26]).

• Bidirectional Long Short Term Memory (BLSTM):
an RNN design made up of long short term

memory (LSTM) units coupled in a "bidirectional"
fashion. This means that the network processes
the data in both forward and backward directions,
which allows it to capture contextual information
from both the past and the future. BLSTMs are
often used for tasks involving sequential data,
such as natural language processing (see Yulita et
al [39]).

• Bidirectional Gated Recurrent Unit (BGRU): a
RNN architecture that is similar to BLSTM, but
it uses gated recurrent units (GRUs) instead
of LSTM units. GRUs are a simpler variant
of LSTMs that have fewer parameters and are
easier to train. BGRUs are often used for
tasks involving sequential data, such as natural
language processing (see Sammani et al [28]).

• Dilated Recurrent Neural Network (DRNN): a
type of RNN architecture, used as "dilated"
recurrent units, which have a larger effective
receptive field than standard recurrent units.
Dilated recurrent units could be used to increase
the context captured by the network without
increasing the number of parameters or the
computational cost, and they have been shown
to be effective in tasks such as natural language
processing and machine translation (see Chang et
al. [8]).

• Variational recurrent neural networks (VRNNs):
a type of recurrent neural network (RNN)
that combines an RNN architecture with a
probabilistic model. Indeed, it could be used to
learn latent representations of a sequential data
such as the natural language or time series data
(see Chien et al [9]).

The representation module: Recently, the use of
deep learning technique for representation learning
problems, especially the unsupervised ones, raise the
new trends for this research area. However, the majority
of approaches now in use are not specifically intended
for clustering tasks, and they are therefore unable to
incorporate possible clustering information to learn
improved representations [20]. There are several
unsupervised techniques in representative theory such
as the clustering friendly, auto encoder, subspace, deep
generative, mutual information maximization, and the
contractive representation learning [42]. The data used
for representation learning could be various types of
the aforementioned architectures such as images, texts,
videos, or graphs [42].

Auto-Encoder based: The representation of time
series obtained from deep neural network is called an
encoder. For different data formats, such as the vectors,
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the images, the graphs, or the videos, the general
structure of the auto-encoder can be changed.

Generative model based: The generative model is
a further branch of deep unsupervised representation
learning, which seek to provide fresh data samples like
a training dataset. By reversibly deducing the posterior
of the representation p(h|x) from the data, generative
approaches presume that the data x were produced
from a latent representation h. There are many
different types of generative models, ranging from
simple models such as the Gaussian mixture model to
more complex models such as generative adversarial
networks (GANs) [22]. Deep generative models,
which are implemented using deep neural networks,
have gained a lot of popularity in recent years due
to their ability to learn complex, high-dimensional
distributions and generate high-quality synthetic data
[14]. Among these, variational auto-encoder (VAE) is
the most used technique, and the VAE-based deep
clustering algorithms aim at solving an optimization
problem about evidence lower bound (ELBO) on
the data likelihood LELBO = Ep(h|x)

[
log p(x,h)

q(h|x)

]
. In this

expression, p(x, h) is the true joint distribution over
observed variables x and latent variables h, and q(h|x)
is the approximating distribution, also known as the
variational distribution. The term Ep(h|x) represents the
expectation with respect to the posterior distribution
p(h|x).

Mutual Information: Adopting in unsupervised
learning, the mutual information is used for the
discrete variables or known probability distribution to
measure of the amount of information that one random
variable contains about another. It is defined as the
expected value of the logarithm of the ratio of the
joint probability distribution of the two variables to the
product of their individual probability distributions.
The mutual information I (U,V ) is introduced to
measure the dependence between two random variables
U and V .

