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A B S T R A C T   

Proton Exchange Membrane Fuel Cells are a favorite technology for decarbonizing the transportation sector. 
However, their large-scale democratization is hampered by their high cost compounded by their unsatisfactory 
lifespan. To anticipate potential degradation while keeping improving performance, it is essential to maintain an 
acceptable humidity range inside the cells, especially at the membrane level. However, membrane humidity level 
is not directly measurable, alternative techniques must be considered to recover this key variable. Here, we 
develop a real-time software sensor of the membrane water content at the fuel cell’s heart. We build a model 
describing the membrane water balance, electrochemical behavior, and species mass balance. We then reduce 
the model and perform an Adaptive Extended Kalman Filter. We perform sensitivity analyses in both steady-state 
and transient conditions. We validate the filter on a “Worldwide Harmonized Light Vehicles Test Cycles” test 
procedure. Finally, we obtain a fast and accurate model-based software sensor.   

1. Introduction 

Addressing the challenge of finding new energy sources and carriers 
is crucial for reducing global greenhouse gas emissions. Hydrogen is a 
promising alternative for certain uses, such as freight, rail, or maritime 
transport, provided that its production results in sufficiently low carbon 
emissions [1]. In this context, the Polymer Electrolyte Membrane Fuel 
Cell (PEMFC) is currently the subject of intensive and extensive 
research. It is one of the preferred technologies for decarbonizing the 
transport sector, especially for heavy transport vehicles, due to its au-
tonomy and ease of recharging. The main limitations to the dissemina-
tion of this technology are its lifetime and cost. Although technological 
improvements span across many domains, this paper specifically focuses 
on advanced system control strategies. The aim is to enhance the use and 
lifetime of a fuel cell while preventing further damages. 

Controlling a Proton-Exchange Membrane Fuel Cell (PEMFC) in-
volves managing the supply of reactants (oxygen and hydrogen) to the 
membrane while controlling their thermodynamic states (pressure, 
temperature, and humidity). Sensors are available in the air and 
hydrogen systems to enable proper management of the fuel cell. How-
ever, certain inner states of the fuel cell that could be advantageous for 
control strategies are not always accessible due to technical complexity 
or the cost of measurement devices. One important example of a 

valuable inner state is the water content of the membrane. 
Understanding the behavior of the water content of the membrane is 

crucial for monitoring proton conductivity and fuel cell performance 
during a mission profile. Additionally, the membrane water content is 
important for degradation assessment. A dry membrane can lead to 
increased electrical resistance and a higher likelihood of pinhole 
degradation, as explained in Ref. [2]. On the contrary, if the membrane 
is too wet, it can flood the cathode diffusive layer, leading to a decrease 
in performance and accelerated degradation [3]. Monitoring the water 
content of a PEMFC is a necessary and challenging objective. There are 
several methods for estimating the water content of the membrane. 

Ohmic resistance measurement. Knowledge of ohmic losses in voltage 
can provide relevant information on the water content of the membrane. 
Recent research papers have focused on reconstructing the membrane 
water content using the ohmic resistance of the fuel cell. In Ref. [4], the 
authors develop an estimator for the membrane water content of a fuel 
cell. This is achieved by using a water transport model and measuring 
fuel cell impedance through EIS (Electrochemical Impedance Spectros-
copy), as well as inlet and exhaust gas concentrations on the anode and 
cathode sides. A recent overview of EIS sensors for fuel cell applications 
can be found in Ref. [5]. However, prior planning is necessary to inte-
grate the sensor into the system and estimate additional costs. 

Ohmic resistance estimation. Designing a state observer of the ohmic 
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resistance can eliminate the need for a sensor to calculate the membrane 
water content. In Ref. [6], instead of measuring the fuel cell impedance, 
the authors design an Extended Kalman Filter for its real time recon-
struction. In Ref. [7], the authors present a 2D model of a PEMFC and 
construct an Extended Kalman Filter as a state observer to estimate the 
evolution of the concentrations of the various species in the cathode-side 
stack, as well as the ohmic resistance. In Ref. [8], a double Kalman filter 
can be used to estimate the ohmic resistance of the fuel cell based on 
measurements of the cell’s output voltage and current. The equation that 
relates the water content of the membrane to the ohmic resistance can be 
inverted to determine the water content. However, reducing the esti-
mate of water inside the fuel cell to its link with ohmic resistance is an 
incomplete approximation. It is more informative to strengthen this 
connection by incorporating a physical model of water transport 
phenomena. 

Abbreviations and nomenclature  

α Cathode transfer coefficient 
ΔH Reaction LHV at STP 

(
− 241.83 kJ.mol− 1

)

ΔS Entropy of reaction at STP 
(
− 163.34JK− 1mol− 1

)

γ Kinetic reaction order 
σp Ionomer protonic conductivity 

(
Scm− 1)

aa Membrane absorption coefficient 
(
cms− 1)

ad Membrane desorption coefficient 
(
cms− 1)

cf Concentration of fixed charge sites 
(

molm− 3
)

Eact Catalytic activation energy 
(

J.mol− 1
)

Erev Theoretical reversible voltage (V)
F Faraday constant 

(
Asmol− 1

)

j Cell current density 
(
Acm− 2)

jL Limiting current density 
(
Acm− 2)

j0ref Exchange current density at reference conditions Pref and Tref 
(
Acm− 2)

Ncell Cell’s number 
PX Partial pressure of species X in gas channel (Pa)
R Universal gas constant 

(
8.314JK− 1mol− 1

)

Scell Active surface area 
(
cm2)

xm Membrane thickness (m)

xCL Catalyst Layer thickness (m)

xGDL Gas Diffusion Layer thickness (m)

