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Abstract. This paper addresses the numerical characterization of microstructures by the concept of tortuosity.
After a brief review of geometric tortuosities, some definitions are considered for a benchmarking analysis.
The focus is on the M-tortuosity definition, which is revised by expliciting the link to percolation theory,
among other things. This operator fits with the analysis of real samples of materials whatever their complexity.
A contribution of this paper is a new formulation of the M-tortuosity, making it generic to many situations.
Additionally, the comparison of the various tortuosimetric descriptors, state-of-the-art definitions and
M-tortuosity, is proposed by considering several scenarios thanks to stochastic multi-scale models of complex
materials. The relationships with porosity, morphological heterogeneity and structural anisotropy are investi-
gated. The results highlight the similarities and differences between the descriptors while attesting that the
M-tortuosity is equivalent to the state-of-the-art definitions, for a potential use in diffusion and conductivity
analyses. Moreover, the M-tortuosity handles correctly situations where state-of the-art algorithms fail. The
anisotropic case highlights some limitations of the state-of-the-art definitions behaving differently according
to the given propagation direction. In the case of unknown propagation and irregular piece of materials, the
M-tortuosity provides a unique tortuosity value representative of the whole microstructure while detecting
the anisotropy. These operators are freely available within the plug im! platform.

Keywords: Microstructure, Materials science, Porous network, Morphological analysis, Mathematical
morphology, Topology, Connectivity, Tortuosity, Geodesic distance transform, Percolation, Boolean model,
Anisotropy, Heterogeneity.

Notations and vocabulary

The vocabulary used in the article is explicitly given. Know-
ing the confusion in the literature about geometric, geodesic
or morphological tortuosities, it is necessary to clearly
define the terms used in this article. Hereafter, the term geo-
metric is chosen to qualify the tortuosity assessed by means
of geodesic and Euclidean distance transforms.

The article defines notations and groups them based on
their referents to improve readability. First, the notations
associated with microstructures:

X: the porous microstructure,
l, w and h: primary grain parameters defining a platelet,
used for simulating microstructures with a Boolean model,
Vv: volume fraction of primary grains of a homogeneous
Boolean model,
Va, Ra, Vi and Vo: heterogeneous Boolean model parame-
ters formed of spheres, named aggregates, with different
volume fractions of grains inside and outside,
nr: number of realization of a model of microstructure,
r: standard deviation of measurements over the nr
realizations,
lr: confidence intervals of measurements over the nr
realizations.* Corresponding author: johan.chaniot.1@ulaval.ca
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Notations for distance:

DE: Euclidean distance,
DG: geodesic distance,
L: Euclidean distance between two opposite planes of digi-
talized cubes of materials,
DE(pm, pn): value of the Euclidean distance map at point pm
from pn,
DG(pm, pn; X): value of the geodesic distance map in X at
point pm from pn,
VD(n): volume of the direct reconstruction of X at step n,
VG(n): volume of the geodesic reconstruction of X at step n.

Notations for tortuosity:

s: geometric tortuosity of a path,
sg: geometric tortuosity ofX considering the minimal geode-
sic path between two opposite planes,
sm: geometric tortuosity of X considering the mean value of
the geodesic paths between two opposite planes,
sP: geometric tortuosity of X considering the Peyrega et al.
definition,
sB: geometric tortuosity of X considering the Berrocal et al.
definition,
sG: geometric tortuosity of X considering the Gommes et al.
first definition,
sGr : geometric tortuosity of X considering the Gommes
et al. second definition.

Notations for M-tortuosity:

S1: a set of points pn in X,
S2n : a set of points associated to pn.
sn,m: geometric tortuosity between the two points pn and pm
of X,
Ln: local insight of X from pn,
T: representative tortuosity or M-tortuosity of X.