I (U,V ) =
∫

log
dPUV

dPU ⊗ dPV
dPUV

where PUV be the joint distribution, PU =
∫
V
dPUV ,

PY =
∫
U
dPUV , and PU ⊗ PV are the individual proba-

bility distributions of U and V , respectively. To remind,
the work of Hjelm et al. [19] introduced the efficiency of
representation learning through deep neural network
encoders that maximize mutual information between
input and output. Considering a discriminator function
D modeled by a neural network, the Jensen-Shannon
divergence is a popular mutual information estimate
method:

IJSD (X,H) = EPXH
[−log(1 + exp(−D(x, h))]

−EPX×PX
[log(1 + exp(D(x, h))]

In [37], the authors introduce the mutual information
I (X,H, θ) between the input X and the features H with
an encoder parameter θ to provide more discriminative
information from the inputs such that the learned latent
representations could be more robust to noise. Using
the Jensen–Shannon divergence estimation, the authors
maximize the term I (X,H, θ) as much as possible when
training the encoder network.
Similarity measure: The choice of distance measure

directly affect the clustering performance. Let’s
consider dist(xi , xj ) be the sum of distance between two
time series xi and xj . i.e: dist(xi , xj ) =

∑d
t=1 dist(xi,t , xi,t).

Considering the Steiner sequence of time series Rj
that minimize the distance sum between time series
observation and cluster prototype and the average
distance:

E(Ci , Rj ) =
1
n

n∑
m=1

dist(Fm, Rj ), Ci = {F1, F2, .., Fn}

This expression is a formula for the average distance
between a set of feature vectors F1, F2, ..., Fn and
a reference vector Rj . Here, Ci represents the set of
feature vectors, and E(Ci , Rj ) is the average distance
between the feature vectors and the reference vector.
In a clustering context, the reference vector might
represent the centroid of a cluster, and the average
distance could be used as a measure of the compactness
of the cluster. In practice, the most familiar metrics
are the Euclidean distance, the dynamic time warping
(DTW), the Hausdorff distance and the shape-based
distance.

3. Model architecture
In this paper, we introduce a new kind of deep neural
network that consist of three kinds of loss consisting
the principal network loss, the classification loss and
the auxiliary clustering loss. The deep embedding
clustering (DEC) [32] is considered as the first model
to propose the clustering loss, namely Kullback-
Leibler (KL) divergence. After that, the improved deep
embedded clustering (IDEC) [18] generalize the DEC
model by adding a reconstruction in the total loss
function:

L = λLnetwork + (1 − λ)Lclustering

In the paper of [23], the authors introduce a binary
classification loss that distinguish the real and fake time
series data. In details, this model consist around 20%
extra-data from the input as the noises, then try to use
a soft-max formula to classify the data after encoding.
However, the authors do not model well the noise for
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Figure 1. The general architecture design for deep clustering
network.

the information of its probability distributions in deep
neural network, and that could be make the model loss
the regularization. Also, this mutual information is not
well estimated with current loss function. Our plan is
to employ some semi-supervised clustering algorithms
(or occasionally supervised clustering methods) that
can be used with partially labelled data or data
that contains other kinds of outcome metrics. By
proposing the new architecture when eliminating the
excess noise that is superfluous and labeling the input
data, we increase the performance of the auto-encoder
component, as well as giving the new the classification
losses. In practice, learning from labelled data could
give easier implements and dramatically reduce the
cost of deploying algorithms. In fact, we require the
labels the data to train the network, and we require the
network to predict the labels of the outcome. We use the
dilated recurrent neural network (DRNN) proposed by
Chang et al [8] that could reduce the number of network
parameters and improve the training efficiency. Overall,
the total loss of deep neural network model could be
considered as:

Loverall = λLnetwork + γLclassification + (1 − λ − γ)Lclustering

In the case of γ = 0, our model is collapse to the IDEC
architecture [18].