CL Catalyst Layer 
GDL Gas Diffusion Layer  

Direct humidity estimation. The objective of this task is to design a 
state observer that can estimate fuel cell humidity using a representative 
physical model of the water dynamics with well-chosen and easily 
measurable outputs. In the context of PEMFC simulation, it is essential to 
consider the nonlinear modeling, which includes the electrochemical, 
liquid, and gas transport phenomena inside the multiple constitutive 
layers of a PEMFC. In Ref. [9], the authors employ a Luenberger 
observer to estimate the various species present in the cathode and 
anode gas channels. They then use this information to deduce the 
membrane water content. A similar methodology is found in Ref. [10]. 
On the other hand, if we can compute first-order derivatives, the 
Extended Kalman Filter is well-suited for nonlinear systems. In Ref. [11], 
the authors develop a constrained Extended Kalman Filter that in-
corporates species dynamics in multiple layers and water activity in the 
membrane. This model has the advantage of working in challenging 
operating conditions, such as start-up and shutdown. Water modeling is 
straightforward, as it only calculates the average water activity between 
the anode and cathode. In Ref. [12], the authors address the issue of 
determining cathode flooding in PEMFCs using a model-based approach 
combined with an Unscented Kalman Filter. This filter is derived from 
the usual Kalman observer, but has the advantage of not requiring a 
Jacobian, which would slow down computation time. The method is 
typically more robust but does not converge exponentially. In Ref. [13], 

the authors build a high-order model-based sliding mode observer with 
chattering capabilities to recover the temperature of the fuel cell and the 
liquid saturation. The chosen model requires many parameters to be 
tuned for real operations. Besides, in Ref. [14], the authors introduce an 
observer to estimate liquid water in the catalyst layer. In Ref. [15], the 
authors design a novel observer based on an extended Kalman filter and 
a specific differential detectability property to estimate both the tem-
perature and the liquid saturation at the cathode catalyst layer. The 
previous observers do not account for water membrane dynamics. In 
Ref. [16], the authors aim to reconstruct both gas species and membrane 
water content using a sliding mode observer based on anode pressure 
and membrane resistance measurements. Several articles have high-
lighted the effectiveness of sliding-mode observers (SMOs) in estimating 
various inner states of PEMFC. For example, in Ref. [17], the authors 
construct a state observer for estimating membrane water content. This 
observer is based on an empirical dynamic voltage model. They then use 
a sliding-horizon observer and close the loop with voltage measure-
ments. Then, they recover the membrane content by inverting the 
relationship between ohmic losses and membrane water content. In 
Ref. [18], the authors construct an adaptive sliding-horizon observer, 
based on an empirical electrochemical model. They then recover the 
relative humidity by inverting an equation that links it to the fuel cell 
voltage. From data-based side, we can find in Ref. [19] a dynamic partial 
least squares regression method to predict the moisture content of the 
fuel cell membrane. The algorithm is trained using measurements of 
voltage, current, and relative humidity at both the anode and cathode. In 
Ref. [20], the authors suggest an adaptive sliding mode estimation al-
gorithm with operational conditions to recover the humidity conditions 
of the cathode and anode. In Ref. [21], the authors present an update 
with an adaptive sliding mode observer thanks to a third-order PEMFC 
humidity model that considers membrane water dynamics. The hu-
midity observer focuses on water pressures in the anode and cathode 
volumes, as well as membrane water content. However, the current 
literature still presents simple models where the membrane’s water 
management process is not accurately modeled. Additionally, most 
literature on fuel cell humidity uses 1D modeling, but more precise in-
formation would be beneficial. 

To address the underlined issues, this paper specifically focuses on 
determining the water content in the membrane using easily obtainable 
measurements. One possible relevant contribution that has not yet been 
explored for estimating water content is the use of a state observer based 
on a model that considers the main water transport effects that occur in 
the membrane, such as diffusion, electroosmotic effect, and sorption 
phenomena, using a three-point discretization in the through-the- 
membrane direction to accurately capture the water content at the 
core of the membrane. We utilize an implicit nonlinear observer model 
as our observation strategy. This model is based on an adaptive 
Extended Kalman Filter, which was inspired by Ref. [22]. This paper 
presents a non-binding estimate of water content within the membrane, 
based solely on reachable measurements such as PEMFC voltage and 
current. 

The paper is structured as follows: Section 2 introduces the PEMFC 
plant model, which consists of three parts: electrochemical modeling, 
membrane water content system, and mass balance equations. Section 3 
presents the reduced model, and Section 4 describes the resulting 
adaptive Extended Kalman Filter. The article concludes in Section 5 with 
numerical examples that demonstrate the effectiveness of the designed 
observer. 

2. PEMFC model 

The following assumptions are made for the PEMFC model consid-
ered in this work.  

- The cell is isothermal, and the temperature is a given parameter. 
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- No liquid water transport in Gas Diffusion Layers (GDL) is considered 
in this work.  

- A hydrogen recirculation loop is modeled with either an active 
(pump) or passive (ejector) system.  

- Gas diffusion transport in all cell layers is considered in steady state 
at each time step.  

- Proton conductivity and oxygen diffusion in the Catalyst Layers (CL) 
are assumed being infinitely fast.  

- The activation overpotential is negligible at the anode considering an 
infinitely fast hydrogen oxidation reaction.  

- The ohmic losses are located only in the membrane and the electrical 
conductivity of the other layers are assumed to be infinitely high.  

- We model the cathode and anode gas channels as lumped control 
volumes and the evolution of reactants concentration in the along- 
the-channel direction is neglected.  

- Water produced by the oxygen reduction reaction ends up directly 
into the cathode GDL.  