1 Introduction

Structural analysis of materials is a common issue in mate-
rials science, being of particular interest since connections
have been highlighted between the structure and the
physicochemical parameters of these materials, especially
for porous media [1–3]. Among the usual concepts used
for characterization purposes, tortuosity [4] lies on a central
position in materials science [5–7]. Tortuosity has been
reviewed many times from distinct perspectives. Clennell
[5] presents the first exhaustive review focusing on physical
meanings. Ghanbarian et al. [7] propose an update while
discussing the relationship with percolation theory. Fu
et al. [6] describe the various algorithms for physical assess-
ment of tortuosity. Among the various notions extracted
from the concept of tortuosity, the geometric tortuosity
has a central position, having the potential to be used in
numerous applications dealing with transport properties
of materials, such as diffusion analysis [8, 9]. The geometric
tortuosity is connected to several concepts such as percola-
tion, connectivity, sinuosity and constrictivity [10–12].

In practice, the aim is to extend geometric tortuosity from
a single pore to the characterization of the entire
microstructure. The flow under consideration is often
assumed to propagate in a given direction, simplifying the
analysis of the microstructure as a whole. Therefore, such
a tortuosity appears to be a well-suited notion for character-
izing digitalized cubes of materials (see Fig. 1a). Neverthe-
less, its implementation required some adaptations in cases
as irregular pieces of materials as c-alumina samples [13]
(see Fig. 1b), for which the definitions in the literature
are not applicable.

TheM-tortuosity was introduced as an efficient and fast
way breaking free directional aspects of previous
approaches to address the challenge by stochastically prob-
ing microstructures [14, 15]. TheM-tortuosity answers prac-
tically to the requirement of application to any complex
microstructures as the microstructure presented in
Figure 1b. Nevertheless, a practical need of versatility sub-
sists for this descriptor in reflecting more or less some
microstructural properties, especially those related to perco-
lation and sinuosity. Furthermore, no study has discussed
the relevance of M-tortuosity for practical purposes,
unlike the standard definitions used in various applications
[8, 9, 16]. Additionally, there are no articles that compare
the chosen classical approaches with each other.

Consequently, our contribution is a novel version of the
M-tortuosity definition. We introduce new parameters that
promote or inhibit geodesic paths based on their length and
eccentricity. We propose an alternative version of the
M-tortuosity that uses arithmetic means instead of har-
monic means, simplifying the original formulation. These
novel definitions ensure proper disconnection handling.
Furthermore, our new perspective on microstructure analy-
sis is compared to state-of-the-art definitions, as shown in
Figure 2. This positions our descriptor in relation to others
while emphasizing its potential for analyzing transport
properties in atypical contexts. Finally, to the best of our
knowledge, this is the first time that different purely
morphological definitions of tortuosity are compared.

Fig. 1. Microstructures illustrations. (a) Boolean schemes of
spheres generated in a cube where straightforward definition of
propagation direction for tortuosity calculations is possible.
(b) real c-alumina sample, imaged by electron tomography
(resolution around 1 nm�vx�1, vx standing for voxel), where a
proper propagation direction is delicate to define. Volume (a)
was generated using [35] and volumes (a) and (b) were rendered
using [35].
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In this article, state-of-the-art definitions of tortuosity
are briefly recalled, all based on the definition of the geo-
metric tortuosity making use of well-known concepts as
accessibility, connectivity and sinuosity. The original defini-
tion of the M-tortuosity is defined and its extension is pro-
posed in the following section, after discussing limitations
and challenges related to standard tortuosities. In the
results and discussion section, stochastic multi-scale
microstructure models of binary materials are considered
and analyzed to compare the different tortuosimetric
descriptors. TheM-tortuosity behaves similarly to the other
definitions when faced to the evolution of morphological
features as volume fraction, making it a potential equiva-
lent of the latter when they do not fit to the material to
be analyzed.

2 Tortuosities

Geometric tortuosity is based on several well-known con-
cepts in numerical characterization of materials. Accessibil-
ity is described by the percolation theory, as it assesses the
existence of a path, fully included in the microstructure,
connecting two regions, usually the entry and the exit.
Connectivity follows accessibility and focuses on quantify-
ing the degree of interconnection of the network, i.e. the
microstructure. Usually, the Euler number, or the Euler-
Poincaré feature, is considered to assess connectivity. Sinu-
osity is the last notion involved in tortuosity, evaluating
how sinuous a path is, which could be seen as the integral
of the local curvature along the path.

