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Abstract 
Stratigraphic numerical forward process-based models represent the formation and evolution of sedimentary 

basins through time. Their main deliverable is a 3D digital grid which can help to better understand the 

sedimentary basin infill. These models depend on several input parameters that need to be characterized for the 

studied basin. However, available data such as well logs and seismic data may not provide enough information 

to identify a unique possible value for these parameters. It is then crucial to take the uncertainty induced by this 

non-uniqueness into account in the decision-making process. As a single numerical stratigraphic forward 

simulation can be very time consuming, solutions are needed to limit the computational cost required to 

estimate such uncertainties. In particular, machine learning techniques can be used to build meta-models that 

mimic the simulator and provide fast estimations of its outputs for any values of the input parameters. The key 

step for the efficiency of such an approach stands in the choice of the set of simulations (or training set) used to 

build the meta-models: it should be informative enough to obtain accurate predictions for the output properties 

of interest, but also of reasonable size to limit simulation time. Then, meta-models can be used to investigate a 

large number of models and make uncertainty quantification easier. Here, we focus on the prediction of spatial 

outputs of interest approximated from the joint use of several kriging-based meta-models combined to reduced-

basis decomposition. Sequential approaches have been proposed in the literature to identify training sets 

iteratively for a kriging-based meta-model, building upon the specific structure of such surrogates. We propose 

here to extend these approaches to the context of spatial output predictors. The results obtained on two 

synthetic test cases, representing a carbonate platform and a clastic environment, highlight the potential of the 

proposed approach for risk analysis to iteratively build training sets with a satisfactory efficiency in terms of 

simulation time and prediction accuracy. 

 

Highlights 
- Use of machine learning techniques for risk analysis on numerical model spatial outputs  

- Iterative definition of the training set used to build kriging-based predictors for spatial output properties 

- Assessment of the method potential for stratigraphic forward modeling on two synthetic cases 

- Validation cases representing a carbonate platform and a clastic environment 

- Use of the resulting surrogate models in uncertainty studies for the test cases spatial outputs 



 

1. Introduction 
Stratigraphic numerical forward process-based models represent the formation and evolution of sedimentary 

basins through time [25]. Their main deliverable is a 3D digital grid which can help to better understand the 

sedimentary basin infill and characterize for example the spatial variation of sedimentary layer thickness and 

properties. However, these models depend on several input parameters that need to be characterized for the 

studied basin (e.g., subsidence map, sea or lake level curve, transport process parameters, sediment source 

locations …). Available data such as well logs and seismic can be used to help in this characterization. However, 

they may not provide enough information to identify a unique combination of values for the parameters, 

resulting in several acceptable models that may fit the data, but correspond to different dynamic evolutions and 

provide different solutions away from the wells [33]. It is then crucial to quantify the residual uncertainty induced 

by this non-uniqueness and to take it into account in the decision-making process, for instance through the 

estimation of the distribution in the basin of the probability of occurrence of sediment facies controlling reservoir 

presence. However, due to the potentially large number of uncertain parameters and the high computational 

cost of performing numerical stratigraphic forward simulations (a single high-resolution simulation can require a 

few hours to run on a cluster), it can be difficult to reduce and estimate thoroughly uncertainties in operational 

studies.  

A way to reduce the computational cost of the uncertainty quantification process consists in using machine 

learning techniques to build meta-models (also called surrogates, emulators, or proxy models) that mimic the 

simulator and provide very fast estimations of its outputs for any values of the input parameters. More precisely, 

a meta-model is a parameterized function that approximates the relationship between the simulator input 

parameters and a given output property. Different techniques can be used to build such meta-models, which 

differ from the structure of the function used. They include for instance polynomial regression, Gaussian 

processes (rooted in kriging) and neural networks (see also [9] for a review). Once chosen the set of input 

parameters to be considered, their target ranges of variation and the structure of the surrogate, the meta-model 

parameter values are identified through the minimization of a cost function that quantifies the mismatch 

between a set of simulated values for the output to be approximated (the training set) and the corresponding 

predictions. These parameters are for instance the weights associated to each term in polynomial regression. For 

Gaussian process-based meta-modeling, the predictions are equal to the kriging estimate of the output on the 

training set, and the meta-model parameters include the mean and covariance function characteristics [28]. 

Then, if the predictions provided by the meta-model for any input parameter values are close to the 

corresponding simulated values, they can be used instead of the simulator. Meta-modeling thus appears as an 

attractive tool for uncertainty management as long as the number of simulations required to obtain accurate 

predictions is reasonable. Indeed, it makes it possible to investigate rapidly a huge number of models, and to 

perform statistical analyses such as quantitative sensitivity analysis or uncertainty propagation. It can thus help 

to better understand and quantify the impact of the input uncertainty on the dynamic processes. Meta-models 

can also be combined to minimization algorithms to identify models reproducing available data. Note however 

that meta-models are built for a given output and set of input parameters and are only valid for the uncertainty 

ranges chosen for these parameters.  

The choice of the training set appears as a key step for the efficiency of the meta-modeling approach, especially 

for very long simulations. Indeed, this ensemble should be small to limit computation times, but also sufficiently 

informative to obtain accurate estimations of the output of interest for any input parameter values within the 

range of uncertainty. In practice, it appears difficult to generate in one trial a training set that is optimal in terms 

of both simulation time and prediction accuracy. Sequential techniques have thus been proposed in the literature 

to build training sets iteratively. They consist in generating first a small sample of the parameter space, and in 

complementing this ensemble sequentially. The idea behind is to stop the process as soon as a satisfactory 

prediction accuracy has been reached, and thus avoid unnecessary simulations. Various criteria have been 



investigated to choose the next point of the parameter space to be added to the training set in order to improve 

as fast as possible the meta-model accuracy. Some of them act in the parameter space only and are based on 

geometrical considerations. For instance, a maximin criterion is considered in [19]. Other techniques are 

dedicated to kriging-based meta-models and build upon their specific structure. In particular, several of these 

approaches use the kriging variance that represents the model mean square error (MSE) and provides some 

quantification of the uncertainty on the predictions. These techniques then aim at identifying points that should 

reduce this uncertainty as fast as possible in the whole parameter space, and thus improve rapidly the prediction 

accuracy. For instance, the new point added to the training set can be the one that maximizes the kriging variance 

[28]. Variants narrow the search space to specific regions of the parameter space [3,31] or weight the kriging 

variance by an indicator on the meta-model accuracy [20]. Another interesting criterion is the integrated MSE 

(IMSE) obtained by integration of the kriging variance over the parameter space [28]: the next point to be 

simulated is chosen as the one that should reduce the most the IMSE given the current meta-model 

characteristics. These different criteria are referred to as adaptive as they depend on the characteristics of the 

current meta-model. Note that other approaches aim at improving the prediction accuracy in some specific 

regions of the parameter space, e.g., corresponding to low values of the error on the available data for calibration 

[18]. However, they are beyond the scope of this paper. 

The adaptive approaches described previously can be directly applied to kriging-based meta-models 

approximating scalar outputs such as the mean sediment thickness or the average sand concentration. However, 

for many fields of application, and in particular stratigraphic and basin modeling, the value of a given output 

property in all grid blocks or columns of the grid can play a key role in the decision-making process. For such 

spatially dependent properties, a Proper Orthogonal Decomposition (POD) [21] can be considered first to limit 

the number of variables to be approximated, and thus the computation times. More precisely, this technique 

makes it possible to identify a limited number of latent output variables (much less than the number of grid 

blocks from our experience) that reproduce the training set when appropriately weighted. The meta-modeling 

then applies to these new variables, e.g., using kriging. More details can be found in [22,10] for instance. This 

workflow was applied to perform sensitivity and risk analysis on various spatial output properties, both in 

stratigraphic forward modeling (clastic environment [10], organic matter production and preservation [2]) and 

in basin modeling (source rock potential [8], biogenic gas generation [32]). However, in these studies, the 

definition of a training set that is optimal in terms of both computation time and accuracy is not clearly 

addressed. The objective of the current work is thus to simplify the choice of the training set by proposing an 

automatic sequential design strategy for the context of spatial outputs, in which several meta-models are 

considered simultaneously to predict the output property on the whole set of grid blocks at once. To achieve 

this, we focus on the adaptive criteria described above for a given kriging-based meta-model and we propose a 

way to combine them with the risk analysis workflow for spatial output properties. The efficiency of the resulting 

approach for iteratively building training sets that provide accurate predictions of such spatial properties in the 

whole parameter space will be assessed in the context of stratigraphic forward modeling on two synthetic cases, 

representative of a carbonate platform and a clastic environment. Note that the proposed workflow applies 

similarly to predict properties that depend on time or depth. Then, the use of the resulting predictors will be 

illustrated for sensitivity and risk analysis. The calibration process will be slightly addressed through preliminary 

studies. However, the use of meta-modeling in the context of assisted calibration is beyond the scope of this 

study dedicated to spatial outputs and requires specific design strategies (e.g., EGO [18]). 