3.1. Labelling data via spectral clustering
At the beginning, we try to assign pseudo-labels for
each element in the original data set A. By using the
spectral clustering, one could categorize the data into
the eigenspace associated to the Laplacian matrix. In
fact, the whole data set could be viewed as a graph
with each node as an observation and edges as the
similarity. The goal of the clustering problem is to
divide the graph into smaller parts so that edges within
each subcomponent have a high degree of similarity
and edges across subcomponents have a low degree of
similarity. Such partitions can be obtained by solving

the mincut problem. Let’s define the weight function
w : Rd × Rd −→ (0,+∞). The loss function of spectral
clustering is defined as:

Lspectral =
1
m2

∑
i,j=1

e
−
d(xi ,xj )

2σ2 ∥xi − xj∥2 (1)

where d(x, y) be a Gaussian type of the distance
metric between two vectors x and y, σ be the scaling
parameter, and m be the sample mini-batch of at each
iteration. In our case, we choose the dynamic time
warping distance (DTW) as the metric. According to [3],
the processes of spectral clustering are given as:

• Construct an affinity matrix W ∈ RM×M in which
its diagonal elements are set to be zero while

others elementsWij = e
−
d(xi ,xj )

2σ2 .

• Construct a diagonal matrix K of size m ×m such
that the ith row’s diagonal element contains Ki,i =∑

jWi,j , then a normalized Laplacian matrix could
be used as L = K−1/2(K −W )K−1/2.

• Creating an orthogonal matrix O consisting the k
largest eigenvectors of L, then normalizing O to
have unit length for each row.

• Clustering every row of O into k clusters, then
labeling the point xi into cluster j if and only if
the row i of O is belong to cluster j.

3.2. Clustering via latent representation
We define a non-linear mapping Φenc(θ) : xi → hi that
define the latent representation for encoding (AE-
based) i.e: f (xi , θ) = hi ∈ Rh where h < d. The new space
created by the map Φenc(θ) is called the latent space, in
opposition to the original data space. Let’s us denote
the latent representation as H(θ) = [h1, h2, ..., hM ] =
[Φ(x1, θ),Φ(x2, θ), ...,Φ(xM , θ)] and E is a permutation
matrix of size k, then HE = [H1, H2, ..., Hk] represent a
clustering process into k different groups where the i-th
cluster is defined as:

Hi(θ) = [Φ(xi1, θ),Φ(xi2, θ), ...,Φ(xisi , θ)] and

Card(Hi(θ)) = si .

We denote m as the sample means of the latent
representation i.e m(θ) = 1

M

∑M
i=1 Φ(xi , θ), and for each

i ∈ [1, k], denoting the mean vector of the i-th cluster
as mi(θ) = 1

si

∑si
j=1 Φ(xij , θ). The total within-cluster

scatter matrix (Totalwsm) and the total between-cluster
scatter matrix (Totalbsm) for the encoding part could be
considered as:

Totalwsm(θ) =
k∑

i=1

∑
sj∈i
∥Φ(xsj , θ) −mi(θ)∥2 and
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Totalbsm(θ) =
k∑

i=1

sk∥mi(θ) −m(θ)∥2

According to [35], the total-data scatter matrix
(Totaldsm) is not depended on the number of the cluster.
In fact:

Totaldsm(θ) = Totalwsm(θ) + Totalbsm(θ)

=
M∑
i=1

∥Φ(xi , θ) −mi(θ)∥2
(2)

To obtain high and low between cluster similarity, we
should decrease trace (Totalwsm(θ)) and inscrease trace
(Totalbsm(θ)).. Noting that the minimization of trace
(Totalwsm) and maximization of trace (Totalbsm) are two
equivalent problems. We have:

Trace
(
Totalwsm(θ)

)
= Trace

(∑k
i=1

∑
sj∈i

(
∥Φ(xsj , θ)∥2 + ∥mi(θ)∥2 −

2Φ(xsj , θ)mi(θ)T
))

= Trace
(∑k

i=1(Hi(θ)HT
i (θ) − 1

si
Hi(θ)eie

T
i Hi(θ)T )

)
= Trace

(
(H(θ)HT (θ)

)
− Trace

(
QTHT (θ)H(θ)Q

)
(3)

where ei ∈ Rsi be the vector of values 1 for ∀i, and
Q be the block-diagonal orthogonal matrix i.e QTQ =

I . The solution of the problem min
θ

Trace
(
Totalwsm(θ)

)
could be found in the theorem of KyFan [33].

