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Abstract. Random fields are becoming a mature tool sharing applications in many area of physics,
mechanics and geosciences. In the latter, it is commonly used under the name of geostatistics.
Continuous enrichment of geological/geostatistical models leads to manipulating hydrogeological
models characterized by many parameters or hyperparameters corresponding to statistical aggre-
gates that may be poorly estimated due to the scarcity of field data. Those parameters are gen-
erally support-scale-dependent and uncertain, so some inverse problem and uncertainty analysis
must be carried out in practical applications that involve generally some forward calculation for ex-
ample a fluid flow simulation if one in interested in transfers in the subsurface. Up scaling tech-
niques are still required to find and to restrict in a controlled manner the more relevant parame-
ters, allowing to lower the dimension of the parameter space. In the stochastic case, the interac-
tion between the conductivity spatial distribution and the flow pattern can lead to non trivial be-
haviours that will be discussed. Fractured media will not be considered. That note does not present
original results, but a selection of some potentially fruitful research avenues suggested by previous
works.

Keywords. Applied geosciences, Porous media, Disorder, Upscaling, Geostatistics, Quenched disor-
der.
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1. Introduction

The use of numerical models for studying subsur-
face flow has become common practice in hydrology
and petroleum engineering over the last 50 years [Re-
nard and De Marsily, 1997, De Marsily et al., 2005].
However, one of the major questions that still poses
a problem is that the data needed to build an accu-
rate model are incomplete in essence. Although con-
temporary computers are growing ever more power-
ful and capable of describing the relevant flows with
increasing details, the required input data growth im-
poses a major increase in computing facilities if one
wants to explore correctly the uncertain input pa-
rameter space in order to make the best decisions
[Gorell et al., 2001]. In many applied geosciences is-
sues, the basic concern is to recover, to store or to fol-

low some fluid, waste or even thermal energy in sub-
surface formations at good economical conditions,
while minimizing overall environmental risks. Most
of the associated transport processes occur in the
porosity of natural rocks, perhaps fractured, so study-
ing flow in porous media at several scales is a ma-
jor issue. In order to proceed, a concise macroscopic
description of flow in porous media encompassing
several scales without knowing the exact structure
of the subsurface at lower resolution scales must be
obtained.

Basically one wants to be able to estimate with
some accuracy the average value, as well as the as-
sociated variance of any simulated value of inter-
est. Knowledge of the full probability distribution is
in general not required, although knowing if the re-
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sulting distribution is approximately Gaussian or not
may be important. In the general case, when the
driving equations relating input data to output ob-
servables are strongly non-linear, extensive Monte-
Carlo sampling of the input parameter space is re-
quired to get estimations of these output statistical
quantities. A typical subsurface model is generally
described by some random fields of say porosity, per-
meability maps conditioned to several field obser-
vations, sedimentary layer shapes, aquifer positions,
etc. . . These random maps depend in turn on some
hyperparameters of statistical nature such as vari-
ance, drift, correlation scale: that is the aim of geo-
statistics that will be presented with more details in
Section 2.1. In addition, some man-controlled pa-
rameters such as the position of wells and the associ-
ated flow rates enter as input data in the model. For
applications, that influence of that set of parameters
may be sampled by simulation to select the best po-
sition and management of the wells.

Using such models, we are led to consider high di-
mensional parameter spaces, both for the random set
of natural data, and for the man-controlled parame-
ters. Consider a parameter space of N = 100 dimen-
sions, and by hypothesis, let us assume that each pa-
rameter can take only 2 values. An exhaustive explo-
ration of that parameter space will imply being able
to perform 2100 independent runs, that is clearly im-
possible even with hypothetical quantum comput-
ers. In addition, in current models, most param-
eters belong to some continuous interval, increas-
ing the effective dimensions of the parameter space.
So following any exhaustive approach is a dead end.
Many alternative sampling techniques were devel-
oped [Zhang, 2001]. Experimental design techniques
coupled with machine learning methods are being
developed [Scheidt et al., 2007, Santos Oliveira et al.,
2021, and references therein].