The paper outlines as follows. The sequential kriging-based workflow proposed in this work is described in section 

2, while section 3 presents the results obtained in stratigraphic forward modeling, considering a clastic and a 

carbonate environment. Different criteria for the choice of the next points added to the training set are 

compared, and the resulting predictors are used to perform various uncertainty studies to highlight the potential 

of the approach for geologists and sedimentologists.  

 



2. Meta-modeling workflow 
The proposed sequential workflow for risk analysis on spatial outputs is schematized in Figure 1 and summarized 

below. It only differs from the one used in [10,2,8,32] by the additional step 5 corresponding to the process of 

complementing the initial sample. More details on the successive steps are given in the following subsections 

and in the Appendix. 

Algorithm 1 

1. Identify the model input parameters that need to be considered in the uncertainty study (these 

parameters are assumed independent); assign them a range of plausible values and a probability 

distribution (uniform by default) 

2. Generate an initial sample of the parameter space and perform direct simulations for the models of this 

ensemble 

3. Extract the spatial output of interest from these simulations to form the training set 

4. Build a predictor for the spatial output of interest using the training set and an approach combining 

Proper Orthogonal Decomposition (POD) and kriging-based meta-modeling 

5. While the quality of the estimator for the property of interest is not satisfactory,  

a. Complement the training set with new simulations chosen according to a pre-defined criterion 

applied to the current predictor 

b. Build a predictor for the output of interest using the augmented training set 

6. Use the final predictor to investigate new models, for instance to perform sensitivity and risk analysis 

 

 

Figure 1 – General sequential workflow 



2.1 Initial sampling 

We assume identified a set of continuous input parameters 𝜽 ∈ ℝ𝑑 to be considered in the uncertainty study, 

with ranges of variation defining the subspace Ω ⊂ ℝ𝑑  in which the study needs to be performed (step 1). The 

choice of these intervals can be based for instance on the geologist knowledge, on bibliographical studies or on 

laboratory experiments. Then a probability law different from the uniform one can be assigned to each 

parameter if some values within the chosen range are considered more likely than others (e.g., normal or 

lognormal distributions). In addition, a log-transformation can be applied to parameters whose range of variation 

extends over several orders of magnitude to ensure a good coverage of the lower values.  

An initial sample of Ω (the design of experiments) is then required to start the process (step 2). Here, we use the 

Latin Hypercube Sampling approach [28] to generate this initial design of experiments, denoted 𝑫 =

{𝜽𝟏, … , 𝜽𝒏}, 𝜽𝒊 ∈ ℝ𝑑. With this technique, the size 𝑛 of the generated sample is chosen first. Then, the range of 

variation of each parameter is divided into 𝑛 equiprobable intervals with regard to its probability law. Finally, the 

𝑛 points retained in the design are generated randomly in Ω and satisfy the following property: only one point is 

located within each equiprobable interval for each parameter (see Figure 2 for illustration). The LHS approach 

provides a good coverage of the uncertainty space for a given size 𝑛, with points homogeneously distributed in 

the variation intervals for each parameter with regard to their probability law. The a priori knowledge is thus 

taken into account, leading to more dense samples in more probable areas. Note however that other sampling 

techniques could be considered as well to generate the initial sample. 

 

 

Figure 2 - Example of LHS of size 20 for two parameters. Parameter 1 follows a normal law with mean 0.5 and variance 0.04. Parameter 2 
follows a uniform law and both parameters vary between 0 and 1. The blue dots indicate the sampling points. The dotted black lines 

separate the 20 equiprobable intervals for the two parameters. 

2.2 Meta-modeling approach for spatial outputs 

Once the simulations have been performed for the models of sample 𝑫, the relationship between the input 

parameters 𝜽 and the output properties of interest can be approximated with meta-models. Let us denote 

𝑦(𝜽, 𝒙) a target spatial output of interest, where 𝒙 represents the spatial location. In stratigraphic forward 

modeling, 𝑦 can refer for instance to the distribution of the deposited sediment thickness or lithology 

concentration in each column of the grid. We assume known the values of 𝑦 for sample 𝑫 and a set of locations 

in the spatial domain 𝑿 = {𝒙𝟏, … , 𝒙𝑵}. These values, denoted by 𝒚𝑫 ∈ ℝ𝑁×𝑛 with (𝒚𝑫)𝑖𝑗 = 𝑦(𝜽𝒋, 𝒙𝒊), form the 

training set (step 3 of Algorithm 1). Then, following the approach described in [22,10], for any point of the 

parameter space 𝜽∗ ∈ ℝ𝒅, we consider the estimator of 𝑦 at location 𝒙𝒊, 𝑖 ∈ {1 … 𝑁}, defined using 𝒚𝑫 by: 

 

𝑦̂(𝜽∗, 𝒙𝒊) = 𝑦̅(𝒙𝒊) + ∑ 𝛼̂𝑘(𝜽∗)𝜙𝑘(𝒙𝒊)

𝐿

𝑘=1

 (1) 



𝑦̅(𝒙𝒊) denotes the average value of the observations at 𝒙𝒊: 𝑦̅(𝒙𝒊) =
1

𝑛
∑ 𝑦(𝜽𝒋, 𝒙𝒊)𝑗=1..𝑛 . The basis vectors 𝜙𝑘(𝑿) ∈

ℝ𝑁 considered in this linear formulation result from the use of Proper Orthogonal Decomposition (POD) on the 

data set 𝒚𝑫 [21]. 𝛼̂𝑘 denotes a meta-model approximating component 𝛼𝑘, the projection coefficient of 𝑦 on 𝜙𝑘. 

It is built using the set of projection coefficients on 𝜙𝑘 for the training set 𝒚𝑫, denoted 𝜶𝒌
𝑫. The basis vectors are 

sorted by decreasing order of explained variance, and only the 𝐿 first are retained in the formulation to limit 

computation times. They correspond to a given percentage of cumulated variance (e.g., 95%), chosen as a trade-

off between the number of meta-models to be computed and the loss of information.    

Each component 𝛼𝑘, 𝑘 = 1, . . . , 𝐿 is assumed to be a realization of a Gaussian process with a given mean and 

covariance function. It is estimated by the expectation of this Gaussian process conditioned to the data points 

𝜶𝒌
𝑫, corresponding to the kriging estimate of 𝛼𝑘 on 𝜶𝒌

𝑫. The kriging variance 𝑠̂𝑘
2 characterizes the variance of the 

conditional Gaussian process and represents the model mean square error. It equals zero at the sampling points 

𝑫. More details on this approach can be found in [28] and in the Appendix. Finally, the definition of the predictor 

𝛼̂𝑘 requires estimating the Gaussian process covariance function and mean. This is usually done by maximizing 

the logarithm of the likelihood function as described for instance in [29]. Here, we use the R package DiceKriging 

[27] to compute the kriging-based meta-models. 

Let us note that, for a given covariance function, the kriging variance does not depend on the actual value of the 

target output for the sample, but only on the location of the sampling points in the parameter space. It is thus 

straightforward to compute its value for any sample 𝑫 without the need to estimate 𝜶𝒌
𝑫. This property is a 

building block in the identification of a batch of points in sequential design strategies (see also [20] for instance).  

The meta-models defined by (1) do not ensure that the predictions will range within physical values, in particular 

nonnegative ones for thickness or concentrations. In what follows, we thus apply the kriging approach (1) to a 

transformed function for some properties, namely their square root 𝑧 = √𝑦. The predictions for 𝑦 are then taken 

equal to 𝑦̂ = (𝑧̂)2, what ensures nonnegative values. 

 

2.3 Quality check  

The predictor 𝑦̂ defined in equation (1) needs to be sufficiently accurate to be used instead of the simulator in 

the risk analysis process. In other words, its estimations must be close to the corresponding true simulated values 

for any 𝜽∗ ∈ Ω. Different indices are generally used to check this accuracy, referring to the computation of the 

deviation between a set of simulated values and the corresponding estimations provided by 𝑦̂.  