2.1 Morphological insights in material science

Geometric tortuosity characterization consists in assessing
the impact of a microstructure’s morphology over percolat-
ing paths. Originally, geometric tortuosity is defined for a
path, i.e., a pore, connecting two specific locations, entry
and exit, then focusing on sinuosity only [17]. The definition
used in [18], based on rotation-invariant operators such as
distance transforms, is defined as the ratio of the geodesic

distance, i.e., constrained path, by the Euclidean distance
between the entry and the exit. In other words, the geomet-
ric tortuosity of a unique pore is the normalization of the
geodesic distance by the Euclidean distance,

s ¼ DG

DE
: ð1Þ

Consequently, the issue to address is how to extend this
local definition in order to characterize a whole microstruc-
ture X with its sinuosity and connectivity. Decker et al. [18]
proposes to analyze the probability distribution function of
the geodesic distances over the network between parallel
faces. The issue of reducing this distribution to a scalar
value is then addressed.

The first idea is to assess the minimal geodesic distance
of a constrained path starting from an entry, a plane for
instance, to the exit, the opposite plane, normalized by
the Euclidean distance between the two planes L (see
Fig. 2a). In this case, a propagation direction is clearly
defined,

sg ¼ minfDGg
L

; ð2Þ

with DG the geodesic distance map at the exit plane.
Nevertheless, considering only the minimal path can be

too restrictive; computing the average is more representa-
tive of the microstructure, giving rise to this second defini-
tion (see Fig. 2b),

sm ¼ mean DGf g
L

: ð3Þ

These previous definitions take implicitly pore width into
consideration, i.e., two very similar pores, one being a
slightly bigger version of the other, have distinct tortuosity
as shown in Figure 3. The use of homothopic skeleton Sk
[19], defining geometric tortuosities according to Stenzel
et al. [16] in contrast to geodesic tortuosities computed over
the “transporting phase”, leads to invariance with respect to
the scale or to the size of a moving particle percolating
through the porosity (see Fig. 3). Moreover, the skeleton

Fig. 2. Strategies to extend geometric tortuosity from paths to microstructures. Illustrations of various ways to characterize whole
microstructures based on geometric tortuosity definition (Eq. (8)). (a) path of minimal length connecting entry (green) and exit (red)
planes (Eq. (2)), (b) average of paths connecting entry and exit planes (Eq. (3)), (c) point tortuosities, i.e., tortuosity map, assessed
by forward and backward propagations between two opposite planes (Eq. (4)), (d) M-tortuosity averaging local tortuosities between
random locations.
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provides a less scattered distribution of distances, as shown
in [14].

However, no map of tortuosity can be extracted explic-
itly from these definitions. Indeed, if we consider the geode-
sic map of the whole structure divided by L, only the values
of the exit plane correspond to proper tortuosity values.
Peyrega et al. [20] propose a distinct definition, considering
forward propagation from a plane A and backward propa-
gation from an opposite one B (see Fig. 2c), in order to
provide tortuosity of each point p of the microstructure,

sP pð Þ ¼ DGA!B pð Þ þ DGB!A pð Þ
L

ð4Þ

with DGA!B the geodesic distance map in the direction A
toward B, A being the entry or the source plane.

This definition increases the amount of information
while providing a tortuosity map, analyzed by means of his-
tograms for each of the three propagation directions. This
tortuosity map has the advantage to be constrained by
the orientation only, i.e., the axis, as forward and backward
propagations are performed.

However, these definitions of tortuosity based on a
propagation direction between opposite planes and an
approximation of the Euclidean distance (L), are sensitive
to relative deviation. In other words, a tortuosity higher
than 1 will be attributed to a straight leaning pore, whose
tortuosity value will depend on the angle of inclination with
respect to the propagation direction. In order to tackle this
issue, a return to point definition seems necessary, which is
done in the following definition.