That implies that some systematic workflow is to
be built in order to reduce the number of dimen-
sions of the effective working space under considera-
tion. As that situation presents some similarities with
statistical physics, some bridges between both disci-
plines can be expected: a description of these con-
nections may be found in Noetinger [2020]. To sum-
up, similar issues are at the heart of one the most ac-
tive area of complex systems understanding, the so-
called spin glasses for which G Parisi was awarded the
2021 Nobel prize in physics [Mézard et al., 1987, Zde-

borová and Krząkała, 2007, Zdeborová and Krzakala,
2016]. In the geoscience side, some reviews illustrate
similar issues [Gorell et al., 2001, Floris et al., 2001,
De Marsily et al., 2005].

The goal of that short paper is to suggest some
avenues of research in order to provide answers to the
following questions:

(i) What is the amount of information that is
required to build a useful numerical model
with a degree of sophistication consistent
with the input knowledge.

(ii) is it possible to build a model that may be
continuously improved as our knowledge of
the particular aquifer increases along with
the volume of data acquisition.

The paper is organised as follows: in Section 2,
we provide some general elements. Then a focus is
given in Section 2.1 about geostatistics, before giving
some elements about information quantification in
Section 2.2. Single phase flow problem serving as a
basis for most of our discussion is introduced in Sec-
tion 2.3. Then we discuss up-scaling applications in
Section 3.1 by discussing the scale and support ef-
fects. Non linear issues implying a strong feed-back
between the medium structure and the flow are dis-
cussed in the case of two-phase flows in Section 3.2.
In Section 4, we present some ideas allowing to merge
the preceding considerations between geostatistics,
up-scaling and information theory for practical ap-
plications. Finally some fruitful research avenues are
suggested for future investigations.

2. Medium description, up-scaling issues

We consider a subsurface formation of typical kilo-
metric scales. In Figure 1, the overall scales of the
considered aquifer are represented, as well as the cor-
responding discretization mesh of interest, choosen
cartesian for sake of simplicity. Each grid block may
be populated by parameters such as porosity Φ(r),
permeability k(r) and any other relevant parame-
ter. That can be drawn using some deterministic or
geostastistical software.

2.1. About geostatistics

Modelling subsurface formation using numerical
models implies to account for the fact that any local
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Figure 1. Geometry of the problem on a simplified 2D section of a subsurface model domainω. A coarse
grid made of blocksΩ of typical size L is super-imposed to a geological fine grid of typical size ∆ in order
to solve the conservation equations of interest. The intermediate scale λ serves in posterior treatments
for checking the overall consistency of the model. Reprinted (adapted) from Colecchio et al. [2020]
Copyright 2020 with permission of Elsevier.

quantity of interest may depend on position vector
r. In most cases, for example the quenched1 positive
permeability k(r), is represented as being a random
function of position. It is characterized by some

1The term quenched is employed in statistical physics of dis-
ordered systems, it corresponds to systems having a fixed but un-
known disorder without thermal fluctuations that reorganise it, a
glass or an amorphous solid are typical quenched material.