- The gases in all cell layers are considered as perfect gases. 

Throughout Section 2, space variable x denotes the through-the- 
membrane direction. 

2.1. Electrochemical model 

The average cell voltage within the stack can be written as 

Ecell =Erev − ηact − ηconc − ηΩ, (1) 

with Erev the reversible voltage, ηact the activation losses, ηconc the 
concentration losses and ηΩ the ohmic losses. From Ref. [23], the 
theoretical reversible voltage (or open-circuit voltage) is a function of 
the temperature, pressure and concentration 

Erev = −

(
ΔH
2F

−
TΔS
2F

)

+
RT
2F

ln

⎡

⎢
⎢
⎢
⎣

Pa
H2

Pref

(
Pc

O2
Pref

)1
2

Pc
H2O

Psat (T)

⎤

⎥
⎥
⎥
⎦
, (2) 

with ΔH and ΔS the reaction lower heating value and entropy of 
reaction at standard temperature and pressure. T indicates the stack 
temperature. Pa

H2 
and Pa

H2O denote the hydrogen and water partial pres-
sures in the anode volume. Pc

O2 
and Pc

H2O refer to the oxygen and water 
partial pressures in the cathode volume. Pref is the reference pressure and 
Psat(T) is the saturation pressure as a function of the temperature. 
Finally, F and R are the Faraday and universal gas constants. 

2.1.1. Activation losses 
The activation overvoltage accounts for the energy required to drive 

the oxygen reduction reaction because its chemical kinetics are very 
slow as compared to the hydrogen oxidation reaction. Therefore, the 
activation overpotential at the anode is neglected in this model. The 
Butler-Volmer kinetics are reduced to the Tafel equation (see Ref. [23]) 

ηact =
RT
αF

ln
[

j
j0

]

, (3) 

with α the cathode transfer coefficient and j the cell current density. 
We denote by j0 the exchange current density being a function of oxygen 
partial pressure and temperature within the cathode catalyst layer, 
which we express as 

j0 = j0ref

( Pc
O2

PO2 ,ref

)γ

exp
[
Eact

R

(
1

Tref
−

1
T

)]

, (4) 

with j0ref and PO2 ,ref the exchange current density and the O2 reference 

pressure respectively at reference conditions Pref and Tref . Pc
O2 

denotes 
the O2 partial pressure at the cathode side. Eact and γ respectively refer to 
the catalytic activation energy and the kinetic reaction order. 

2.1.2. Concentration losses 
The concentration losses account for the transport of O2 from the 

bipolar plate to the CL. We follow [23] and write the concentration 
losses as 

ηconc = −
RT
αF

ln
(

1 −
j
jL

)

. (5) 

The diffusion is assumed to be very fast, and the steady-state 
assumption is made so that the oxygen consumption in the CL is equal 
to the diffusion flux through the cathode 

j
4F

= −
DO2eff

RT
∂PO2

∂x
, (6) 

with DO2eff 
the effective diffusion coefficient. To make appear the 

limiting current density, we then compute the oxygen partial pressure at 
the CL with (6) as a function of the oxygen partial pressure in the 
cathode gas channel Pc

O2
. 

PCL
O2

=Pc
O2

−
jRTxGDL

4FDO2eff

=Pc
O2

(

1 −
j
jL

)

. (7) 

with xGDL the gas diffusion layer thickness. The limiting current 
density consequently writes jL = 4FDO2eff

Pc
O2
/RTxGDL. The effective 

diffusion coefficient reads 

DO2eff
=

ϵ
τ2DO2 , (8) 

where ϵ and τ are the GDL porosity and tortuosity respectively. In 
Section 5, we specify the bulk oxygen diffusion coefficient in the cathode 
gas channel DO2 . 

2.1.3. Ohmic losses 
The ohmic voltage losses involved in (1) write 

ηΩ = j
∫xm

0

dx
σp(λm)

, (9) 

where σp denotes the protonic conductivity of the membrane as a 
function of the membrane water content λm defined below and xm 

referring to the membrane thickness. 

2.2. Membrane model 

To find the water content profile inside the membrane, a water 
transport model is used. We define λ as the dimensionless variable 
standing for the water concentration in the membrane cw over the 
concentration of fixed charge sites cf such that 

This model includes the water diffusion inside the membrane, the 
electroosmotic drag of water molecules due to proton transport and the 
absorption and desorption of water at both membrane/CL interfaces. 

The water content profile inside the membrane is discretized ac-
cording to a three-point spatial approximation as shown in Fig. 1. The 
water content is assumed to be uniform inside the cathode and anode 
CLs and GDLs. Based on the various transport phenomena described in 
Ref. [24] and the steady-state equation described in Ref. [25], the water 
balance inside the membrane is given by the following partial differ-
ential equation defined in both the membrane and the catalyst layers 
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∂λ
∂t

=
∂

∂x

(

D(λ)
∂λ
∂x

+
nd(λ)
cf F

j
)

+ Jw(λ), (11) 

with cf as the concentration of fixed charge sites which depends on 
the type of membrane chosen (e.g., SO−

3 ions). Jw denotes the water 
fluxes at both electrode membrane interfaces such that 

Jw(λ)=
{

kad(λ)cf
(
λeq(PH2O,T) − λ

)
in CLs,

0 in the membrane. (12) 

A constant water content is considered inside the catalyst layers of 
both anode and cathode, characterized by the equilibrium water content 
λeq, which defines an equivalent water content in both CLs depending on 
the water vapor activity aH2O = PH2O/Psat(T). The water system (11) is a 
nonlinear partial differential equation, which we spatially discretize 
according to a second order scheme for a sake of real-time capable 
computing, first using a centered finite difference scheme for the first 
partial derivative and a three-point approximation for the spatial de-
rivative of the diffusive terms. This leads to a rewrite of (11) with the 
three-dimensional vector λ = ( λa λm λc )