If the user can afford it, it is recommended to generate an additional sample of the parameter space 𝑫𝒕𝒆𝒔𝒕 =

{𝜽̃𝟏, … . , 𝜽̃𝑛𝑡𝑒𝑠𝑡}, 𝜽̃𝒊 ∈ Ω, independent of the training set 𝑫, and to perform the corresponding simulations. Then, 

the overall predictivity of 𝑦̂ can be assessed at each location 𝒙𝒊, 𝑖 ∈ {1 … 𝑁} with the 𝑅2 coefficient of 

determination as: 

 

𝑅2(𝑦̂(𝒙𝒊)) = 1 −  
∑ (𝑦(𝜽̃𝒋, 𝒙𝒊) − 𝑦̂(𝜽̃𝒋, 𝒙𝒊))2𝑛𝑡𝑒𝑠𝑡

𝑗=1

∑ (𝑦(𝜽̃𝒋, 𝒙𝒊) − 𝑦̅(𝒙𝒊))2𝑛𝑡𝑒𝑠𝑡
𝑗=1

 

 

(2) 

where 𝑦̅(𝒙𝒊) represents the mean of (𝑦(𝜽̃
𝒋
, 𝒙𝒊))

1≤𝑗≤𝑛𝑡𝑒𝑠𝑡

. The 𝑅2 index refers to the sum of the squared errors 

on the predictions normalized by the sum of the squared deviation from the mean. It gets closer to 1 when 

prediction errors decrease, thus indicating more accurate estimations. If it is close to zero, the predictor is not 

more accurate on average than a meta-model that always predicts the mean 𝛼̅𝑘.  This index can be considered 

in particular as a stopping criterion for the sequential process, using for instance a target minimal average value 

over 𝑿: 
1

𝑁
∑ 𝑅2(𝑦̂(𝒙𝒊))𝑖=1..𝑁 > 𝛽. In addition, the median value 𝑅2𝑚 of the 𝑅2 coefficients in all grid blocks will 

be considered in section 3 to make overall comparisons between the various experiments: 

 𝑅2𝑚(𝑦̂) = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑅2(𝑦̂(𝒙𝒊)))𝑖=1..𝑁 (3) 



Note that the 𝑅2 index can also be computed for the component estimators  𝛼̂𝑘 , 𝑘 = 1. . 𝐿 (see Appendix). In 

what follows, the test set 𝑫𝒕𝒆𝒔𝒕 will be generated using the LHS approach. The distribution of the quality check 

sample will thus be in accordance with the one used afterwards in the risk analysis process.  

Other quality criteria can be computed from the training set itself, avoiding additional simulation cost. We 

consider such an index for the component predictors in the sequential process. More specifically, we refer to the 

leave-one-out cross-validation technique (LOO-CV) that consists in computing additional meta-models using 𝑛 −

1 points of the training set, and in considering the prediction error on the left-out point to assess the meta-model 

predictivity. Denoting 𝛼̂𝑘,−𝑗(𝜽) the kriging estimator computed from the training set (𝛼𝑘(𝜽𝒊))1≤𝑗≠𝑖≤𝑛, the 𝑄2 

coefficient builds upon the cross-validation error 𝛼𝑘(𝜽𝒋) − 𝛼̂𝑘,−𝑗(𝜽𝒋) at point 𝜽𝒋 as 

 
𝑄2(𝛼̂𝒌) = 1 −  

∑ (𝛼𝑘(𝜽𝒋) − 𝛼̂𝑘,−𝑗(𝜽𝒋))2𝑛
𝑗=1

∑ (𝛼𝑘(𝜽𝒋) − 𝛼̅𝑘)2𝑛
𝑗=1

 (4) 

where 𝛼̅𝑘 represents the mean of (𝛼𝑘(𝜽𝒋))1≤𝑗≤𝑛. The 𝑄2 coefficient gets closer to 1 when cross-validation errors 

decrease. In practice, some characteristics of 𝛼̂𝑘 such as the covariance function identified from the complete 

training set can be used to build meta-models 𝛼̂𝑘,−𝑗  and limit the additional computational cost. More details 

can be found for instance in [7]. Note that in the following, the normalized cross-validation squared error 𝑒𝐶𝑉(𝜽𝒋) 

for point 𝜽𝒋 ∈ 𝑫 refers to: 

 
𝑒𝐶𝑉(𝜽𝒋) =

(𝛼𝑘(𝜽𝒋) − 𝛼̂𝑘,−𝑗(𝜽𝒋))2

𝑠̂𝑘,−𝑗
2 (𝜽𝒋)

 
 

(5) 

with 𝑠̂𝑘,−𝑗
2  the kriging variance associated to meta-model 𝛼̂𝑘,−𝑗. 

 

2.4 Choice of additional points for the design of experiments 

2.4.1 General approach 

If the predictor 𝑦̂ is not accurate enough, in particular with respect to the quality indices introduced above, a 

way to improve its accuracy consists in complementing the training set with additional simulations. As detailed 

in the introduction, several approaches have already been proposed in the literature to perform such active 

learning for a kriging-based meta-model (see [20] for instance for a review). The specificity of our problem lies in 

the simultaneous use of several meta-models 𝛼̂𝑘 to predict property 𝑦 at all locations 𝑿 at once. To combine 

existing adaptive approaches to this configuration, we propose to apply them sequentially to components 𝛼𝑘 

from 1 to 𝐿, e.g., in decreasing order of explained variance. More precisely, at each iteration, we identify the  

components which are not approximated by the current meta-models with sufficient accuracy, and we apply an 

adaptive criterion to the one among them having the smallest index. The idea behind is to reach first a good 

approximation for the main features of the spatial outputs, before considering more detailed ones. The resulting 

approach is described below (Algorithm 2). It corresponds to step 5 of Algorithm 1. The proposed workflow also 

includes the possibility to identify 𝑞 points at a time at each iteration (i.e., without running intermediary 

simulations), what appears as a key functionality if several simulations can be performed simultaneously, for 

instance on a computer cluster. The definition of the adaptive criterion used to identify the next points to be 

simulated is discussed in the next section (2.4.2).  

Algorithm 2  
1) Run through components 𝜶𝒌 in decreasing order of explained variance, or equivalently from 1 to 𝑳, and 

identify the first one 𝒌∗ for which the corresponding meta-model 𝜶̂𝒌∗  is not accurate enough. 

2) Based on meta-model 𝜶̂𝒌∗  characteristics, identify 𝒒 new points 𝜽𝒏𝒆𝒘
𝟏 ,…,𝜽𝒏𝒆𝒘

𝒒  to be simulated, and add 

them to the design 𝑫 ← 𝑫 ∪ (𝜽𝒏𝒆𝒘
𝟏 ,…,𝜽𝒏𝒆𝒘

𝒒 ) 

3) Perform the simulations for 𝜽𝒏𝒆𝒘
𝟏 ,…,𝜽𝒏𝒆𝒘

𝒒
 and complement the training set: 𝒚𝑫 ← 𝒚𝑫 ∪ {𝒚(𝜽𝒏𝒆𝒘

𝟏 , 𝑿),…, 

𝒚 (𝜽𝒏𝒆𝒘
𝒒 , 𝑿)} 



4) Compute the POD of the updated training set 𝒚𝑫 and build kriging-based estimators for the resulting 

components 𝜶𝒌 using 𝒚𝑫. Finally, form the new estimator 𝒚̂ for the target output using (1). 
 

If 𝑞 > 1, a variant of this algorithm consists in rather identifying one point for each of the 𝑞 components with 

the smallest indices that do not have accurate enough predictors. Also note that, as the POD is recomputed for 

each updated training set, components 𝛼𝑘 and basis vectors 𝝓𝒌 may differ from one iteration to the next. In 

addition, this approach boils down to the classical adaptive approach described in previous works for a single 

discretization point (𝑁 = 1). 

The quality criterion considered in Algorithm 2 to identify the meta-model 𝛼̂𝑘∗  to be improved can be defined as 

a target value for the meta-model accuracy, represented by the cross-validation 𝑄2 coefficient (4) or the 𝑅2 

coefficient. In what follows, we consider a target 𝑄2 value of 0.95. 

Finally, if several output properties need to be approximated in the study, Algorithm 2 can be considered to 

complement the training set for each of these properties alternatively from one iteration to the next, or to 

identify points related to each property at each iteration. In what follows, we rather focus on a single output 

property in the sequential process, and then study the potential of the resulting design of experiments to 

accurately predict other properties, or to be used as a starting point to improve predictions on these properties 

if necessary. 