mean-value and fluctuations that are measured us-
ing field data (an issue in itself!). That is the aim of the
so-called geostatistical approach, originaly founded
by Matheron [1963], Krige [1976], De Marsily et al.
[2005], Chiles and Delfiner [2009] and developed
by several others, that form the conceptual basis of
several popular commercial softwares. The basic
idea is to interpolate known measurements on a
given support on several locations by inferring some
underlying statistical structure. Notice that the pri-
mary random mathematical objects are functions or
fields that are characterized by an infinite number
of degrees of freedom. So the most natural embed-
ding formalism that encompasses it is the so called
field-theory employed in both statistical mechanics
or particle physics [Noetinger, 2020, Hristopulos,
2020]. Another related issue that was pointed-out
by Tarantola [2005] is that working with continuous
variables implies that there is not a reference entropy
measure allowing to quantify easily the information
of a geostatistical distribution: the overall results are
sensitive to the coordinate system used by the mod-
eller. At this stage, the associated reference “non-
informative” reference distribution [Tarantola, 2005,
Abellan and Noetinger, 2010] is not determined.
That explains some deep theoretical and practical
difficulties for generalizing the approach to curved
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spaces or to non-uniform grid, Mourlanette et al.
[2020]: such a situation may occur if tectonics imply
strong deformation of a sedimentary basin. In most
practical cases, some implicit cartesian assumption
is made. Probably it could be justified using the
sedimentary nature of most aquifers. In the similar
statistical physics case, it may be shown that the
continuous Boltzmann–Gibbs distribution that is
the basis of most applications may be derived by a
suitable limit of the underlying quantum mechan-
ics processes that poses paradoxically less difficulty
owing to their discrete nature (Setting-up a natural
probability measure to a 6 face dice rather than to
a continuous process). In geoscience, approximate
Log-normal distributions (the logarithm of the con-
ductivity is a Gaussian distributed variable) were ob-
served at the core scale within several geological en-
vironments [Gelhar, 1993]. Note that in most cases,
the amount of data is not sufficient to provide the
form of the probability distribution function (pdf) of
k, and higher order correlation functions are almost
impossible to be determined from field data. In the
current modelling practice, they are implicitly fixed
by choosing some additional assumptions based on
geological expertise on similar environments. As
a consequence, even the input stochastic model is
questionable.

Another class of models that intend to add in-
formation on high order correlation functions are
multipoint or so-called process-based models, in-
tending to reconstruct the apparent randomness of
the subsurface by simulating the long term history
of the formation using some dynamical physically
based model: Diggle et al. [1998], Granjeon and
Joseph [1999], Hu and Chugunova [2008], Michael
et al. [2010]. These models introduce more physi-
cally based parameters and are more realistic. How-
ever, they may depend on assumptions regarding
the time-dependant external forcing at their bound-
aries, introducing stochasticity in a somewhat an-
other manner. An essential specificity of geosciences
is the so-called measurement support effect: any
data is obtained using some instrumentation that av-
erages the details of the process at hand on a charac-
teristic length that depends on the physical process.
That scale may vary from some centimeters for lab-
oratory/logging tools, to hectometers in geophysics
corresponding to the typical wavelength of geophys-
ical waves, or to the support of transient well tests in-

terpretation. Any measurement is characterized by
a support scale characterizing the measurement it-
self, and by another spatial scale that is the typical
resolution.

Finally, due to the data scarcity, it is necessary
to up-date any prior model of the subsurface by ac-
counting for the additional data that are continu-
ously enriching the available information. That new
data can be provided by pressure and rates mea-
surements at some producing wells, time-dependant
tracer concentration showing connections between
several regions of the subsurface etc. . . This is the
so called inverse problem issue that was addressed
by many authors [Jacquard, 1965, LaVenue et al.,
1995]. It is well-known that such problems are ill
conditioned and that some regularization is required
[Tarantola, 2005, Oliver and Chen, 2011, and refer-
ences therein]. That can be achieved accounting for
a prior geostatistical structure [LaVenue et al., 1995,
Le Ravalec et al., 2000, Hu and Chugunova, 2008] that
is easier to carry-out considering gaussian priors.

2.2. Quantification of information

As data may be scarce (but even redundant), it is
essential to be able to quantify the amount of in-
formation provided by a measurement, as well as
the quantity of information that is required to make
faithful predictions. That idea can be formalized us-
ing information theory, as attempted in Abellan and
Noetinger [2010, and references therein]. A quanti-
tative estimate can be defined introducing the rela-
tive entropy (Kullback–Leibler divergence) between
posterior and prior distribution that serves as a non-
informative reference distribution. That quantity is
defined by:

I (p) = I (p|µ) =
∫

p(m) log
p(m)

µ(m)
dm. (1)