In fracture analysis, Berrocal et al. [21] propose to
weight the tortuosity of a fracture, i.e., a path, by the geo-
desic distance in order to gather several tortuosities in a
final mean value promoting sinuous paths. The considera-
tion of the original definition (Eq. (8)) leads to invariance
with respect to relative deviation.

sB ¼ mean DG � sf g: ð5Þ
Distinct interpretations of tortuosity have been proposed in
[22], considering a propagation direction between opposite
planes but the real Euclidean distance DE. Tortuosity is
first seen as the limit toward infinity of the original ratio
(Eq. (8)),

sG ¼ lim
DG!1

DG

DE
: ð6Þ

Practically, sG is assessed by the initial slope of a parabolic
fit of DG vs. DE, both computing from a source plane. A sec-
ond definition considers morphological reconstruction,
direct and geodesic, to define tortuosity as a ratio of vol-
umes; volume of the direct reconstruction VD by volume
of the geodesic reconstruction VG,

sGr ¼ lim
n!1

VD nð Þ
VG nð Þ ð7Þ

with n the step in the reconstruction processes.
The main advantage of this second definition where

Euclidean and geodesic quantities are reversed to provide
a value upper than 1 [23], is its straightforward extension
to gray-scale images, avoiding a delicate step of segmenta-
tion. These definitions give access to tortuosity maps too,
as geodesic and Euclidean values are computed for each
point, but constrained by the propagation direction.

Consider the primary application target of this article:
the 3D images of irregular samples of real materials, such
as the one presented in Figure 1b. Directional definitions
are not adapted to this kind of images, samples being too
small to extract a representative cube from them. To this
end, a pore-to-pore tortuosity map is proposed by Moreaud
et al. [24], by identifying the different entries of the porous
microstructure, to assess the material’s accessibility while
extracting tortuosity matrices quantifying each entry in
relation to the others.

2.2 Limitations and challenges

Despite these various definitions, none can be applied on
both microstructures of Figure 1: digitalized cubes of mate-
rials and irregular small samples of materials. In the context
of characterizing the microstructure of Figure 1b, only the
definition of [24] can be used for practical purposes, but
cannot be compared to the other definitions which are
commonly used in physicochemical analyses. Recently, the
M-tortuosity overcomes this issue (see Fig. 2d) [14], provid-
ing the ability of characterizing irregular samples of real
materials to reach internal nanometric porosity analysis,
as shown by Batista et al. [25]. In contrast to the state-of-
the-art definitions presented above, the M-tortuosity is
the only definition applicable on both microstructures of
Figure 1. In what follows, we first recall the original defini-
tion of M-tortuosity, before proposing an extended defini-
tion of this notion.

3 M-tortuosity; original definitions

Initially, the M-tortuosity has been defined to overcome the
complexity of materials such as c-alumina sample in
Figure 1b [14, 25], by probing the microstructure in random
directions and at various scales. Its principle is the follow-
ing; several locations are probed, their local insights are
gathered into a final representative viewpoint of the whole
microstructure. In the literature, the M-tortuosity and the

Fig. 3. Geodesic paths according to the pore width. Illustra-
tions of the dependency of the geodesic path (blue dashed lines)
to the pore width, contrary to the skeleton (orange lines) being
the same for the two pores despite their distinct width.
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H-tortuosity are defined, providing scalar value and curve
as final representative viewpoint of the microstructure,
respectively. Both are based on the same mathematical
formulation [14, 15].

3.1 Stochasticity for complexity overcoming

If we consider the material of Figure 1b, entry and exit
planes are not available. To overcome this pitfall, a random
drawing of locations, i.e. points inside the microstructure X,
is considered [26]. The N probed locations are defined ran-
domly through a stratified sampling, ending to the points
set definition S1 ¼ fpngn2½½0;N�1��. Consequently, the tortu-
osity is computed between points instead of planes. Consid-
ering two connected points in X pn, the source point, and
pM, the tortuosity is,

sn;m ¼ DG pm; pn;Xð Þ
DE pm; pnð Þ ð8Þ

with DE(pm, pn) the value of the Euclidean distance map
at point pm from pn, and DG(pm, pn; X) the value of the
geodesic distance map in X at point pm from pn. For brev-
ity, DGn;m ¼ DGðpm; pn;XÞ and DEn;m ¼ DEðpm; pnÞ.