2.4.2 Strategies for the identification of new points  

As mentioned in the introduction, several criteria have been proposed in the literature to complement a training 

set for a kriging-based meta-model. In this work, we focus on three of them to assess the potential of the 

proposed workflow. They are described in the next sections, where 𝛼̂𝑘 denotes the kriging-based estimator to 

be improved and 𝑠̂𝑘
2 its variance. 

Maximum Mean Square Error (MMSE) 

The first criterion considered in this study deals with the Mean Square Error (MSE) corresponding to the kriging 

variance. We consider here that this variance 𝑠̂𝑘
2(𝜽) at 𝜽 ∈ 𝛀 provides some quantification of the uncertainty on 

the prediction 𝛼̂𝑘(𝜽). The next point 𝜽̅ added to the training set is then the one for which the uncertainty 

approximated by the kriging variance is the largest in the parameter space:  𝑠̂𝑘
2(𝜽̅) = 𝑚𝑎𝑥𝜽∈𝛀 𝑠̂𝑘

2(𝜽). Here, 𝜽̅ is 

searched among a Monte Carlo sample of the parameter space of size 10000. However, Sobol’ sequences or 

optimization approaches could also be envisioned in future work (see [20] for instance).  

For a given covariance function, the kriging variance 𝑠̂𝑘
2 only depends on the location of the sampling points in 

the parameter space (see Appendix). This makes it possible to identify several new points in a single iteration as 

described in [20] before running the corresponding simulations.  

This strategy is illustrated in Figure 3. The reference 1D function to be approximated is plotted in blue. The 

training set initially consists of the 4 points highlighted by blue circles. The corresponding initial kriging-based 

predictor is given by the dotted blue line and its associated variance by the black curve. This variance exhibits 

null values at the sampling points and increases between them. The point 𝜽̅ with the largest kriging variance (or 

MSE) is indicated by the red star in the left figure. Complementing the training set with this point leads to the 

updated kriging variance plotted in red in the middle graph. This variance now also exhibits a null value at 𝜽̅  and 

equals the initial MSE for points distant enough from 𝜽̅. The new point corresponding to the largest value of the 

updated variance is again highlighted by the red star. The kriging variance resulting from the integration of this 

second point in the sample is plotted in red in the third graph. Note that here, the predictor (blue dotted line) is 

not updated as the objective is to illustrate the identification of several points in the same iteration. 



 

Figure 3 – Adaptive design strategy based on the MMSE criterion for a 1D function: update of the kriging variance when adding two points 
to the sample during the same iteration 

Local MMSE 

With the previous approach, the next points are searched for in the whole parameter space Ω. Authors in [3,31] 

rather propose to narrow this search space. Here, we refer to the approach introduced in [31]. First, the 

parameter space Ω is partitioned into 𝑛 regions corresponding to the Voronoi polygons of the sample 𝑫. Then, 

the Voronoi cell Ω𝐼  associated to the point 𝜽𝑰 of the training set for which the normalized cross-validation 

squared error (5) is the largest is identified: 𝑒𝐶𝑉(𝜽𝑰) = 𝑚𝑎𝑥𝜽𝒊∈𝑫 𝑒𝐶𝑉(𝜽𝒊). Finally, the next point 𝜽̅ added to the 

sample is chosen in Ω𝐼  according to the MMSE criterion, or equivalently as the point for which the kriging variance 

is the largest in Ω𝐼 . The objective is to better integrate the predictor accuracy in the sequential process. This 

approach is referred to as the Local Maximum Mean Square Error (L-MMSE) in what follows. As for the global 

MMSE criterion, 𝜽̅ is searched for among a large sample of Ω𝐼  that is generated in two steps following [31]: first, 

a Sobol’ sequence is generated in the parameter space Ω; then, the points of the sample that are within the 

subregion Ω𝐼  are identified and stored. This is repeated until a large enough number of points has been found in 

Ω𝐼 . However, in practice, this process can become very long after some iterations, and we resorted for a few of 

the experiences presented in section 3 to loosen the constraint on the Ω𝐼  sampling size to keep reasonable 

computation times. 

To select 𝑞 points at a given iteration, the MMSE criterion is used to identify one point in each of the 𝑞 first 

Voronoi cells sorted by decreasing order of the associated normalized cross-validation squared error 𝑒𝐶𝑉. The 

kriging variance is updated as previously each time a new point is selected. This is illustrated in Figure 4 using the 

same 1D function as above. The Voronoi cell associated to the point with the largest cross-validation error is 

highlighted in grey in the left graph. The first point added to the sample is then the one with the largest kriging 

variance in this subspace (red star) and differs here from the one with the largest MMSE value in Ω. The resulting 

updated kriging variance is plotted in red in the middle figure, where the grey region corresponds to the Voronoi 

cell associated to the point of the training set with the second largest error 𝑒𝐶𝑉.  

 



 

Figure 4 – Adaptive design strategy based on the L-MMSE criterion for a 1D function: update of the kriging variance when adding two points 
to the sample during the same iteration 

 

Integrated Mean Square Error (IMSE) 

The last criterion considered in this paper refers to the integrated value of the MSE over the parameter space, 

referred to as IMSE. The IMSE corresponds more precisely to the area of the region located below the MSE curve 

and highlighted in grey in Figure 5 for the same 1D function as above. The adaptive IMSE criterion then consists 

in identifying the point of the parameter space that, if added to the sample, would induce the largest IMSE 

reduction (or equivalently the smallest updated IMSE). For each candidate point 𝜽∗ ∈ 𝛀, the kriging variance 

corresponding to the sample 𝑫 ∪ 𝜽∗ is computed with the current covariance function, enabling the estimation 

of the corresponding IMSE. This is illustrated in Figure 5 for two candidate points denoted by red stars (graphs in 

the middle and on the right). For each of these points, the corresponding updated MSE is given in red, highlighting 

the resulting reduction of the IMSE. As for the two previous approaches, the process can be repeated to identify 

sequentially several points to be added to the training set before running the corresponding simulations. 

In what follows, the point that minimizes the IMSE is identified using the KrigInv R package [26]. The IMSE is 

estimated using a Sobol’ sequence of size 100 × 𝑑, and the minimization problem is solved using the Genoud 

evolutionary optimization algorithm (GENetic Optimization Using Derivatives).  

 

Figure 5 – Adaptive design strategy based on the IMSE criterion for a 1D function : Computation of the updated IMSE for two candidate 
points  

2.5 Uncertainty studies 

Once accurate predictors are available for the output properties of interest, they can be used instead of the 

simulator to investigate the dynamic behavior of a large number of models within the chosen uncertainty range. 

In particular, they can be used in uncertainty studies to propagate the input uncertainty on the outputs using a 

Monte Carlo approach. A large sample of the parameter space is generated following the parameter probability 



laws, and the corresponding values of the output properties are estimated from the meta-models. This provides 

an estimation of the outputs distribution corresponding to the uncertainty chosen on the inputs. Analyses can 

then be conducted on these distributions, for instance with the computation of percentiles in each grid blocks. 

Note however that the resulting spatial distribution for a given percentile does not necessarily correspond to the 

values simulated for one of the points of the parameter space. Another analysis consists in estimating in each 

grid block the probability of occurrence of some geological events, such as the probability for the sediment 

thickness or sand thickness to lie within a given interval, or the probability that both properties lie simultaneously 

within these intervals [10]. This uncertainty propagation thus provides an overview of the prior uncertainty on 

the outputs, that can be used for instance to check the validity of the chosen uncertainty with regards to the 

available data. It can also be updated if additional information on the parameters become available, for instance 

using sediment thickness maps derived from seismic data as illustrated in section 3.4.  

Quantitative sensitivity studies can also be envisioned to assess the impact of the parameter uncertainties on 

each output of interest. For instance, Sobol’ indices can be estimated based on the meta-model predictions [30]. 

They quantify the part of the output variance resulting from the parameter uncertainty, considering the effect 

of the parameter alone (main effect) or the combined effect with other parameters (interactions). These indices 

range between 0 and 1 and get closer to 1 when the part of the output variance explained by the parameter 

increases. The global sensitivity of the output to a parameter can be estimated by the total effect, equal to the 

sum of all the Sobol’ indices involving this parameter [16]. For spatial properties, Sobol’ indices can be estimated 

in each grid block, providing an overview of the distribution of the parameters influence in the basin and 

highlighting regional disparities (see [10] for instance). 