Here, p(m) is the posterior distribution of m given
that some measurement was carried out on the sys-
tem. µ(m) denotes the prior distribution m. For
clarity, it is easier to introduce some discretization
of m on a regular grid. So m is represented as
a realization of the M dimensional vector, so m =
(m(x1), . . . ,m(xM ))t . The corresponding µ(m) is as-
sumed to be centered and multigaussian so the cor-
responding probability measure is given by µ(m) ∼
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exp−1/2(m ·Cp ·m) with a gaussian covariance ma-
trix with elements that are given by:

Cp (xi ,x j ) =σ2
0 exp

(
−|xi −x j |2

ℓ2
c

)
(2)

with ℓ2
c is the correlation length, and σ2

0 the asso-
ciated variance. Then the relative entropy IM N of
a posterior distribution corresponding to N linear
measurements with independant errors σ2

d gathered
as a N dimensional vector F · x is given by IM N :

IM N = 1
2 log |IN +C−1

ν ·Ft Cp F| (3)

where | · · · | is the determinant of the square matrix
· · · . Considering the specific problem of local mea-
surements of the random field m at N different lo-
cations (x1, . . . ,xN ), N < M with measurement errors
σ2

d , one is led to evaluate:

IM N (x1, . . . ,xN )

= 1

2
log

∣∣∣∣∣
(
δi j +

σ2
0

σ2
d

exp
−|xi −x j |2

ℓ2
c

)
1≤i , j≤N

∣∣∣∣∣ , (4)

when the measurement locations are far apart (typi-
cally all distances greater than ℓc ), one gets the esti-
mation:

IM N (x1, . . . , xN ) = N

2
log(1+µ2) with µ2 = σ2

0

σ2
d

. (5)

Figure 2 illustrates present results that were also gen-
eralised to pumping test analysis and non-linear flow
driven issues in Abellan and Noetinger [2010].

2.3. Fluid-flow modelling

In most cases, modelling fluid flow in a porous for-
mation [De Marsily, 1986] leads to solve a diffusion-
like equation that reads:

φct
∂p(r, t )

∂t
=∇· (k(r)∇p(r, t ))+ f (r). (6)

Here, the parameters p(r, t ), ct and f (r) are respec-
tively the time-dependent potential of interest, the
total compressibility, and a source term. Dirichlet
or Neumann Boundary conditions are known at the
boundary of the domain ω. Once that potential is
known, associated transport problems can be solved,
including multiphase flow issues that are not in the
scope of present paper.

The basic issue is to be able to solve such equa-
tions, accounting for both the the effect of hetero-
geneities, and to be able to quantify the related un-
certainties. In that context, analytical methods were

developed by hydrogeologists [Gelhar, 1993, Dagan,
1989, Indelman and Abramovich, 1994, Abramovich
and Indelman, 1995, Renard and De Marsily, 1997],
mathematicians [Jikov et al., 2012, Armstrong et al.,
2019] and physicists, among other [King, 1989,
Noetinger, 1994, Hristopulos and Christakos, 1999,
Nœtinger, 2000, Attinger, 2003, Eberhard et al., 2004,
Teodorovich, 2002, Stepanyants and Teodorovich,
2003].

On the numerical side, a possible strategy is to
transfer the small scale spatial fluctuations to a large
scale support that encompasses the low spatial fre-
quency components of the fields of interest. The
calculations are carried out in practice using some
numerical model in which the Laplace equation is
solved using a grid of resolution L generally consid-
erably much coarser than the input fine geological
grid ∆ (notations in Figure 1), because the available
computing power leads also to continuous improve-
ment of local geological 3D representations. This
implies obtaining a coarse grained Laplace equation
with a renormalized conductivity map accounting
as best as possible to the local subgrid variations.
In the case of multimodal distributions, in which
connectivity aspects are dominant, specific meth-
ods can be developed within the framework of per-
colation theory, such as real-space renormalization
techniques [Berkowitz and Balberg, 1993, Hunt et al.,
2014, Hristopulos, 2020].