T through the ordinary dif-
ferential equations: 

dλ
dt

=
D(λ)
xm

Aλλ +
1

cf xCL

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−
nd(λ)

F
j + Ja

w(λ)

0
nd(λ)

F
j + Jc

w(λ)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (13) 

where Aλ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
3

xCL

4
xCL

−
1

xCL

4
xm

−
8
xm

4
xm

−
1

xCL

4
xCL

−
3

xCL

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

denotes the resulting spatial 

discretization matrix of transport terms, xCL and xm the thicknesses of 
both the membrane and catalyst layers. The resulting water fluxes at the 
membrane/CL interfaces read 

{ Ja
w(λ) = kad(λa)cf

(
λa

eq

(
Pa

H2O,T
)
− λa

)
,

Jc
w(λ) = kad(λc)cf

(
λc

eq

(
Pc

H2O,T
)
− λc

)
,

(14) 

with both λc
eq and λa

eq that depend on the fuel cell type and are defined for 
numerical applications in Section 5. Unlike the membrane modeling defined 
in Ref. [21], we obtain a three-point discretization of the membrane water 
content, which can be more representative of the sorption phenomenon. 

2.3. Molar balance model 

In addition to the electrochemical and membrane modeling, we also 
account for the molar balance of the various key species involved in the 
fuel cell. 

2.3.1. Cathode gas channel model 
In the cathode gas channel, oxygen is consumed and the membrane 

exchanges water with the gas channel. The species molar balance 
modifies the oxygen and water partial pressures Pc

O2 
and Pc

H2O in the 
cathode volume through the equations 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dPc
O2

dt
=

RT
Vc

(

Win
c Xin

O2
−

ScellNcell

4F
j − Wout

c
Pc

O2

Pc

)

,

dPc
H2O

dt
=

RT
Vc

(

Win
c Xin

H2O − Wout
c

Pc
H2O

Pc
+

ScellNcell

2F
j

− Jc
wScellNcell

)
.

(15) 

T stands for the temperature in the cathode volume and Vc refers to 
the volume considered for the cathode side. Scell is the area of the cell and 
Ncell is the number of cells in the stack. Win

c and Wout
c refer to the cathode 

inlet and outlet molar flows. Xin
H2O and Xin

O2 
are the cathode inlet molar 

fractions defined by 
⎧
⎪⎨

⎪⎩

Xin
H2O = HRc

Psat(T)
Pc

,

Xin
O2

= Xair
O2

(
1 − Xin

H2O

)
,

(16)  

where HRc is the relative humidity at the cathode inlet and Xair
O2 

is the 
oxygen molar fraction in the air. Combining (14), (15) and (16), the 
cathode dynamics write  

Fig. 1. Space discretization of membrane water content. Indexes c,m, a respectively 
stand for cathode, membrane, and anode. 

λ=
cw

cf
. (10)    

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dPc
O2

dt
=

RT
Vc

(

Win
c Xair

O2

(

1 −
HRcPsat(T)

Pc

)

− 1 −
HRcPsat(T)

Pc

)

− Win
c Xair

O2

ScellNcell

4F
j

− Wout
c

Pc
O2

Pc

)

,

dPc
H2O

dt
=

RT
Vc.

(

Win
c

HRc Psat(T)
Pc

− Wout
c

Pc
H2O

Pc
+

ScellNcell

2F
j

− kad(λc) cf

(
λc

eq(P
c
H2O,T

)
− λc )ScellNcell

)
.

(17)   
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2.3.2. Anode gas channels model 
The species molar balance at the anode side follows the same rule as 

at the cathode side. First, we need the molar fraction at the anode inlet. 
Since an H2 recirculation is done by an active (pump) or passive (ejector) 
system, we can assume that we have a complete knowledge of the 
mixture if we know the recirculation system. The mass conservation of 
hydrogen and water vapor in the anode gas channels modifies the partial 
pressures Pa

H2 
and Pa

H2O in the anode volume through the equations 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dPa
H2

dt
=

RT
Va

(

Win
a Xin

H2
−

ScellNcell

2F
j − Wout

a
Pa

H2

Pa

)

,

dPa
H2O

dt
=

RT
Va

(

Win
a Xin

H2O − Wout
a

Pa
H2O

Pa
− Ja

wScellNcell

)

.

(18) 

Va refers to the volume considered for the anode side. Win
a and Wout

a 

refer to the anode inlet and outlet molar flows. Xin
H2 

and Xin
H2O are the 

molar fractions in the anode volume defined by 
⎧
⎪⎨

⎪⎩

Xin
H2O = HRa

Psat(T)
Pa

,

Xin
H2

= 1 − Xin
H2O,

(19) 

where HRa is the relative humidity at the anode inlet. Combining 
(14), (18) and (19), the anode dynamics write 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dPa
H2

dt
=

RT
Va

(

Win
a

(

1 −
HRaPsat(T)

Pa

)

−
ScellNcell

2F
j − Wout

a
Pa

H2

Pa

)

,

dPa
H2O

dt
=

RT
Va

(

Win
a

HRaPsat(T)
Pa

− Wout
a

Pa
H2O

Pa

− kad(λa)cf

(
λa

eq

(
Pa

H2O,T
)
− λa

)
ScellNcell

)
.

(20) 

Fig. 2 illustrates the full model. 