3.3. Reconstruct loss
If we define the non-linear decoding mapping Ψdec(θ′) :
hi → x̂i ∈ RM i.e Ψdec(hi , θ′) = x̂i , then the loss function
in the reconstructing phase should be considered in L2-
norm, i.e the mean square error.

Lreconstruction =
1
M

M∑
i=1

∥xi − x̂i∥22

=
1
M

M∑
i=1

∥Φ−1
enc(hi , θ) − Ψdec(hi , θ)∥22

(4)

The optimization problem for the reconstruction loss
could be viewed as min

θ,θ′
Lreconstruction.

3.4. Multi-class classification loss
In this section, we want to utilize an appropriate
classification model to reduce the cost between
calculating assignments and labels learned by deep
neural networks. Defining a classification head h :
Rd → Rk , which transform the feature vector into a
class score vector. Denoting the set {ℓ1, ℓ2, ..., ℓM } ∈
{1, 2, ..., k} be the pre-assigned labels. The class score
is given to class probabilities via softmax operator as
p(ℓ = .|) = softmax(h ◦ Φ(xi , θ)). therefore, the loss for
minimizing the average cross entropy is given as:

E(p|x1, x2, ..., xM ) = − 1
M

M∑
i=1

log p(xi |Φ(xi , θ)) (5)

If the posterior distribution q(x|Φ(xi , θ)) is set to be
deterministic, then another way to express this equation
is:

Lclassification = E(p(θ), q(θ))

= − 1
M

M∑
i=1

k∑
j=1

q(x|Φ(xi , θ))log p(x|Φ(xi , θ))

(6)

If we assume more that each label is assigned
uniformly, and each data point can take only one label,
then the optimization problem for the above formula
with constraints becomes:
θE(p(θ), q(θ))q(x|Φ(xi , θ)∈ {0, 1}

∑M
i=1 q(x|Φ(xi , θ)= M

k .
The above problem could be viewed as the form of

optimal transport problem with binary constraints. The
first constraint specifies that the function q(x|Φ(xi , θ)),
often used in optimization problems with binary
variables, must take on only the values 0 and 1.
The second constraint specifies that the sum of the
function q(x|Φ(xi , θ)) over all M data points must
equal M

k . This constraint is often used in optimization
problems with a balance condition, where the sum
of the variables must be a certain value. There are
several optimization strategies that can be used to
tackle this problem, including gradient descent and
the primal-dual interior point method. The specific
algorithm used will depend on the characteristics of
the objective function and the constraints, as well as
the desired accuracy and computational efficiency. The
above problem that could be solved in linear time by
using a variety of optimization algorithms, such as
gradient descent or a primal-dual interior point method
[4].

4. Experiment Results
We consider around 10 sample data sets that extracted
from UCR time series database [12]. There is a standard
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train/test split for each data set. The statistics of the
benchmark time series datasets could be found in
the appendix section. In fact, we will compare our
results to those of DTCR model and the K means
methods. The hidden size of the encoder part is
[100, 50, 50], while the regularization coefficient λ is
chosen in the set {1, 1e − 1, 1e − 2, 1e − 3}. The following
table indicates the improving performance during the
learning process of our deep spectral clustering model,
and we also compare it to the DTCR model in [23]. The
recorded results are extracted from the epochs 0, 30
and 50 respectively. The experiment is taken 5 times
consecutively, and we just consider the average values
overall.
Model evaluation: Metrics for assessing clustering
output may be external or internal. For the external
measure, we refer the the Rand Index (RI), Adjusted
Rand Index (ARI), Adjusted Mutual Information (AMI),
Fowlkes Mallows index (FMS), Homogeneity, and
Completeness.

• Rand Index: The RI index refers to the simi-
larities between the partitions of the clustering
algorithms and the data set underlying structure.