In the stochastic context, a strategy is to average
the solution of Equation (6) to get the average head
(or pressure) 〈p(r, t )〉 in which the ensemble-average
〈· · · 〉 is to be taken on the disorder of the conductivity
field k(r) corresponding to a Monte-Carlo average
over the disorder of the medium. Then, one can
look for the equation that may drive that average
head2 [Noetinger and Gautier, 1998].

3. About flow up-scaling

3.1. Single phase steady state up-scaling

It can be shown that under quite general hypothesis
(statistical stationarity and convergence conditions)

2At first sight, averaging the driving equation looks to be sim-
pler, and would evidently provide the arithmetic average for the
conductivity, a clearly wrong result.



564 Benoît Noetinger

Figure 2. Left: A typical realization of a random map 2D section of a subsurface model on a domain
Ω, representing Log(k). The superimposed circles correspond to N = 5 physical measurements of
permeability on a support scale with the corresponding radius, with several realistic values. The average
distance between the circles corresponds to the coverage of the area. In a perfect situation, all the
area should be covered, that is seldom the case. Right: the amount of information provided by N local
measurements defined by the relative entropy of posterior distribution versus prior. Note the saturation
of the information once the medium is well covered by the measurements, µ is defined in the main text.
Lx and Ly are the overall size of the domain in the x and y directions, ℓx

0 and ℓ
y
0 denote the correlation

length in corresponding directions. N∗ is thus the number of correlated volumes inside the overall
domain. It corresponds to the crossover the transition of information content between independent
measurements and redundant ones. Copyright 2020 with permission of Springer-Nature.

that the low frequency components of the average
potential 〈p(r, t )〉 is driven by an effective equation
that reads:

〈φ〉ct
∂〈p(r, t )〉

∂t
=∇· (Kequ∇〈p(r, t )〉)+ f (r). (7)

Here, the average 〈· · · 〉 corresponds to an averaging
over the randomness of the medium. The param-
eter Kequ is called the equivalent conductivity. It
corresponds to the “natural” large scale relation be-
tween the mean flux and the large scale pressure gra-
dient that can be provided by homogenization the-
ories solving the so-called “auxiliary problem” to be
solved numerically in x, y and z directions [Arm-
strong et al., 2019, and references therein], as it is il-
lustrated Figure 3.3 Many expressions were proposed
to relate Keff to the underlying disorder [Renard and

3Notice that in the current practice, the result of the evaluation
of these formula, or of the numerical solution of the auxiliary
problem is used to populate the coarse grid of Ω blocks, using the
underlying local fine grid data. So the equivalent Kequ may still
depend on position rather than the so-called Keff that is intrinsic,
it would correspond to working with an infinite volumeΩ.

De Marsily, 1997]. For one dimension, an elemen-
tary analytical calculation provides the harmonic
average Keff = 〈k−1〉−1. Generalizations of such
a simple formula were proposed by many authors
[Landau and Lifshitz, 1960, Matheron, 1967, King,
1987, 1989, Dagan, 1993, Neuman and Orr, 1993,
Noetinger, 1994, Indelman and Abramovich, 1994,
De Wit, 1995, Teodorovich, 2002, Stepanyants and
Teodorovich, 2003, Colecchio et al., 2020, Nœtinger,
2000]. Looking at the evolution of the permeabil-
ity distribution, in 2 dimensions, numerically the log
normal distribution appears to be stable under the
up-scaling transformation, Figure 4 from Colecchio
et al. [2020], analogous to the central limit theorem.
That may be related to the duality argument of Math-
eron [1967] that justifies the geometric mean in 2D.
In the 3D case, studying the emergence of a “stable”
conductivity distribution invariant on the up scal-
ing transformation would also be useful for studying
strongly correlated systems having conductivity cor-
relations decaying as a power law with the lag dis-
tance. This may be illustrated on Figure 4 below: in
the practical side, in most cases, at present times,