3.2 Second set and tortuosity dimension

The local insights are based on S2 a collection of sets of
points, each assigned to a point pn 2 S1, S2 ¼ fS2ng and
pm 2 S2n . For the M-tortuosity, S2n ¼ S1nfpng giving rise
to a scalar local insight Ln (the M-coefficient in [14]). For
the H-tortuosity, S2n ¼ fSdgd2½½0;D�1�� with Sd ¼ fpm; d <
DEðpm; pnÞ � d þ 1; d 2 N�gm2½½0;M�1�� representing the sur-
rounding neighborhoods of pn as a function of the Euclidean
distance d, M being the number of accessible points located
at a distance of d from pn, leading to a curve as local insight
Ln (the H-coefficients in [15]).

In other words, for each pn, the M-tortuosity considers
the geodesic paths to all the other points of S1, whereas
the H-tortuosity simulates a wave propagating from pn in
the microstructure. These local insights Ln are then gath-
ered into the final representative tortuosities T (M-scalar
or H-scalars), which keeps the dimension of Ln.

3.3 Weighted averages

The local insights Ln and the final representative tortuosi-
ties T are defined by weighted average, more specifically
the harmonic mean, defined by the reciprocal of the arith-
metic mean of the reciprocals of the values, which is an ideal
candidate for disconnections handling as well as isolation.
Disconnection arises when no path in X exists between
two given points, and the geodesic distance of two non-con-
nected points of X is infinite. With harmonic mean these
two points do not interfere in the computation, leading to
zero contribution. Isolation is the extension of disconnection
and arises when there exists no point in a subset S2n con-
nected to a given point pn.

The weights considered in Ln and T both promote
certain geodesic paths of the whole microstructure. Conse-
quently, the point tortuosities values sn,m in Ln are weighted

by the corresponding geodesic distance DGn;m , and the Ln
values in T are weighted by the Euclidean distance
between pn and pc, the center of inertia of X. The latter
weighting is based on the following idea, the eccentric-
ity of pn is connected to the representativity of its local
insight Ln.

3.4 Alternative definitions

To improve the computational efficiency, a graph-based
definition is given to the M-tortuosity by Hammoumi
et al. [27]. Deterministic definitions are proposed in [25]
by imposing S1 and S2 to meet the specific application goal
of this article. S1 is composed of the centers of inertia pn of
particles inside the porous medium and S2n ¼ S1nfpng,
leading to analyze the relative locations of particles with
respect to the microstructure constraint. Finally, the A-pro-
tocol defined in [28] and embedded the M-tortuosity, gives
rise to accessibility consideration by simulating a probe of
given size travelling through the network [14, 15].

4 M-tortuosity; extended definition

M-tortuosity and H-tortuosity are gathered into a single
manifold tortuosity called M-tortuosity. This extended def-
inition is enriched of new parameters, correcting some issues
in the original definition while increasing the versatility.
The first parameters named a allow to reach proper promo-
tion of long geodesic paths among other things and provide
the user the opportunity to adapt the definition to its own
application by controlling the promotion of certain paths.
The second parameters, named q and embedding percola-
tion, lead to proper disconnection and isolation insensitiv-
ity, which is a major distinction with the state-of-the-art
definitions. Consequently, we consider the arithmetic mean
as an alternative to the harmonic one. Both are defined.

4.1 Local insights

M-tortuosity versatility relies on S1 and S2 definition. S2 has
a key role in the very meaning of the resulting descriptor, its
structure inducing the type of the operator, as shown above.
Formally speaking, the collection S2 is a set of rank s defin-
ing the dimension of the local insights being equal to s � 2.
This rank to three, resulting in a local insight of dimension
one or zero, fitting with the literature definitions.