3. Application to stratigraphic forward modeling 
The approach proposed above is now assessed for risk analysis in stratigraphic forward modeling. We refer to 

the Dionisos model [11, 12, 14] to simulate the evolution of sedimentary basin stratigraphy and morphology over 

geological time as described in section 3.1, considering two case studies derived from real data sets and 

introduced in section 3.2. The first one represents a clastic environment and the second one a carbonate 

platform. The experiments conducted to assess the potential of the proposed sequential workflow are described 

in section 3.3, and the results presented in section 3.4. Finally, uncertainty analyses based on the resulting 

predictors are proposed to illustrate the applicability of the approach. 

3.1 Stratigraphic forward modeling  

Dionisos is a process-based stratigraphic forward model which aims to characterize the sedimentary basin infill, 

and in particular the thickness and sedimentary facies spatial distributions of each layer. All sedimentary facies 

present in the basin are assumed to be described by a finite number of sediments, such as sand and clay for 

clastic sedimentary systems, and carbonate grains, stromatolites or mud for carbonate sedimentary systems. A 

stratigraphic simulation is performed in a forward way, from the past up to the present, in a sequence of time 

steps. At each time step, three main groups of parameters are required, that define respectively the 

accommodation space (e.g., basin deformation induced by subsidence; sea and lake level changes …), the 

sediment supply (e.g., basement and sediment erosion; carbonate production …) and the sediment transport.  

At first, the initial accommodation space and the creation or removal of accommodation space during the 

simulated time interval are defined by a set of maps. The sea or lake level changes are then specified by an 

elevation vs. age curve. 

Second, the supply of water and sediments is defined along the boundaries of the simulated domain through the 

characterization of a few sources (width, location and discharge). The production of carbonate sediments is 

defined by production rate vs. water depth laws. 



Third, the transport of each sediment in the basin is calculated using a large-scale law containing two terms: the 

first one corresponds to slow slope-driven creeping acting mainly along the flanks of carbonate platforms, and 

the second one to faster water- and slope-driven transport of clastic sediments from the deltas to the open sea. 

The creeping used can be expressed as: 

𝑄𝑠,𝑖 = −(𝐾𝑐,𝑖 + 𝐾𝑤,𝑖  𝑞𝑤
𝑚 ‖∇ℎ‖𝑛−1) ∇ℎ 

where 𝑄𝑠,𝑖  [m
2.y-1] is the flux for the sediment 𝑖, 𝐾𝑐,𝑖  [m

2.y-1] is the slow slope-driven creeping coefficient for this 

sediment, 𝐾𝑤,𝑖  [m
2.y-1] is the fast water- and slope-driven coefficient, 𝑞𝑤  is the dimensionless water discharge 

flowing over the land and seafloor of the basin, ℎ [-] is the gradient of the seafloor elevation, and 𝑚 and 𝑛 are 

two constants. 

 

3.2 Test cases  

Case 1 – Clastic environment 

The first case study describes a clastic environment and is derived from the geology and data of the Colville Basin 

in the National Petroleum Reserve of Alaska [e.g., 17, 24]. This basin is part of the foreland basin lying to the 

north of the Brooks Range in Alaska. This study is focused on the late Cretaceous Coleville Group, from 

approximately 89 to 65 Ma and covers an area of 240km X 120km. The initial bathymetry of the basin is given in 

Figure 6(a). It exhibits a continental plateau on the western part, and some east-west convexity in the marine 

part. The long-term accommodation is defined by the subsidence map between 89 and 65 Ma given in Figure 

6(b). It is due to the thrust and folding of the Brooks Range [1] and appears more important in the south-western 

part. An uplift is also visible in the north-west, corresponding to the forebulge of the foreland basin. The resulting 

bottom topography at the end of the simulation period is given in dark blue in Figure 6(c). These maps were 

estimated from the interpretation of seismic data and correlation of wireline logs [4, 5 ,17]. The eustasy curve, 

which drives the short-term accommodation variations, is defined as a combination of the long and short-term 

Haq curves [15]. Sediments consisting of shale and sand enter the basin through water input on the western 

margin of the domain (indicated by the blue arrow in Figure 6(a)) and are transported according to water-driven 

and gravity-driven linear diffusional processes.  

For simulation, the domain is discretized horizontally into 120 X 60 grid blocks of size 2km X 2km. The simulated 

output grid consists of 240 sedimentary layers, each one corresponding to a 0.1 My period.   

The uncertainty study focuses on 9 input parameters specified in Table 1 and characterizing the sediment source, 

sediment transport and eustasy. These parameters are assumed to follow uniform distributions within the 

chosen intervals. The uncertainty on the eustasy curve is represented by a stretching coefficient that perturbs 

the initial reference curve along the sea-level axis as illustrated in Figure 7. The study then aims to quantify and 

analyze the impact of the uncertainty chosen for these parameters on the sedimentary basin infill, and more 

specifically on the horizontal distribution, at the end of the simulation period, of the total deposited sediment 

thickness, concentration and thickness for sand and shale in each column of the grid. The mean and standard 

deviation of sediment thickness, shale thickness and sand proportion for a LHS sample of 40 models are given in 

Figure 8. No deposition occurs in the grid blocks plotted in white. The largest sediment deposition occurs on 

average in the southern part of the marine environment, with a predominance of shale. Sand is mainly deposited 

near the source and the continental plateau. Finally, a strong variability on sediment thickness can be observed 

in the north-east part of the basin. It can probably be explained by the shape of the basin floor that prevents 

sediments from reaching this area for a part of the parameter space, in particular for small values of the shale 

transport coefficient in marine environment.  



 

Figure 6 – Case 1, definition of accommodation: (a) initial bathymetry and sediment source location, (b) subsidence map over the simulation 
period and (c) basin topography at the beginning and end of the simulation period. 

Table 1 – Case 1: Ranges of variation chosen for the uncertain input parameters 

Parameter Min Max 

Source 
definition 

Width (km) 65 95 

Sediment supply (km3/Ma) 200 5000 

Water discharge (m3/s) 450 1350 

Sand concentration (-) 0,1 0,3 

Eustasy Stretching coefficient 0,8 1,2 

Transport 
coefficients  

Water-driven – Marine – Sand (km2/ky) 0,02 2 

Water-driven – Continental – Sand (km2/ky)  50 400 

Water-driven – Marine – Shale (km2/ky) 0,2 8 

Water-driven – Continental – Shale (km2/ky) 500 2500 

 

 

Figure 7 – Case 1: minimal (stretching coefficient = 0.8) and maximal (stretching coefficient = 1.2) variations of the eustasy curve 



 

Figure 8 – Case 1 - Mean (first row) and standard deviation (second row) obtained in each column of the grid for a sample of 40 models and 
three properties of interest (sediment thickness, shale thickness and sand proportion). No deposition occurs in the grid blocks plotted in 

white.  

Case 2 – Carbonate platform 

The second case study corresponds to a lacustrine Aptian carbonate platform located in the central portion of 

the Santos basin [6]. It covers an area of 9km X 34km that is discretized horizontally into 36 X 136 grid blocks of 

size 250m X 250m for simulation. The basin infill is simulated for a period of 2.4My, with outputs provided every 

0.02 My (120 layers in total).  

The initial bathymetry of the basin is given in Figure 9(a). It exhibits a north-south elongated continental platform 

in the center. The long-term accommodation is characterized by a global subsidence. The resulting basin bottom 

topography at the end of the simulation period is given in dark blue in Figure 9(b). These maps were estimated 

from interpretation of seismic data and wireline log data [6]. For short-term accommodation variations, the lake 

level curve is defined from the interpretation of wireline log data in terms of facies and water depth. 

For carbonate production, three assemblages are considered: carbonate grains, stromatolites and mud. The 

production laws considered for these assemblages aim to capture all the biological and physical processes acting 

at the chosen time and space discretization steps. They are given in Figure 10. Then, a slow slope-driven creeping 

process is considered for transport [14].  

The study conducted here focuses on 12 input parameters related to carbonate production laws, 

accommodation, and sediment transport. These parameters and their ranges of variations are given in Table 2. 

They are assumed to follow uniform distributions except for the creeping diffusion coefficients: for these 

parameters, the uniform distribution applies to their log10 transformation. The corresponding variations of 

eustasy, carbonate production curves and initial bathymetry are illustrated in Figure 11. For carbonate 

production laws, two parameters are considered to stretch the initial curves along the depth and production 

axes: the maximum production rate, and the depth corresponding to this maximum value. For eustasy, a 

stretching is applied to the initial curve in the sea level direction similarly to Case 1. Finally, a reference map for 

initial bathymetry is perturbed from its upper and lower points: the bathymetry at these points is changed 

proportionally to a stretching coefficient and the resulting values are propagated to the whole map by 

interpolation.  