3. Reduced model 

We are looking for an accurate and real-time capable observer of the 
membrane water content. A preliminary study of the PEMFC model 
described above shows its stability. In other words, even if the mem-
brane water content is initialized with a random value, the model will 
converge to the same state in large enough time. Nevertheless, the 
convergence rate is slow, and the main goal of the observer is to speed up 
the convergence. We observe that the dynamics of the membrane water 
content is much lower than that of the gas species transport. Therefore, 
we can consider the cathode and anode pressures as variables whose 
dynamics is so fast that we can consider the pressure at each time step as 
a steady state from the mathematical point of view. This results in 
neglecting the dynamics of the cathode and anode states (17) and (20), 

namely 
dPc

O2
dt =

dPc
H2O
dt =

dPa
H2

dt =
dPa

H2O
dt = 0, and expressing it in the semi- 

explicit form 

dx
dt

=φ(x, z, u), (21)  

0=ψ(x, z, u), (22)  

with x, z and u the following dynamic and algebraic states and control 

x=(λa λm λc)
T
, (23)  

z=
(

j Pc
O2

Pc
H2O Pa

H2
Pa

H2O

)T
, (24)  

u=
(
V Win

c Win
a Pc PaHRcHRa T

)T
. (25) 

The three-point water content profile ( λa λm λc ) included in the 
state variable x denotes a dynamic state while the current j and the 
partial pressures contained in the state variable z are algebraic states. 
We specify the PEMFC current as an algebraic state keeping in mind the 
generalization of the ongoing observer to a future 2D observer model. In 
fact, most of papers focusing on 2D models emphasize the need for the 
stack voltage to be an input to the model since it remains constant in the 
through-channel direction (see Ref. [26]) as compared to the current 
density which varies. Moreover, considering the current as a state var-
iable does not add much difficulty. The functions φ and ψ respectively 
include the discretized version of (11) and the stationary version of (17, 
20). We then recapitulate the full model, accounting for the strong 
coupling between the membrane water content variation, the current 
generation, and the mass balance: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

=
D(x)

ϵ1
Aλx+ ϵ2

⎛

⎜
⎜
⎝

−
nd(x)

F
z1 +Ja

w(x1,z5,u8)

0
nd(x)

F
z1 +Jc

w(x3,z3,u8)

⎞

⎟
⎟
⎠,

u1 = Erev(z2,z3,z4,u8) − ηact(z1,z2,u8) − ηconc(z1,z2,u8) − ηΩ(x2,u8),

(
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⎜
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(
z4
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=
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⎛

⎜
⎜
⎜
⎜
⎝
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Psat(u8)
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Psat(u8)
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⎟
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⎟
⎟
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− ϵ4
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⎝
0
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w(x1,z5,u8)

⎞

⎠

u3 −
z1

ϵ3
− ϵ4Ja

w(x1,z5,u8)
.

(26) 

with ϵ1 = xm, ϵ2 = 1/cf xCL, ϵ3 =2F/ScellNcell and ϵ4 = ScellNcell. With 
both the cathode and anode pressure dynamics set to zero, the required 
cathode and anode outlet mass flows needed in (17) and (18) are 
expressed as 

Wout
c =Win

c +
j

2F
ScellNcell − Jc

wScellNcell, (27)  

Wout
a =Win

a −
j
F
ScellNcell − Ja

wScellNcell. (28) 

In comparison to Fig. 2, we illustrate the reduced model in Fig. 3. 
Besides, we define the measured output as 

y=Cz,with C=(1 0 0 0 0 0). (29) 

The output state y is thus be compared to the algebraic variable j to 
make the observer converge. Fig. 2. Recapitulative scheme of the full model.  
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Regarding the operating conditions measurements accessibility 
included in u, the voltage V and the current j are easy to get, as well as 
both anode and cathode pressures. Both inlet molar flows and humid-
ities are obtained by modeling of the inlet loops (we do not detail these 
models as it goes out of the scope of this article). Indeed, sometimes a 
humidifier is considered from the cathode side while the anode inlet 
humidity comes from the recirculation loop. We will assume in Section 5 
that both inlet molar flow rates Win

c ,Win
a are given as well as the inlet 

cathode humidity HRc. On the anode side, the anode inlet humidity HRa 
is calculated through an ejector modeling. 

We numerically verify that we can express the resulting implicit 
system (21,22) in a common Ordinary Differential Equations (ODE) 
framework after inverting the algebraic equation (22). This allows us to 
use classic nonlinear observation strategies. Keeping in mind the usual 
framework for using nonlinear observers and since we have only discrete 
measurements, we then rewrite (21,22) as the discrete time system 

xk+1 = f(xk, uk), (30)  

yk+1 = h(xk+1, uk). (31) 

To do this, we first solve system (21,22) numerically through an 
implicit Euler scheme with a fixed time step, keeping the algebraic 
equations as a constraint to verify. Given the state xk and the control uk, 
we then perform a Newton method to express at the next iteration the 
solution (xk+1, zk+1) of the following system 

xk+1 − xk − Δtφ(xk+1, zk+1, uk)=0, (32)  

ψ(xk+1, zk+1, uk)=0. (33) 

After that, to express the functions f and h involved in the system 
under the form (30,31), we exhibit zk+1 = ψz(xk+1, uk) by solving (33). 
We straight after numerically invert (32). This leads to express the 
following functions 

f(x, u)= (I − Δtφ(x,ψz(x, u), u))
− 1
, (34)  

h(x, u)=Cψz(x, u). (35)  

where I denotes the identity function. Besides, (35) stands for the 
measurement function involved in (31). The main objective is now to 
really estimate the dynamic state x according to the ignorance of the 
initial state x0. We account for some uncertainties with wk and vk,

denoting process and observation noises, respectively, which are both 
assumed to be zero mean multivariate Gaussian noises, with covariance 
Qk and Rk, respectively. Having in mind common Kalman filters, the 
system finally writes in the form 

xk+1 = f(xk, uk) + wk, (36)  