Consequently, keeping the previous notations,
S2n ¼ fSdg and Sd = {pm} but d is no longer necessarily
a distance, for generalization purposes. For n 2
½½ 0, N � 1��, local insights set Ln attached to each pn 2 S1
are defined as a function of d using the harmonic or the
arithmetic mean of the geometric tortuosities between pn
and each pm. Then, for all d 2 ½½0, D � 1��, using the har-
monic mean,

L�1
nH

dð Þ ¼ W 1Hn �
XM�1

m¼0

q1n;m �D�a1
Gn;m

� s�1
n;m

 !�1

ð9Þ

with,
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W 1Hn ¼
XM�1

m¼0

q1n;mD
�a1
Gn;m

ð10Þ

and using the arithmetic mean,

LnA dð Þ ¼ W�1
1An

�
XM�1

m¼0

q1n;m � Da1
Gn;m

� sn;m
 !

ð11Þ

with,

W 1An ¼
XM�1

m¼0

q1n;mD
a1
Gn;m

: ð12Þ

The power factor parameter a1 2 Z is one of the addi-
tional parameters, modifying the original weighting; the
larger |a1|, the more the longest (a1 > 0) or shortest
(a1 < 0) geodesic paths are promoted with the arithmetic
definition (to be reversed with harmonic definition). The
Boolean matrix q1 allows to reach the disconnections
insensitivity. q1n;m is equal to 1 if and only if there exists
a path connected pn 2 S1 to pm 2 S2.

4.2 Representative tortuosity

The representative viewpoint T of the whole microstructure
is defined for all d 2 ⟦0, D � 1⟧, considering pc and the
second power factor a2 2 Z, by

TH dð Þ ¼ W 2Hn �
XN�1

n¼0

q2nD
�a2
Ec;n

� LnH dð Þ
 !�1

ð13Þ

with,

W 2Hn ¼
XN�1

n¼0

q2nD
�a2
Ec;n

ð14Þ

if the harmonic mean is considered, and if the arithmetic
one is used, by,

TA dð Þ ¼ W�1
2An

�
XN�1

n¼0

q2nD
a2
Ec;n

� LnA dð Þ
 !

ð15Þ

with,

W 2An ¼
XN�1

n¼0

q2nD
a2
Ec;n

: ð16Þ

The second power factor a2 extends the original definition,
the latter corresponding to a2 = 1; the larger |a2|, the more
the furthest (a2 > 0) or nearest (a2 < 0) points from pc are
promoted with the arithmetic definition (to be reversed
with harmonic definition). The Boolean vector q2 allows
to reach the isolations insensitivity. q2n is equal to 1 if
and only if there exists a path connected qn 2 S1 to any
qm 2 S2.

This new formulation gathers the previous definitions.
For a scalar analysis, S2n is a points set, then d = {0}
and S2n ¼ Sd ¼ S1nfpng. For curve analysis, S2n is a

collection of sets of points, then d > 0 and S2n ¼fSdgd2½½0;D�1�� ¼ ffpmgm2½½0;M�1��gd2½½0;D�1��. In the case of

[15], d is a distance, D is the maximal distance from each

source point for microstructure probing, and M is the num-
ber of points in X accessible from a given source point pn of
S1 and located at distance d from it.

4.3 Versatility for broad applications

In the original definition, the isolation insensitivity was not
properly reached. The weight at the numerator associated
to an isolated point pn 2 S1(Ln = 0) is still taken into
account. This statement suggests that the M-tortuosity is
sensitive to isolation. q2n fixes this issue by being equal to
1 if and only if pn is not isolated. Our contribution improves
the versatility of the M-tortuosity thanks to two additional
parameters pairs, denoted as ðq1n;m ; a1Þ and ðq2n ; a2Þ, while
preserving the benefits of the original definitions. The first
element of each pair highlights the consideration of percola-
tion using Boolean values and the second element being
power factors serving for path length and excentricity pro-
motions, respectively. This novel definition is properly
insensitive to disconnections and to isolations. To highlight
the increase of verstatility, two aspects are discussed.