Seven output spatial properties are considered in the study to assess the potential of the proposed sequential 

workflow. They correspond to the horizontal distribution, at the end of the simulation period, of the total 

deposited sediment thickness, concentration and thickness of each carbonate assemblage (carbonate grains, 

stromatolites and mud) in each column of the grid. The mean and standard deviation of the total sediment 

thickness and carbonate proportions for an LHS sample of 40 models are given in Figure 12. The carbonate grains 

and stromatolites assemblages are mainly deposited on and near the initial continental platform, with higher 



proportions for carbonate grains. Mud is the main sediment type deposited in the distal marine environment, 

where the variability in deposited sediment thickness is also the largest.  

 

 

Figure 9 – Case 2, definition of accommodation: (a) initial bathymetry and (b) final and initial basin topography characterizing subsidence 
over the simulation period 

 

Figure 10 – Case 2: production laws for the three carbonate assemblages as functions of water depth 

Table 2 - Case 2: Ranges of variation chosen for the uncertain input parameters 

Parameter Min Max 

Carbonate production laws 

Carbonate Grains – Depth of max. prod. rate (m) 7.05 21.15 

Carbonate Grains – Maximum production rate (m/My) 32 96 

Stromatolites – Depth of max. prod. rate (m) 17.3 51.9 

Stromatolites – Maximum production rate (m/My) 32 96 



Mud – Depth of max. prod. rate (m) 50 150 

Mud – Maximum production rate (m/My) 32 96 

Eustasy Stretching coefficient (-) 0,5 1,5 

Creeping diff.  coef. in 

marine env. (km2/ky) 𝐾𝑐,𝑖   

Carbonate Grains 0.35 0.7 

Stromatolites 0.35 0.7 

Mud 0.35 0.7 

Bathymetry 
Stretching coefficient applied to the initial map lower point 0.8 1.2 

Stretching coefficient applied to the initial map upper point 0.8 1.2 

 

 

Figure 11 – Case 2: impact of parameter perturbations on the production laws, eustasy curve and initial bathymetry 

 

Figure 12 – Case 2: Mean (first row) and standard deviation (second row) obtained in each column of the grid for a sample of 40 models and 
four properties of interest (sediment thickness, mud, carbonate grains and stromatolites proportions)  

 

3.3 Sequential experiments  

To apply the sequential workflow described in section 2 to the two test cases, we consider first each output 

property of interest in separate processes. In addition, as described in section 2.2, the POD and meta-modeling 

are applied to the square root of sand thickness and concentration for test case 1, and to the square root of the 

carbonate grains and stromatolites properties for test case 2. Using this transformation globally provides here 

better results, probably because the considered properties exhibit many low values in the basin. An initial sample 

of the parameter space is generated using Latin Hypercube Sampling (LHS). It is of size 10 for the first test case, 

and of size 15 for the second one, so with a few more simulations than the number of uncertain parameters. For 

each output property, this sample is complemented sequentially using the three criteria described above and 



considering 1 and 5 points added per iteration for each criterion. In total, 6 different sequential methods are thus 

evaluated per output. As meta-models can vary from one training set to the other, each of these experiments is 

repeated from four other initial LHS of the same size to obtain more robust comparisons and conclusions (these 

starting samples being the same for all experiments and properties of a given test case). The components 

retained in the POD decomposition correspond to a percentage of cumulated variance of 98% for test case 1 and 

99% for test case 2. Finally, all experiments are stopped after 150 simulations in total. 

This ensemble of experiments is complemented with non-sequential ones that serve as a basis for comparison: 

LHS of various sizes up to 150 are considered to build predictors for the outputs of interest. As previously, five 

different LHS of a given size are generated to obtain more robust results. 

3.4 Results  

The first part of this section is dedicated to the presentation and analysis of the results in terms of efficiency and 

prediction accuracy. The second part describes uncertainty analyses performed with the resulting estimators. 

Meta-modeling 

To estimate the accuracy of the predictors obtained through the sequential processes, we introduce for both 

test cases an additional independent LHS of size 40, the test ensemble 𝑫𝒕𝒆𝒔𝒕, and we perform the corresponding 

simulations. The 𝑅2 coefficient (2) computed for this ensemble serves in the following to compare the various 

experiments in terms of efficiency. 

Figure 13 and Figure 14 show the evolution, for each output property, of the median 𝑅2𝑚 value (3) averaged 

over the 5 similar experiments as a function of the number of simulations constituting the training set. The blue 

curves correspond to the MMSE criterion, the red curves to the IMSE criterion and the green ones to local MMSE. 

The initial samples are complemented here with 1 point per iteration (𝑞 = 1 in Algorithm 2). These results are 

compared to the non-sequential ones obtained with LHS of various sizes generated independently (from 10 or 

15 up to 150) and given by black circles. We can observe that, in all cases, the predictor accuracy increases rapidly 

with the number of simulations at the beginning of the process before a much slower improvement phase: for a 

sufficient number of simulations in the training set, the new ones added to the ensemble only make it possible 

to slightly improve predictions. For the first test case (Figure 13), the MMSE and L-MMSE criteria appear the less 

efficient with regards to the 𝑅2𝑚 value and can provide a slightly lower accuracy on average than LHS-based 

training sets of the same size. On the contrary, the IMSE criterion appears globally equivalent to LHS. For the 

second test case (Figure 14), the local MMSE criterion (L-MMSE) can lead to a better efficiency compared to 

global MMSE at the beginning of the process (carbonate grains and stromatolites properties), but then its 

performances increase more slowly and can become worse at the end of the experiments. In addition, the 

current implementation of this approach is quite long as the identification of points in the target Voronoi cell 

may be time consuming. Compared to LHS, the MMSE and IMSE criteria can provide better results for some 

properties, in particular for the carbonate grains and stromatolites assemblages. Globally, the IMSE seems here 

the best trade-off : it provides better results than LHS for the properties that are the most difficult to predict 

(stromatolites properties in test case 2) and globally equivalent results otherwise.  

The evolution of the 𝑅2 coefficient spatial distribution during the sequential experiments is illustrated in Figure 

15 for sand proportion in test case 1, and in Figure 16 for carbonate grains proportion in test case 2. These figures 

show more specifically the spatial distribution of the 𝑅2 coefficient in each grid block averaged over the five 

similar experiments and obtained at different steps of the process: the LHS-based results are compared to the 

ones obtained sequentially with the three criteria and 1 point added per iteration. Grid blocks in white 

correspond to negative 𝑅2 values. These results complement the ones obtained previously with the 𝑅2𝑚 index. 

Indeed, we can see a global strong improvement of the predictions between the initial samples and the training 

sets of size 50 in test case 1, and of size 60 in test case 2. At that point, the 𝑅2 value is close to one in many grid 

blocks, what limits the possible improvement during the following iterations. For test case 1, the IMSE criterion 

leads to the fastest improvement as already highlighted previously, while the L-MMSE criterion appears the less 



efficient after 90 simulations. In addition, the sand concentration seems more difficult to predict accurately in 

terms of 𝑅2 value in the north part of the basin. This area corresponds however to very low concentration values 

(see also Figure 8), and more simulations could be considered to improve the predictions if the region is of 

interest for further analysis. However, the trends are globally reproduced as will be illustrated later on. For test 

case 2, Figure 16 highlights the fastest accuracy improvement at the beginning of the process using the L-MMSE 

criterion. However, the results become equivalent for all approaches after some time as the proportions are well 

predicted in all grid blocks. 

The impact of the number of points added to the sample per iteration is summarized in Figure 17 and Figure 18. 

These graphs show the evolution of the average median coefficient 𝑅2𝑚 as a function of the number of 

simulations in the training set, considering for each criterion 1 point (solid lines) and 5 points (lines with circles) 

added per iteration. Here, the simulations are assumed to be performed sequentially to enable comparisons in 

terms of accuracy. The results highlight that the batch version of the algorithm (𝑞 > 1 in Algorithm 2) does not 

degrade the results, even if the covariance properties are not updated between the identification of two 

successive points within each iteration. As a result, the identification of several points per iteration makes it 

possible to gain time without loss of efficiency if the corresponding simulations can be run simultaneously, for 

instance on a computer cluster.  