RI =
TP + TN
n(n − 1)/2

• Adjusted Rand Index: The ARI index is a variant
of the Rand Index (RI), which count the number of
point pairings that are either in the same cluster
or different clusters in both clusterings.

ARI =
RI + Expected(RI)

Max(RI) − Expected(RI)

• Normalized Mutual Information : The NMI
index measure of the mutual dependence between
two random variables. It is a standardized version
of the mutual information, which measures how
much knowledge one random variable has about
another.

NMI =

∑
i=1

∑
j=1 Nij log(

N.Nij

|Gi ||Aj |
)√

(
∑

i=1 |Gi |log |Gi |
N )(

∑M
j=1 |Aj |log

Aj

N )

For the internal measure, we could consider the
Davies–Bouldin index, Calinski–Harabasz index, Sil-
houette score, the I-index, and sum of square errors
(SSE).

• Calinski–Harabasz index: The CH index mea-
sures how compact the clusters are by calculating
the distances between the points and centroids of
each cluster.

Let’s denote µk = 1
|Ik |

∑
i∈Ik x

i be the average point of the

group k, and µ = 1
N

∑N
i=1 x

i be the center of the data set.
The Calinski-Harabasz Index is introduced as

CHI =
(N − K)B

(K − 1)
∑K

k=1 Wk

• Davies–Bouldin index: The DB index measures
the average similarity between any two clusters
and their nearest neighbors.

where B be the intergroup variance of formula
B =

∑M
i=1 |Ii |||µi −mu||2 and Wi =

∑
k∈Ii be the

intragroup variance. Moreover, let us defining
γ̄i = 1

|I |i
∑

k∈Ii d(xk , µi) be the average distance between
each point of the set Ii to its groups center, the
Davies-Bouldin Index is defined as:

DBI =
1
M

M∑
i=1

maxi′,i
( γ̄i + γ̄i′

d(µi , mui′ )

)
We list all the RI and NMI comparing results for all 36

times series data sets between DSTR and DTCR model
as the following:

Table 1. The RI comparisons during the epochs 0, 30 and 50.

Dataset DSTR DTCR
Arrow 0.5429 /0.5698 /0.5698 0.4126 /0.4952/ 0.5717
Beef 0.5816 /0.6299 /0.6299 0.4828 /0.5942 /0.6778

Beetle.Fly 0.5579 /0.5579 /0.5589 0.5403 /0.6639/ 0.7640
Bird.Chicken 0.4789 /0.4789 /0.4789 0.4876 /0.5980 /0.6870

Car 0.6487 /0.6627 /0.6362 0.4503 /0.5532 /0.6235
ChlorineConcentration 0.5284 /0.5324 /0.5313 0.3216 /0.3996 /0.4632

Coffee 0.4814 /0.5238 /0.5476 0.5600 /0.6605 /0.7665
DiatomsizeReduction 0.7000 /0.7250 /0.7833 0.5837 /0.7059 /0.8235
Distphaloutl.agegroup 0.7579 /0.7642 /0.7589 0.4701 /0.5801 /0.6614

Distphaloutl.correct 0.5076 /0.5014 /0.5068 0.3658 /0.4526 /0.5118
ECG 200 0.5404/ 0.5604/ 0.5604 0.3987/ 0.4962/ 0.5557

ECGFiveDays 0.5968/ 0.5257/ 0.5573 0.5783/ 0.7029/ 0.8035
GunPoint 0.4931/ 0.4931/ 0.6278 0.3839/ 0.4712/ 0.5342

Ham 0.5005/ 0.4964/ 0.4964 0.3222/ 0.3961/ 0.4582
Herring 0.5000/ 0.5417/ 0.5417 0.3459/ 0.4191/ 0.4869

Lighting2 0.5277/ 0.6023/ 0.5729 0.3555/ 0.4284/ 0.4900
Meat 0.7644/ 0.6740/ 0.6870 0.5863/ 0.7254/ 0.8190