= h(xk+1, uk) + vk. (37)  

4. Adaptive EKF observer 

A major drawback of the Extended Kalman Filter (EKF) is the sig-
nificant impact of the covariance matrices Qk and Rk on the performance 
of the filter. In the context of PEMFC estimation, we note that the 
membrane water content has a dynamic on the order of tens of seconds: 
large amplitude current variations in a short time interval won’t result in 
large membrane water content variations. Well, the design of covariance 
matrices Rk and Qk of the usual EKF does not allow to get a fast observer. 
Indeed, the common EKF is too sensitive when the current oscillates. In 
this context, it is relevant to use an adaptive filter such that it has a 
strong effect when the current is quite stable and a reduced one when the 
current varies too much. We are inspired by Ref. [22] where the authors 
design an Adaptive EKF by making adjustment of noise covariance 
matrices through a coefficient ν. Given the estimated states (x̂k− 1, ẑk− 1),

the covariance matrices Qk− 1,Rk− 1 and the covariance estimate Pk− 1, we 
specify the successive steps of the Adaptive EKF as follows:  

1. To compute the Jacobian of f involved in (30) 

Fk =
∂f
∂x

(x̂k− 1, uk− 1). (38)    

2. To get predicted state estimate 
(
x̂k|k− 1, ẑk|k− 1

)
solution of (32,33) and 

compute the Jacobian of h involved in (31) 

Hk =
∂h
∂x
(
x̂k|k− 1, uk− 1

)
. (39)    

3. To compute the predicted covariance estimate 

Pk|k− 1 = FkPk− 1FT
k + Qk− 1. (40)    

4. To compute the measurement residual 

dk = yk − Cẑk|k− 1, (41) 

the residual covariance 

Sk =HkPk|k− 1HT
k + Rk− 1, (42) 

and the resulting Kalman gain 

Kk =Pk|k− 1HT
k S− 1

k . (43)    

5. To get the updated state estimate 

x̂k = x̂k|k− 1+Kkdk. (44)    

6. To compute the algebraic solution ̂zk solution of (33) to be consistent 
with x̂k and the updated estimate residual 

εk = yk − Cẑk. (45)    

7. To update the covariance estimate 

Pk =(I − KkHk)Pk|k− 1, (46) 

and get from residuals (41) and (45) the appropriate covariance 
matrices 

Qk = νQk− 1 + (1 − ν)
(
KkdkdT

k KT
k
)
, (47)  

Rk = νRk− 1 + (1 − ν)
(
εkεT

k + HkPk|k− 1HT
k
)
. (48) 

Note that a larger ν implies that the previous estimates to have more 

Fig. 3. Recapitulative scheme of the reduced model.  
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weight in the computation of Qk and Rk. Therefore, the observer expe-
riences less fluctuations and longer time delays to catch up with 
changes. On the contrary a smaller ν implies too much sensitivity to the 
measures, which can lead to too many oscillations. In our test cases we 
make a compromise, we choose ν to be 0.5. 

5. Results 

The membrane water content observer described above becomes 
useful when load cycles imply noticeable transient variations of the 
membrane humidity. These oscillatory variations induce an alternating 
shrinking and swelling behavior that later leads to irreversible physical 
damages of the membrane [27]. In such cases, the knowledge of the 
membrane water content allows to close the loop and to adapt the 
operating conditions in order to stabilize the membrane water content 
around given safe values, avoiding such oscillatory behavior without the 
disadvantages of a measuring device. More precisely, we first point out 
that the designed observer is of great interest during the first seconds, 
because it quickly converges close to the reference membrane water 
content, regardless of the initial value of the membrane water content. 
Then, to illustrate the good performance of the observer, we will present 
a sensitivity analysis of both the reduced model and the Adaptive EKF. 
Let us describe the procedure. 

5.1. Simulation setup 

We use a PEMFC simulation platform in Simcenter Amesim to create 
the sketch and observe the ability of the designed observer to return the 
desired variables. The simulation platform consists of several pieces, 
which are divided into three main parts illustrated in Fig. 4.  

- a PEMFC block, whose modeling is described in Section 2;  
- a full cathode admission block consisting of a compressor, humidifier 

and backpressure valve;  
- an anode admission block with a primary flow from an H2 tank and a 

secondary one from an H2 recirculation loop through an ejector 
system. We use a control strategy to give the PEMFC model the 
correct operating conditions to meet the current demand. 

At the stack scale, we choose the several parameters involved in the 
model description according to the most employed in the literature. 

The mass-transfer coefficients for water sorption involved in (14) at 
the membrane-electrode interfaces is determined by [28]. 

kad(λ)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aafw exp
[
20000

R

(
1

Tref
−

1
T

)]

, λ < λeq

adfw exp
[
20000

R

(
1

Tref
−

1
T

)]

, else.
(49) 

The coefficient fw stands for the water volume fraction in the hy-
drated ionomer and is given by 

fw =
λmVw

λVw + Vm
, (50) 

with Vm = 1/cf being the membrane equivalent volume and Vw the 
water molar volume. The water diffusivity in the ionomer involved in 
(11) is given by [28] 

D(λ)=
d(λa) + d(λc)

2
, (51) 

The water electroosmotic drag coefficient is taken as the mean of 
Springer’s original linear law [28] applied to both anode and cathode 
water content 

nd(λ)=
2.5
22λa +

2.5
22λc

2
. (53) 

The equilibrium water content involved in the fluxes computing (14) 
is taken from [29] 