The results discussed so far refer to the application of the sequential workflow to a single spatial output at a 

time. In practice, the uncertainty study may concern several output properties, identified at the beginning of the 

study or afterwards for additional analyses. As explained in section 2.4, several options can be envisioned to 

integrate multiple outputs simultaneously in the sequential process. Here, we rather assess the ability of a  

sampling identified sequentially for a given property to provide accurate estimations for other outputs of 

interest. Figure 19 and Figure 20 show, for each output property, the evolution of the average 𝑅2𝑚 values for 

the predictors of this property built from all the sequential training sets based on the IMSE criterion applied to 

the property itself and to the other ones. Here, five points are added per iteration. We can observe that, for a 

given property, the accuracy obtained with the sequential samples based on the other outputs may be lower. 

However, some properties seem to provide a good trade-off, leading to satisfactory results for all other 

properties. This is the case for instance for sand proportion in test case 1, and for carbonate grains proportion in 

test case 2. The global level of accuracy reached at the end of the sequential process with these two properties 

is illustrated in Figure 21 and Figure 22. They compare, for two models of the test samples, the values simulated 

for each output properties with the ones predicted using the training set obtained at the end of one of the IMSE-

based experiments applied to sand proportion for test case 1 and to carbonate grains proportion for test case 2. 

Differences can be noticed, but the trends are globally reproduced. These results could probably be improved 

with additional points in the training set. 



 

Figure 13 – Test case 1: for each output property of interest, evolution of the median value of the R2 coefficient in the grid blocks (𝑅2𝑚) 
averaged over the five similar experiments as a function of the number of simulations in the training set 

 

 

Figure 14 – Test case 2: for each output property of interest, evolution of the median value of the R2 coefficient in the grid blocks (𝑅2𝑚) 
averaged over the five similar experiments as a function of the number of simulations in the training set 



 

Figure 15 – Test case 1, sand proportion: evolution of the R2 coefficient in each grid block averaged over the five similar experiments, for the 
initial samples (first column) and samples of size 20 (column 2), 50 (column 3) and 90 (column 4), corresponding to LHS (first line) or 

obtained during sequential processes with the MMSE criterion (line 2), the IMSE criterion (line 3) and the local MMSE criterion (line 4).  



 

Figure 16 – Test case 2, Carbonate Grains proportion: evolution of the R2 coefficient in each grid block averaged over the five similar 
experiments, for the initial samples (first column) and samples of size 30 (column 2), 60 (column 3) and 100 (column 4), corresponding to 

LHS (first line) or obtained during sequential processes with the MMSE criterion (line 2), the IMSE criterion (line 3) and the local MMSE 
criterion (line 4).  

 

 



 

Figure 17 – Test case 1: for each output property of interest, evolution of the median value of the R2 coefficient in the grid blocks (𝑅2𝑚) 
averaged over the five similar experiments as a function of the number of simulations in the training set, considering 1 point (solid lines) and 

5 points (lines with circles) added per iteration. All simulations are assumed to be performed sequentially. 

 

Figure 18 – Test case 2: for each output property of interest, evolution of the median value of the R2 coefficient in the grid blocks (𝑅2𝑚) 
averaged over the five similar experiments as a function of the number of simulations in the training set, considering 1 point (solid lines) and 

5 points (lines with circles) added per iteration. All simulations are assumed to be performed sequentially. 

 



 

Figure 19 – Test case 1: for each property of interest, evolution of the average median value of the R2 coefficient in the grid blocks (𝑅2𝑚) 
using the samples obtained with the IMSE criterion and 5 points per iteration applied to all properties 

 

Figure 20 – Test case 2: for each property of interest, evolution of the average median value of the R2 coefficient in the grid blocks (𝑅2𝑚) 
using the samples obtained with the IMSE criterion and 5 points per iteration applied to all properties 

 



 

Figure 21 – Test case 1: Simulated and predicted values of the properties of interest for two models of the test sample, using the training set 
obtained at the end of one of the IMSE-based sequential workflows applied to sand proportion 



 

Figure 22 – Test case 2: Simulated and predicted values of the properties of interest for two models of the test sample, using the training set 
obtained at the end of one of the IMSE-based sequential workflows applied to carbonate grains proportion 

Uncertainty analysis  

Once the predictions obtained for the outputs of interest are satisfactory, they can be integrated in the 

uncertainty study.  

Case 1 - Clastic environment 

For the first test case, we consider the predictors built on the training set of size 150, obtained with the IMSE 

criterion applied to sand proportion with 5 points added per iteration and illustrated in Figure 21. The P10, P50 

and P90 percentile maps obtained for sand thickness are given in Figure 23, top row. Note that these percentiles 

are computed independently in each column so that the percentile map does not necessarily correspond to the 

values simulated for a given model. As shown in Figure 24, the distribution of the total deposited sediment 

thickness is mainly influenced by three parameters for the chosen input uncertainty: water discharge, sediment 

supply and shale diffusion coefficient in the marine environment. More specifically, the sediment deposition is 

mainly driven by the value of the sediment supply, except in the north-east part of the basin. As already 

mentioned in section 3.2, this area is located on the other side of a convexity in the initial topography. The 

sediment thickness in this area then mainly depends on the value of the shale diffusion coefficient and water 

discharge that condition the ability of the sediments to pass over the convexity. 

Let us now assume that a data map 𝑦𝑟𝑒𝑓  is available for the sediment thickness, derived for instance from seismic 

acquisition. In this study, we simply choose a reference model within the uncertainty space that is not used in 

the sequential process and from which we extract the sediment thickness map given in Figure 25(a). Let us now 

illustrate how we can exploit the current sample to gain information on the parameters from these data and help 



in the calibration process. We introduce a quantification of the error 𝐸 between the reference data map and any 

other thickness map 𝑦 (that can be simulated or estimated from meta-models) using the least-square 

formulation: 𝐸(𝜽) =
1

2𝑁
∑ (𝑦(𝜽, 𝒙𝒊) − 𝑦𝑟𝑒𝑓(𝒙𝒊))2

𝑖=1..𝑁  for any set of parameter values 𝜽 ∈ Ω. The value of this 

error computed for the 150 models of the training set is given by the red points in Figure 26 as a function of each 

input parameter value. The black circles correspond to the error predicted for another sample of size 4000 using 

the kriging-based meta-model built on √𝐸 with the 150 models and exhibiting a satisfying 𝑅2 coefficient of 0.96. 

These results suggest that we could envision to reduce the variation interval on the three parameters that mainly 

impact the sediment thickness, namely water discharge, sediment supply and shale transport coefficient in 

marine environment. This uncertainty propagation also makes it possible to identify new models with potentially 

low error values that could be used as starting points for calibration. Finally, it can be considered to constrain 

the uncertainty on the other outputs of interest as a first approximation. For instance, the percentiles on the 

sand thickness map computed from the subsample exhibiting an error lower than 4000 is given in Figure 23 

(second row). The P50 values appear closer to the reference sand thickness map given in Figure 25(b). Note 

however that this subsample does not correspond to the parameter posterior distribution conditioned to the 

data. In addition, for real cases, sampling criteria dedicated to optimization such as the Expected Improvement 

[18] should be considered prior to this analysis to identify additional regions of the parameter with low error 

values. This is however beyond the scope of our study.  

 

 

Figure 23 – Test case 1: P10, P50 and P90 percentiles computed on sand thickness for the complete Monte Carlo sample (top) and for the 
subsample corresponding to predicted errors lower than 4000 (bottom) 

 

Figure 24 – Test case 1: Total effect computed for the three parameters that mainly impact the deposited sediment thickness 



 

Figure 25 – Test case 1: reference sediment and sand thickness maps 

 

Figure 26 – Test case 1: Error value computed for the training set (red circles) and predicted for the Monte Carlo sample (black circles) as a 
function of each input parameter value. The blue vertical lines indicate the parameter values used to generate the data. 

 

Case 2 - Carbonate platform 

Let us now focus on risk analysis for the carbonate case. As previously, sensitivity indices and percentile maps 

can be computed for the outputs. Here, we rather focus on a new property of interest, the reservoir thickness. 

This geological object can be approximated as the carbonate sediment thickness in each column of the grid. 