Mid.phal.outl.agegroup 0.7862/ 0.5882/ 0.6014 0.4792/ 0.5763/ 0.6508
Mid.phal.outl.correct 0.4999/ 0.5090/ 0.5095 0.3369/ 0.4110/ 0.4837

Mid.phal.TW 0.7742/ 0.8037/ 0.8507 0.5183/ 0.6316/ 0.7195
Mote.Strain 0.4737/ 0.4947/ 0.4947 0.4611/ 0.5605/ 0.6492
OSU.Leaf 0.5634/ 0.5878/ 0.6779 0.4645/ 0.5747/ 0.6628

Plane 0.8982/ 0.8668/ 0.8985 0.5752/ 0.7034/ 0.8019
Proxphaloutl.ageGroup 0.7659/ 0.7473 / 0.7441 0.4895/ 0.5895/ 0.6641

ProxphalTW 0.7980/ 0.8046/ 0.8457 0.5416/ 0.6594/ 0.7607
SonyAIBORobotSurface 0.6053/ 0.6053/ 0.6053 0.5264/ 0.6391/ 0.7238

SonyAIBORobotSurfaceII 0.4872/ 0.5385/ 0.6011 0.5015/ 0.6269/ 0.7025
SwedishLeaf 0.5933/ 0.7279/ 0.8892 0.5570/ 0.6731/ 0.7699

Symbols 0.8400/ 0.8100/ 0.8433 0.5520/ 0.6723/ 0.7808
TwoSegmentation1 0.4923/ 0.4923/ 0.5192 0.3396/ 0.4145/ 0.4736
TwoSegmentation2 0.5111/ 0.4921/ 0.4921 0.4988/ 0.6084/ 0.7065

TwoPatterns 0.5534/ 0.6423/ 0.6772 0.4210/ 0.5099/ 0.5987
TwoLead.ECG 0.5573/ 0.4783/ 0.5573 0.4279/ 0.5059/ 0.5814

Wafer 0.4899/ 0.5677/ 0.6881 0.4420/ 0.5314/ 0.6085
Wine 0.5038/ 0.5038/ 0.5038 0.3779/ 0.4589/ 0.5330

WordsSynonyms 0.5561/ 0.6672/ 0.7772 0.5406/ 0.6582/ 0.7572
Overall Average 0.5740 /0.6046 /0.6339 0.4638 /0.5652/ 0.6080

5. Conclusions
In this paper, we introduce a new method for spec-
tral clustering data using deep learning techniques. It
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Table 2. The NMI comparisons during the epochs 0, 30, and 50.

Dataset DSTR DTCR
Arrow 0.2865 /0.1804 /0.1804 0.3317 /0.4119 /0.4687
Beef 0.2001 /0.3060 /0.4933 0.3371 /0.4025 /0.4650

Beetle.Fly 0.1263 /0.1263 /0.1263 0.4566 /0.5640 /0.6436
Bird.Chicken 0.0107 /0.0107 /0.0371 0.3189 /0.3911 /0.4483

Car 0.1723 /0.1419 /0.1776 0.3023 /0.3676 /0.4244
ChlorineConcentration 0.5284 /0.5324 /0.5313 0.0279 /0.0333 /0.0385

Coffee 0.5283 /0.5283 /0.5476 0.4892 /0.6055 /0.7098
DiatomsizeReduction 0.7000 /0.7250 /0.7833 0.5666 /0.6864/ 0.7810
Distphaloutl.agegroup 0.7579 /0.7642 /0.7589 0.2730 /0.3379 /0.3870

Distphaloutl.correct 0.5076 /0.5014 /0.5068 0.0707 /0.0851 /0.0973
ECG 200 0.6564/ 0.7545/ 0.7922 0.2218/ 0.2679/ 0.3121

ECGFiveDays 0.7742/ 0.7778/ 0.8024 0.4856/ 0.5874/ 0.6802
GunPoint 0.0633/ 0.0642/ 0.0645 0.2526/ 0.3137/ 0.3562