Benoît Noetinger 565

using a numerical technique is sufficient. In case
of extremely heterogeneous media (that can corre-
spond to bimodal media) at percolation threshold,
a percolation transition may occur [Charlaix et al.,
1987, Berkowitz and Balberg, 1993, Hunt et al., 2014,
Stauffer and Aharony, 2014, Colecchio et al., 2020].
Its main consequence, a stabilization of the effec-
tive conductivity over a very large scale can be ob-
served on Figure 5. In both situations, it appears
that at some scale (becoming infinite just at the per-
colation threshold for an infinite small-scale con-
ductivity contrast), the formation can be treated as
an almost continuous medium: that is the so called
self-averaging property that manifests itself once the
characteristic size of the flow is larger than the typical
correlation scale. Long ranged media, as well as me-
dia close to a percolation threshold remain a notable
exception. The results presented in Figures 4 and 5
were obtained using a suitable post treatment of a
single phase flow simulation on a large domain, with-
out adding any external expansive Monte Carlo loop:
that is sufficient to capture the dominant character-
istic scales of the flow. In addition, in Figure 5, mid-
dle, it is illustrated the emergence of the so-called lo-
calization phenomena that is a consequence of high
permeability contrasts [Arnold et al., 2019] that lo-
calizes high velocity regions in tiny regions, even in
non-fractured media. Such flow-based maps are well
suited for post-treatment: helping to build a coarse
mesh, estimating critical paths that may control the
overall uncertainties.

3.2. About the interaction between the conduc-
tivity spatial distribution and the flow pat-
tern

In several situations, such as when considering mul-
tiphase flow flows in heterogeneous media, some
strong coupling between the flow and the underlying
medium may occur. This can be the case when con-
sidering water displacing oil, CO2 injection etc. . . This
may give rise to an instability driven by a mecha-
nism is similar to the well-known Saffman–Taylor in-
stability that leads to viscous fingering if the displac-
ing fluid is more mobile than the fluid initially in
place. This emergence problem was studied by many
authors such as Saffman and Taylor [1958], Homsy
[1987], Tabeling et al. [1988], Tang [1985], Shraiman
[1986]. A generalization to imicsible two phase flows

Figure 3. Up-scaling geometry. The coarse
block of size L have a detailed conductivity map
given by geology. It is up-scaled by solving a
steady-state quasi Laplace equation to deter-
mine an effective conductivity in the mean flow
direction. Boundary conditions are usually
no-flux parallel to the imposed mean flow, or
periodic.

was carried-out in the paper of King and Dunayevsky
[1989, and references therein]. In that case, it appears
a well defined sharp front separating both phases
moves at the local velocity of the fluid, as shown in
Figure 6, top. That front may be in unstable, by the
same mechanism than the Saffman–Taylor instabil-
ity, as shown in Figure 6, bottom. In the unstable
case, an amplification of the heterogeneity effect is
expected, while some smoothing arises in the sta-
ble case. The intuition suggests that a highly mobile
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Figure 4. Monte Carlo study of the dependance of the effective conductivity pdf with coarsening scale λ.
The overall flow is solved using several realizations of the input log conductivity map (left). The associated
local dissipation map (center) allows to evaluate a distribution of coarsened effective conductivities
averaged at intermediate scale λ [Colecchio et al., 2020]. The associated pdf’s are plotted (right). The
self averaging feature is highlighted by the sharply peaked distribution around the geometric average for
λ = 128 units. Reprinted (adapted) from Colecchio et al. [2020] Copyright 2020 with permission of
Elsevier.

Figure 5. Monte Carlo study of the effective conductivity pdf with coarsening scale λ. The overall
flow is solved using several realizations of the input bimodal map with conductivity contrast of 104.
The associated local dissipation map (center) highlights the localization phenomenon and allows to
evaluate pdf’s of coarsened effective conductivities averaged at scale λ [Colecchio et al., 2020]. The
resulting scale-dependant pdf’s are plotted (right). As the scale is increasing, the two peaks merge,
the bimodal distribution disappears and becomes close to a log-normal distribution. The convergence
to this asymptotic distribution shows critical slowing-down when the facies proportions are close to
percolation threshold. In the infinite contrast case, scaling-laws are recovered [Stauffer and Aharony,
2014]. Reprinted (adapted) from Colecchio et al. [2020] Copyright 2020 with permission of Elsevier.