λeq =

⎧
⎨

⎩

0.0043 + 17.81aH2O − 39.85aH2O
2 + 36aH2O

3,

14 + 1.4(aH2O − 1), 1 < aH2O < 3
16.8, aH2O > 3

(54) 

The coefficient σp involved in (9) is taken from [24] which used a 
N117 Nafion membrane 

σp(λm)= (0.005139λm − 0.00326)exp
[
Ememb

R

(
1

Tref
−

1
T

)]

. (55) 

The bulk oxygen diffusion coefficient involved in (7) is computed 
following [30] with the formula 

DO2 =
1

DO2 − N2 + DO2 ,Kn
, (56) 

with DO2 − N2 the binary diffusion coefficient of O2 and N2 and DO2 ,Kn 

the Knudsen O2 coefficient. No flooding is considered in this diffusive 
transport model. Then, the effective diffusion coefficient remains con-
stant throughout the GDL. We recapitulate the used parameters in 
Table 1 which are inspired from one of our test cases. 

The parameters in Table 1 are typical of either the fuel cell geometry 
or the electrochemistry. Given experimental data, these different 

Fig. 4. Block scheme of a PEMFC system for a functioning vehicle whose simulation platform is designed with Simcenter Amesim software.  

Table 1 
Values of several constants involved in the modeling.  

Pref = 1.013 bar Tref = 298.15 K 

Eact = 66000 Jmol− 1 Ememb = 10542 Jmol− 1 

Scell = 320 cm2 Ncell = 320 
cf = 1818 molm− 3 xm = 25 μm 
xCL = 15 μm xGDL = 15 μm 
jref0 = 1.015× 10− 3Acm− 2 α = 0.5635 

aa = 3.53× 10− 3cms− 1 ad = 3.53× 10− 3cms− 1 

Pref
O2

= 0.21bar   
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parameters can be used as fitting parameters to make the model fit the 
data. The choice of parameters to be used depends on the user’s 
knowledge of the fuel cell under consideration. 

5.2. Simulation results 

We highlight the observer’s ability on a “Worldwide Harmonized 
Light Vehicles Test Cycles” (WLTC) example with an initial membrane 
water content of 12 (see Fig. 5), which gives a reference trajectory. 
Along this trajectory, the membrane water content increases up to a 
given value and stays around that value. In real life, we have no way of 
knowing the initial membrane water content. Therefore, the error made 
at the starting point with such a random value converges to zero very 
slowly (as the system is stable). We claim that the observer designed 
upon reduces this error much faster. 

We illustrate this in Fig. 5, which shows both the shortcomings of the 
open-loop model and the advantages of the closed-loop model, when we 

have no information about the initial water content of the membrane. 
Starting from a random value, the open-loop value of the membrane 
water content converges to the reference value. However, the conver-
gence remains slow, and we need more than 20 min to be in an 
acceptable range of values. Therefore, the lack of precision of the open- 
loop model may result in a poor estimate of the membrane water content 
for a significant interval. In comparison, the closed-loop membrane 
water content needs only a few seconds to approach the reference 
membrane water content, regardless of the initial membrane water 
content. 

To highlight the effectiveness of the Adaptive EKF approach, we 
implement a standard EKF observer for comparison. The results show 
that the Adaptive EKF convergence is faster. 

In Fig. 5, we note that the membrane water content is very stable. We 
explain this phenomenon through the air loop calibration that we 
construct to account for a stable cathode relative humidity at the inlet. 
To highlight the observer’s ability to recover the membrane water 
content when it varies, in Fig. 6 we perform a comprehension test where 
the current demand is fixed at 100A and the cathode relative humidity at 
the inlet varies. We observe the same performance as in Fig. 5. The 
observer converges faster than the open loop when we start from an 
unknown initial water content. In addition, the observer can track hu-
midity changes. 

In Fig. 7, we plot the first moments of the Adaptive EKF applied to the 
WLTC use case, starting from different initial values. Regardless of the 
starting point, we observe that the filter quickly approaches the refer-
ence membrane water content compared to the open-loop model. We 
also notice a small gap between the reference and observed values 
depending on the initial value chosen, which is negligible when looking 
at the gap with the open-loop value. At lower initial values, e.g., 4, the 
observer is a bit slower. We explain this by the fact that the observer is 
completely ineffective when the current is zero. We can’t get any in-
formation when there is no current. Well, we note that at the beginning 
of the WLTC case, the current is not important and is often zero. Finally, 
the observer of the membrane water content becomes relevant when we 
do not have measuring device of the humidity and no idea of the water 
content at the starting time t. 

In conclusion, only with current and voltage measurements, cathode 
and anode pressures and mass flow rates, the designed observer allows 
to recover the membrane water content in a few seconds, regardless of 
the initial value. 

Finally, let us mention that the Adaptive EKF designed is about ten 
times faster than real time with a Python implementation of the model 
on a personal computer (2.6 GHz CPU). 

Fig. 5. Membrane water content on a WLTC use-case: reference (blue), open 
loop (red) and respectively EKF closed loops with or without adaptive gain 
(orange and purple). (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 6. Membrane water content on a comprehension’s test (current I = 100A, 
HRc ∈ (30, 90)): reference (blue), open loop (red) and AEKF (orange). (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 7. Membrane water content: reference value (stars) and open loop values 
(circles) and Adaptive EKF starting from several values (circles with lines). 

G. Lance et al.                                                                                                                                                                                                                                   



International Journal of Hydrogen Energy 71 (2024) 1164–1173

1172

5.3. Sensitivity analyses 

Our goal is to use the designed observer for real-time observation in 
operating cycles. To ensure the observed states to be in suitable range of 
values, we perform a sensitivity analysis of the reduced model with 
respect to the input data included in the control variables u, whose 
scatter values are stored in Table 2. The 3 σ scatter values are repre-
sentative of the usual industrial sensor’s accuracy. 