Ham 0.0664/ 0.0792/ 0.0912 0.0592/ 0.0730/ 0.0831
Herring 0.1134/ 0.1783/ 0.1965 0.1354/ 0.1690/ 0.1965

Lighting2 0.1267/ 0.1545/ 0.1667 0.1375/ 0.1640/ 0.1923
Meat 0.0576/ 0.0698/ 0.0789 0.5797/ 0.7145/ 0.8185

Mid.phal.outl.agegroup 0.3231/ 0.3756/ 0.3878 0.2799/ 0.3474/ 0.4034
Mid.phal.outl.correct 0.0770/ 0.0923/ 0.0943 0.0689/ 0.0841/ 0.0954

Mid.phal.TW 0.0243/ 0.0345/ 0.0377 0.3303/ 0.3965/ 0.4597
Mote.Strain 0.4467/ 0.4998/ 0.5192 0.2459/ 0.3009/ 0.3458
OSU.Leaf 0.1334/ 0.1855/ 0.2550 0.1563/ 0.1969/ 0.2235

Plane 0.7664/ 0.8110/ 0.9354 0.5585/ 0.7019/ 0.8039
Proxphaloutl.ageGroup 0.0442/ 0.0534/ 0.0632 0.3450/ 0.4256/ 0.4753

ProxphalTW 0.4536/ 0.6192/ 0.7453 0.4186/ 0.5151/ 0.5885
SonyAIBORobotSurface 0.4738/ 0.5534/ 0.6635 0.4597/ 0.5627/ 0.6562

SonyAIBORobotSurfaceII 0.4175/ 0.4999/ 0.5634 0.3699/ 0.4574/ 0.5243
SwedishLeaf 0.4673/ 0.5362/ 0.6183 0.4017/ 0.5034/ 0.5753

Symbols 0.0652/ 0.6789/ 0.7144 0.5395/ 0.6656/ 0.7470
TwoSegmentation1 0.2032/ 0.2654/ 0.3183 0.1869/ 0.2338/ 0.2633
TwoSegmentation2 0.2012/ 0.2486/ 0.3143 0.2340/ 0.2841/ 0.3243

TwoPatterns 0.2165/ 0.2976/ 0.3232 0.2836/ 0.3470/ 0.3992
TwoLead.ECG 0.3562/ 0.3981/ 0.4682 0.2770/ 0.3419/ 0.3883

Wafer 0.7680/ 0.8611/ 0.8785 0.0135/ 0.0163/ 0.0186
Wine 0.1895/ 0.2461/ 0.2879 0.1732/ 0.2199/ 0.2458

WordsSynonyms 0.3162/ 0.3782/ 0.4527 0.3271/ 0.3953/ 0.4593
Overall Average 0.3212 /0.3786 /0.4348 0.2977 /0.3659/ 0.4194

[]

[]

Figure 2. The model evaluation for beef data through the epochs:
(a) Rand Index curve, (b) Normalized Mutual Information curve.

entails utilizing spectral clustering on the learnt repre-
sentation to produce the final clusters after training a
neural network model to learn a representation of the

data that is appropriate for clustering. Deep spectral
clustering combines the ability of deep learning to
learn powerful feature representations from data with
the ability of spectral clustering to handle nonlinear
relationships in the data. It has been used with a variety
of data types, including texts, time series, and images.
Deep spectral clustering has the benefit of being able
to automatically extract features from the data, which
can be more efficient than doing it manually. Addition-
ally, it can handle high-dimensional data, which might
be difficult for conventional clustering approaches to
manage, such as photos with lots of pixels or texts
with lengthy word sequences. However, deep spectral
clustering also has some challenges, such as the need
for large amounts of labeled data for training and the
risk of overfitting if the model is too complex. It is
important to carefully select the model architecture
and the training procedures in order to achieve good
performance on the clustering task.
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