fluid will follow high velocity paths, its presence
amplifying thus that advantage by a positive feed-
back loop. This is the so called channeling is-
sue. This problem was addressed by De Wit and
Homsy [1997a,b], and revisited in the stochastic con-
text by Artus et al. [2004], Nœtinger et al. [2004], Ar-
tus and Noetinger [2004], merging perturbation the-
ory within the framework developed by King and

Dunayevsky [1989]. In order to be more specific, the
underlying equations reads:

∇· [λ(S(r, t ))k(r)∇p(r, t )] = 0 (8)

φ
∂S(r, t )

∂t
+∇· ( f (S(r, t ))U(r, t )) = 0 (9)

U(r, t ) =−λ(S(r, t ))k(r)∇p(r, t ). (10)
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Figure 6. Dynamics of a two phase flow front moving in a heterogeneous rock, imposed mean flow
from left to right, underlying random log normally distributed conductivity map top (a) stable case (b) Y
averaged saturation at different times, bottom (c) fingering in the unstable case, (d) associated Y-averaged
saturation at different times.

Here, S(r, t ), λ(S(r, t )) and f (S(r, t )),S denote respec-
tively the water saturation (local % of water, total
mobility and the so-called fractional flow of water).
This set of coupled equations may be solved numer-
ically (it is at the heart of any multiphase flow in
porous media simulator, to which additional com-
plexities such as phase transitions and boundary
condition management must be added). The satu-
ration equation (9) is hyperbolic, leading to the for-
mation of a shock front, whose stability is controlled
by the jump of the total mobility λ(S(r, t )) at the
front.

The technical difficulty for setting-up a perturba-
tion expansion comes from the presence of the front
that implies a mobility jump that renders perturba-
tion theory a bit tricky [King and Dunayevsky, 1989,
Nœtinger et al., 2004]. The difficulty may be avoided
by a suitable change of variable, using a working vari-
able x(S, y, t ) rather than S(x, y, t ). It is thus pos-
sible to introduce the function x(S f , t ), in which
S f is the saturation of water just behind the front

M f is the corresponding total mobility jump M f =
λ(S f )/λ(S = 0). The randomness of the underlying
conductivity field propagates to the randomness of
x(S f , t ), of average value 〈U〉t . At long times, the as-
sociated two point correlation function can be shown
to converge to a well defined function in the stable
case, while in unstable case it diverges, a manifes-
tation of the spreading of the front [Tallakstad et al.,
2009, Toussaint et al., 2012]. A possible approach of
practical interest close to the single phase flow ap-
proach would be to look at an effective equation driv-
ing the ensemble-averaged water saturation 〈S(r, t )〉,
or the Y-averaged saturation S(x, t ). A diffusive-like
regime arises in the case M f = 1, that corresponds to
a marginal stability criterion. In the general case, sev-
eral proposals were reported long ago for characteriz-
ing the emerging large scale transport equation [Ko-
val et al., 1963, Todd et al., 1972, Yortsos, 1995, Blunt
and Christie, 1993, Sorbie et al., 1995]. In the unstable
case, one can consider that long fingers parallel to the
imposed flow may be treated as a stratified medium.
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This leads to modify the fractional flow function with
an ad-hoc change [Koval et al., 1963]. In the sta-
ble case, it can be shown that the competition be-
tween the disorder that distorts the front and the vis-
cous forces that tends to sharpen the front [Nœtinger
et al., 2004] must lead to another form of the effec-
tive fractional flow, including some macrodispersion
representing the net effect of the averaged disorder.
In the infinite contrast case (e.g. immiscible gas in-
jection) Diffusion Limited Aggregation (DLA) mod-
els were proposed, leading to a very rich literature
involving percolation invasion models, fractals [Wit-
ten Jr and Sander, 1981, Wilkinson and Willemsen,
1983, Paterson, 1984, Masek and Turcotte, 1993] with
many contributions of SP.