Following [13], we rather define it in a diachronous way: in each column of the grid, it is taken equal to the 

cumulated thickness of all the cells located below the lowest sedimentary deposit containing more than 10% 

mud, with some tolerance on the bottom layers. The mean and standard deviation of the reservoir thickness for 



the test sample of 40 models are given in Figure 27(a)(b). This thickness is thus the largest on and near the initial 

continental platform, with a very small variability in the other areas. The evolution of the prediction accuracy for 

this property during the sequential process based on the IMSE criterion applied to carbonate grains proportion 

with 5 points added per iteration (illustrated in Figure 22) is given in Figure 27(c) as a function of the sample size 

(on the left of the vertical bar). The distribution of the average 𝑅2 value in each grid block at the end of this 

process (sample of 150 models) is given in Figure 27(d). The reservoir thickness thus appears satisfactorily 

predicted in most parts of the basin, except on the boarder of the thickest area (blue cells). As a result, we started 

a new sequential process following Algorithm 1 from the training set of 150 models, applying the IMSE criterion 

directly on the reservoir thickness. The resulting evolution of the median coefficient 𝑅2𝑚 is given on the right of 

the vertical bar in Figure 27(c). The sequential process thus enables to improve further the predictions as also 

illustrated in Figure 27(e).  

The resulting predictions can then be considered to compute maps of percentiles, to estimate the probability for 

the reservoir thickness to be larger than a given value (Figure 28), or to perform a sensitivity study (Figure 29). 

We could also envision, as previously, to use these predictions as a starting point for calibration. Finally, Figure 

30 summarizes the analysis performed on the total reservoir volume deduced from the reservoir thickness maps. 

The predictor built for this scalar property with the training set appears very accurate as illustrated in Figure 

30(b). The Sobol’ indices provide results that are consistent with the ones obtained for the reservoir thickness 

map (Figure 30(a)) while uncertainty propagation makes it possible to estimate the probability distribution for 

the reservoir volume (Figure 30(c)). 

 

 

Figure 27 – Test case 2, reservoir thickness: (a) mean values and (b) standard deviation for the test sample, (c) evolution of the average 
median value 𝑅2𝑚; (d) spatial distribution of the 𝑅2 value in the basin with a training set of 150 and (e) 400 simulations 

 

Figure 28 – Test case 2: Reservoir thickness percentiles and probability maps 



 

Figure 29 – Test case 2: Total effect computed for the seven parameters that mainly impact the reservoir thickness 

 

 

Figure 30 - Test case 2 : (a) main and total effects estimated for the total reservoir volume, (b) simulated vs predicted value of the reservoir 
volume for the test set and (c) distribution of the reservoir volume for the uncertainty space 

 

4. Conclusions and perspectives 
In this paper, we developed a sequential workflow that automatically complements an initial training set to 

improve kriging-based predictions for spatial outputs of interest. This approach is generic and can be combined 

to multiple adaptive criteria. Here, three of them were considered for validation on two synthetic stratigraphic 

forward models, corresponding to a clastic environment and a carbonate platform: the MMSE criterion, the local 

MMSE and the IMSE. The results on various output properties show that the approach makes it possible to 

improve the accuracy of the predictions. No sequential criterion clearly outperforms the others here. This may  

be due to the fact that they all rely on the use of the kriging variance as an uncertainty indicator on the 

predictions, or by the shape of the input-output relationship to be approximated. However, the IMSE appears 

globally the most robust in our experiments: it outperforms here LHS-based training sets for the output 

properties that are the most difficult to predict and provides equivalent results otherwise. The proposed 

workflow thus makes it possible to iteratively build training sets with a satisfactory efficiency in terms of 

simulation time and prediction accuracy. The user does not need to bother about the training set definition, what 

should facilitate the applicability of the kriging-based risk analysis workflow. In addition, several models can be 

added at a time to the sample without degrading the efficiency of the process, and the approach can be applied 

for multiple properties simultaneously or sequentially, for instance if a new output of interest comes up during 



the study. However, the use of adaptive criteria does not clearly improve the process efficiency here compared 

to LHS for many properties. This may be due to the fact that a globally homogeneous sample of the parameter 

space is required to correctly approximate these outputs. Some properties still require a non-negligible number 

of models to be properly estimated. It could thus be interesting in future work to evaluate other iterative criteria, 

e.g., geometrical, or to use adaptive ones differently. Other investigations could concern the reduced-basis 

decomposition approach or the use of faster models in the training process to reduce simulation times, e.g., 

defined with coarser discretization in time and space (multi-fidelity meta-modeling).  

Finally, uncertainty analyses were conducted with the predictors to highlight the advantages of the approach. In 

particular, the reasonable time necessary to investigate a large number of models makes it possible to perform 

statistical analyses, e.g., to quantify the impact of the input parameters and to estimate the output distributions. 

A preliminary study was also performed for calibration on synthetic data. Even if this work focuses on spatial 

output properties, meta-models can be built to estimate any other continuous scalar, time-dependent or depth-

dependent output, and in particular the cost function that quantifies the error between the observed and 

simulated data. Depending on the data observed on the basin, it can be envisioned to combine the estimations 

obtained for various properties in order to estimate the appropriate ones to be compared to the observed data. 

In future work, it would be interesting in future work to study in more detail the use of meta-models for 

calibration, e.g., combined to minimization algorithms, and to consider real data for validation.  
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Appendix  
To approximate components 𝛼𝑘 , 𝑘 = 1, . . . , 𝐿, in the estimator (1), we consider here Gaussian processes (also 

referred to as kriging-based meta-models): each component is assumed to be a realization of a Gaussian process 

𝐴𝑘(𝜽) defined by  

 𝐴𝑘(𝜽)  = 𝑚𝑘(𝜽) + 𝑍𝑘(𝜽)  

𝜽 ∈ ℝ𝑑   denotes the input parameters. 𝑚𝑘(𝜽) represents the mean of the Gaussian process and is chosen 

constant here (𝑚𝑘(𝜽) = 𝑚𝑘). 𝑍𝑘(𝜽) is a stationary Gaussian process with zero mean and covariance 𝐶𝑘. It 

represents the fluctuations around the mean. 𝐶𝑘 is defined here with a parametric form as 𝐶𝑘(𝜽, 𝜽′) =

𝜎𝑘
2𝑅𝑘(𝜽, 𝜽′) with 𝜽, 𝜽′ ∈ ℝ𝑑, 𝜎𝑘

2 being the process variance and 𝑅𝑘 the correlation function, chosen as the 

Matérn 5/2 function [23] in what follows. 

Then, the best linear predictor of 𝜶𝒌 at a new point 𝜽∗ given 𝜶𝒌
𝑫 is: 

 𝛼̂𝑘(𝜽∗)  = 𝑚𝑘 + 𝒓𝒌
𝑻(𝜽∗)𝑹𝒌

−𝟏(𝜶𝒌
𝑫 − 𝑚𝑘𝑰)  

where 𝑰 ∈ ℝ𝒏 is a vector of ones. 𝑹𝒌 ∈ ℝ𝒏×𝒏 and 𝒓𝒌(𝜽∗) ∈ ℝ𝒏 are defined as: (𝑹𝒌)𝒊𝒋 = 𝑹𝒌(𝜽𝒊, 𝜽𝒋) and 

(𝒓𝒌)𝒋(𝜽∗) = 𝑹𝒌(𝜽𝒋, 𝜽∗). The variance of predictor 𝜶̂𝒌 at 𝜽∗, also called kriging variance, is given by: 

 

𝑠̂𝑘
2(𝜽∗) = 𝜎𝑘

2 (1 − (1 𝒓𝒌
𝑻(𝜽∗)) (

0 𝑰𝑻

𝑰 𝑹𝒌
)

−𝟏

(
1

𝒓𝒌(𝜽∗)))  

It represents the model mean square error and equals zero at the sampling points 𝑫.  



The quality of estimator 𝛼̂𝑘 can be assessed using cross-validation as described in section 2.3 (Equation (4)), or 

using the test ensemble 𝑫𝒕𝒆𝒔𝒕 = {𝜽̃𝟏, … . , 𝜽̃𝑛𝑡𝑒𝑠𝑡}, 𝜽̃𝒊 ∈ Ω.  In this case, its predictivity can be assessed as in 

Equation (2) by: 
 

𝑅2(𝛼̂𝑘) = 1 − 
∑ (𝛼𝑘(𝜽̃𝒋) − 𝛼̂𝒌(𝜽̃𝒋))2𝑛𝑡𝑒𝑠𝑡

𝑗=1

∑ (𝛼𝑘(𝜽̃𝒋) − 𝛼̅𝑘)2𝑛𝑡𝑒𝑠𝑡
𝑗=1

  

For all 𝑗 ∈ {1, … , 𝑛𝑡𝑒𝑠𝑡}, 𝛼𝑘(𝜽̃𝒋) is the projection coefficient of 𝑦(𝜽̃𝒋, 𝑿) on the basis vector 𝜙𝑘(𝑿), and 𝛼̅𝑘 the 

mean of the resulting 𝑛𝑡𝑒𝑠𝑡 coefficients.  
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