First, let consider Figures 1a and 1b. In the case of sca-
lar tortuosimetric characterization, by imposing a2 > 0,
long geodesic paths are promoted a second time as points
closer to the image boundaries have a higher probability
to get longer geodesic paths in their local insight than
points close to pc. In contrast, in case of characterization
using tortuosity curves, a2 < 0 promotes points closer to
pc being less impacted by the boundary effect. As a conclu-
sion, the a2 value allows to fit with the application.

Second, the harmonic mean provides lower values than
the arithmetic one. The choice between the two means can
be motivated by the application. Indeed, the harmonic
mean, usually used when rates and ratios are involved,
brings us closer to the acoustic tortuosity definition
[29, 30]. Indeed, distance values can be interpreted as time
values instead of spatial values.

5 Results and discussion

This section deals with binary microstructures analysis by
means of tortuosimetric numerical operators, focusing on
scalar characterization only. Moreover, all computations
are performed over the whole microstructure, without skele-
ton preprocessing. First, the M-tortuosity is analyzed and
the harmonic and arithmetic definitions are compared while
the impact of the parameters (a1, a2) is assessed. Second,
the comparison to the classical descriptors is performed
on synthetic microstructures. The synthetic microstructures
are generated from random model as described below.

5.1 Random models of porous microstructures

Boolean models generates homogeneous microstructures,
i.e., structure possessing a unique scale of grains’ density,
made of isotropic or anisotropic grains A’, located at
Poisson points [31]. They are defined by a single volume
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fraction of grainsVv and by the grains’morphology. In order
to analyze heterogeneity, multi-scale microstructures are
generated by using Cox models [32, 33], providing materials
with aggregates or inclusions, i.e., areas of higher or lower
density of grains. In the following, two-scale models are
defined by three volume fractions: Va the volume fraction
of aggregates,Vi andVo, the volume fraction of grains inside
and outside the aggregates, respectively. Aggregates are
defined as spheres of radiusRa. A unique grain’s morphology
is considered for the homogeneous and heterogeneous cases,
the platelet shape [34], being defined by three parameters,
length l, width w and height h, all equal to 10 (units are in
pixels). For each model, 40 realizations, i.e., volumes, of size
4003 are generated. Figures 4a and 4b show the shapes of
the platelets and the aggregates, respectively.

Tortuosity as a function of the volume faction of
homogeneous microstructures is first considered; 3 models
((1)–(3)) are generated, represented by the three first
columns in Table 1 (Fig. 4, two first microstructures).
Second, aggregation impact on tortuosity is assessed by
two additional heterogeneous microstructures, named (4)
and (5), represented by the two last columns in Table 1
(Fig. 4, third microstruture). The homogeneous models
are then transformed into anisotropic models, named (1’),
(2’) and (3’), by simulating a compression of the materials
in the x direction by the suppression of one plane over
two (Fig. 4, last microstruture).

Figure 4 illustrates the models by displaying the shapes
of grains and aggregates, together with some realizations of
the models, volumes and slices, highlighting the considered
situations: increasing of volume fraction of grains Vv,
increasing of the heterogeneity and impact of the aniso-
tropy. The complementary set of the grains set represents
the porosity (black areas in Fig. 4). Let Vp be the porous
volume fraction, being define in the homogeneous case by
Vp = 1 � Vv.

Confidence intervals with 95% confidence level are equal
to lr ¼ 2r=

ffiffiffiffiffi
nr

p
with r the standard deviation over the nr

realizations. Finally, in this case, the tortuosimetric analysis
provides averaged assessments. Let s(M ) be a given descrip-
tor value for a given model (M ), s(M ) is the averaged value
over all realizations of the set of tortuosity values of each
realization.

5.2 M-tortuosity

Considering the M-tortuosity, the focus is on the scalar
version of the representative tortuosity, named T a1;a2 , by
defining S2n ¼ S1nfpng and S1 being drawn randomly by
a stratified stochastic process as in [14]. The impacts of
(a1, a2), as well as the choice of the mean, are analyzed;
a1 = a2 = {�10, �5, �2, �1, 0, 1, 2, 5, 10}. The models
(3) is considered in Figure 5, for these purposes.