4. Geostatistics, up-scaling and inverse mod-
elling

Our original issue was to know the relevance of a
complex model in regard to the input knowledge. It
appears that if one is interested by predicting the av-
erage and variance of the output of some transport
process, a compromise must be found between the
overall accuracy of the calculation involving a high
resolution grid implying large computing costs, and
the statistical accuracy that requires being able to
perform a huge number of Monte-Carlo simulations4

required to get representative statistical averages of
the process under consideration. The overall simu-
lation budget B(Sizemodel, NMC) in terms of hours of
CPU depends on the model size Sizemodel and the
number of Monte Carlo simulations NMC. The latter
depends on the number of relevant input parameters
that control the overall behaviour of the system. It
is possible to determine the couple (Sizemodel, NMC)
such that the variance σ2(Sizemodel, NMC) of the pre-
diction errors of the simulation output is minimized
under the constraint of fixed B(Sizemodel, NMC). As
presented in the preceding section, up-scaling tech-
niques may provide some tools allowing to get a case-
dependent prior estimate of that variance without
running the whole set of simulations.

Practitioners want to get estimations of the aver-
age value and of the variance of the output of interest

4We implicitly consider that fully analytically solvable prob-
lems are very scarce!

(water supply, heat recovery etc. . . ). So the approach
developed by Abellan and Noetinger [2010] could be
carried-out in the prediction space. The advantage of
such an approach will be to be closer to operational
quantities of practical interest, and also to be more
independent on the dimension of the input parame-
ter space. Such an avenue needs to be developed.

5. Conclusions and some perspectives

In that short note, we discussed some ideas and pre-
vious findings illustrating mainly the interaction of
the quenched disorder of the natural media present
at all scales to the flow. It appears that hydrol-
ogists could be greatly helped by developing an
approach combining pragmatic practice, advanced
averaging techniques and optimization techniques
merged within a framework of physically guided arti-
ficial intelligence techniques. An approach is to draw
the “phase diagram” of the problem at hand, i.e. the
set of dominant parameters controlling the overall
behaviour of the system, and providing descriptions
of the critical behaviour of the system between the
different regions of the phase diagram. Information
theory concepts can be helpful to quantify the dis-
order and the amount of information of the system,
providing useful links to statistical physics concepts
and methods.

Such an approach is evidently process-dependant
and must be adapted for heat or tracer transport and
mixing, as well as reactive flows, issues that were not
discussed in that short paper.

A promising approach would be to map the linear
systems to be solved that are essentially of Laplacian
nature into random matrix theory close to random
graphs theory [Mohar, 1997, Bordenave and Lelarge,
2010, Potters and Bouchaud, 2019]. That area of re-
search is a fast growing field with applications for
modelling networks such as the Internet, urban and
road traffic, smart electrical networks, brain mod-
elling, finance etc. . . Some applications may be found
in the modelling of flow in fractured rocks [Hyman
et al., 2017, 2019]. A possible mathematical approach
is to study the spectrum of the large matrices ob-
tained for solving the quasi Darcy flow equation that
depends randomly on the geological input parame-
ters. That may provide information about the effec-
tive number of relevant degrees of freedom that must
be retained to describe the system [Biroli et al., 2007].
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Depending on the degree of disorder, some eigen-
values of the associated Laplacian matrix can be ex-
pected to provide information while other eigenval-
ues may follow some universal distribution such as a
Marchenko–Pastur distribution [Marchenko and Pas-
tur, 1967]. Such topics are deeply connected to clas-
sification methods by neural nets [Louart et al., 2018,
Dall’Amico et al., 2019].

Finally, as illustrated by De Marsily [2009], wa-
ter supply issues will become more and more criti-
cal, implying great applied and academic research ef-
forts. As it was explained in present paper, expect-
ing tremendous computing power cannot be the sin-
gle option. The community will have to rely on inno-
vative approaches at the cutting edge of modern sci-
ence, as our mentors did [Matheron and De Marsily,
1980, De Marsily et al., 2005].
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