We then plot in Fig. 8 the resulting scattered membrane water con-
tent with respect to several current values from 0 to 400A. The min-max 
values of the bars represent the global scatter of the estimated mem-
brane water content. The contribution of each scattered input data is 
represented by different colors. The larger is the colored area, the 
greater the impact of the corresponding input scatter on the output ac-
curacy. This figure highlights that the model is sensitive to the input 
accuracies. Nevertheless, the obtained dispersion of the membrane 
water content is still acceptable (3σ around ± 1.5). We notice that 
regardless of the current values, the scatter of the membrane water 
content is primarily falling to the anode inflow’s accuracy. We find that 
overall accuracy is not sensitive to the range of current values, although 

it is slightly less scattered for small current values. 
In addition, we verify in Fig. 9 that the closed-loop system is not 

more sensitive to uncertainties than the open-loop model by plotting a 
sensitivity analysis of the closed-loop system. In addition to the already 
mentioned scattered inputs, the current is also an input of the observer. 
We confirm that the scattered current does not affect the closed loop. 

We explain this by the choice of the Kalman filter which is supposed 
not to be sensitive to measurement noise. Compared to Fig. 8, the 
standard deviation of the membrane content is not much lower. We also 
notice that temperature has a weaker effect than in the open-loop 
modeling. Finally, we notice that the mean membrane water content 
in Fig. 9 slightly differs from the reference value. We explain this by the 
following fact: for a given value of membrane water content, the current 
of the reduced model is slightly different from that of the full model, 
which corresponds to the current measured as the input of the closed 
loop. The Adaptive EKF makes the output current to be close to the 
measured one, which means that the membrane water content as the 
output of the closed loop is slightly different from the reference value. In 
summary, both sensitivity analyses are similar, and the closed-loop 
modeling confirms that the observer does not add uncertainties to the 
modeling. 

5.4. Discussion and perspectives 

Firstly, we observe that the designed observer allows for the esti-
mation of the membrane water content in the fuel cell using reachable 
outputs such as the current and voltage without the need for dedicated 
sensors. In addition, we notice that the Adaptive EKF converges to the 
original value faster than the open-loop or the common EKF, regardless 
of the initial membrane water content chosen. This feature is particu-
larly useful when adjusting control laws, especially during the initial 
start-up phase when users lack information about the humidity levels 
inside the fuel cell. It is important to note that the closed loop value may 
not be the same as the reference value, but it remains within an 
acceptable range. It is necessary to determine the intake molar flows, 
which can be achieved with either real sensors or independent software 
sensors. To demonstrate the model’s sensitivity to input and measures, 
we conduct a sensitivity analysis on both stationary points and transient 
cycles for both the reduced model and the Adaptive EKF. These analyses 
confirm the reliability of the observer in relation to the confidence we 
have in the input variables. Based on the scattered entries gathered in 
Table 2, we conclude that the standard deviation of the observed 
membrane water content is approximately 0.5 regardless of the current 
value. 

To make things even better, we are aware that there is a growing 
interest in 2D modeling of the PEMFC in real time (see Refs. [26,31]). To 
this end, the PEMFC modeling constructed in this article lays the foun-
dations for further multidimensional observation strategies. Indeed, as 
illustrated in Fig. 3, we choose to make current an output of the system 
rather than an input. This choice is motivated by the fact that pseudo-2D 
modeling requires the voltage to be an input, since it remains constant 
throughout the discretization in the through-the-channel direction. We 
expect that the computation time will be the primary challenge in 
extending the real observer to pseudo-2D modeling. 

Regrading other observational issues, it is worth mentioning that the 
water content of the membrane is sensitive to the temperature. In the 
sensitivity analysis, we only consider a standard deviation of one degree. 
However, it should be noted that a temperature gradient of approxi-
mately five degrees can be observed inside a fuel cell between the 
exhaust and the membrane core. Therefore, it is worth noting to 
consider temperature modeling in conjunction with humidity modeling 
in the cell. 

Finally, the chosen modeling only deals with single-phase water 
management. Liquid water is of interest for both efficiency and potential 
damage. Improving the model by considering liquid water as an addi-
tional state to be estimated would be beneficial. 

Table 2 
Sensitivity analysis: inputs standard deviations.  

Input variables 3 σ-value unit 

Voltage (V) 1 V 
Current (I) 1 A 
Pressures (Pa,Pc) 30 mbar 
Cathodic inflow 

(
Win

c
)

5% Kgs− 1 

Anodic inflow (Win
a
) 5% Kgs− 1 

Temperature (T) 1 K 
Inlet humidities (HRa,HRc) 5% ( − )

Fig. 8. Reduced model sensitivity analysis to input data.  

Fig. 9. Adaptive EKF sensitivity analysis to input data.  
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6. Conclusions 

In this paper, we develop a software sensor to monitor the water 
content in the membrane of a PEMFC. This model-based observer con-
siders the main transport phenomena occurring in the membrane. Thus, 
it provides more accurate information about the behavior of the mois-
ture in the membrane of the fuel cell during operation. 

Compared with physical sensors, which may not be suitable for all 
PEMFC systems, we develop a software sensor that can be easily adapted 
to the PEMFC and the selected auxiliaries. 

Finally, the software sensor is less sensitive to input data than the 
model it is based on. The designed observer has a standard deviation of 
0.5, which means a coefficient of variation of 5%. This precise observer 
can operate in real-time, allowing other users to construct control laws 
to adapt fuel cell humidity. 
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