As expected, the harmonic version of the M-tortuosity
(Fig. 5a) provides slightly smaller values than the arithmetic
one (Fig. 5b), but this difference is negligible when compared
to the differences with the state-of-the-art definitions. More-
over, the impacts of a1 and a2 are reversed between the har-
monic and the arithmetic definitions. When a1 tends
towards infinity the long geodesic paths are promoted in
the arithmetic M-tortuosity (short geodesic paths with the

harmonic M-tortuosity), which is reversed if a1 tends
towards minus infinity. When a2 tends towards infinity
the source points the furthest of pc are promoted (the nearest
of pcwith the harmonicM-tortuosity), which is reversed if a2

Fig. 4. Synthetic microstructures illustrations. (a) The grains
shape (cubic platelet) and (b) the aggregate shape. Volume
representation and 2D slice of a realization of Boolean models
presenting the two isotropic cases, homogeneous: (1) Vv = 0.4
and (3) Vv = 0.6, and heterogeneous: (5) Vi = 0.65 and
Vo = 0.15, and the anisotropic case: (1’) Vv = 0.4. Volumes and
slices generated and rendered using [35].
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tends towards minus infinity. Globally, the short geodesic
paths promotion makes increase the tortuosity, but the con-
fidence interval lr too. This comment is in good agreement
with the results of Chaniot et al. [15], who highlight that lar-
ger tortuosities are obtained for short paths.

For the rest of the analysis, we will considered the arith-
metic M-tortuosity only.

5.3 Tortuosimetric analysis

Some definitions are adapted to perform the comparison
analysis. All definitions considered are presented in Table 2.
Equations (2) and (3) are unchanged. Considering the def-
inition of Peyrega et al. [20] (Eq. (4)), the mean over the
tortuosity map provides the final scalar value used here-
after. The weighted tortuosity (Eq. (5)), of which the
weighting is considered in the M-tortuosity definition, is
adapted to plane to plane propagation. The computational
processes of Gommes et al. [22] are used for ending on scalar
values. The definition of Moreaud et al. [24] is not consid-
ered as it is not adapted to this comparison analysis. The
state-of-the-art tortuosities is computed in the x, y, z direc-
tions and their arithmetic mean is used for comparison with
the M-tortuosity (Fig. 6).

Tortuosities are separated into two groups: the defini-
tions based on propagation direction definition, named
plane-based tortuosities, and the arithmetic M-tortuosity
based on stochastic points process (see Table 2). The two
original definitions of tortuosity making use of minimal geo-
desic path sg and averaging geodesic paths sm are used as
arbitrary reference. Four scenarios are considered: in the
case of isotropic microstructures, the impacts of decreased
Vp and of increased heterogeneity, and in the case of aniso-
tropic microstructures, the impacts decreased Vp and of
structural anisotropy at constant Vp. Tortuosity behaviors
are evaluated and the various approaches are compared in
Figure 6. Tortuosity values are given in Tables 3 and 4.
For the sake of brevity, we only provide the necessary
values to support our statements. Confidence intervals are
sometimes too small to be clearly visible, attesting the rep-
resentativity of the results.

5.3.1 Isotropic microstructures

Figures 6a and 6b present the behavior of tortuosity with
the decreasing of the porous volume fraction Vp and with
the increasing of heterogeneity, respectively.

Table 1. Synthetic microstructures parameters. Boolean
models generated using [35]; (1), (2) and (3) are one-scale
models, considered to assess the impact of volume
fraction, and (4) and (5) are two-scales models, considered
to assess the impact of aggregation or morphological
heterogeneity, both over tortuosimetric measurements.

Models (1) (2) (3) (4) (5)

Vv/Vi 0.4 0.6 0.8 0.57 0.65
Vo 0.23 0.15
Va 0.5 0.5
Ra 20 20

Table 2. Tortuosities. List of the tortuosity definitions:
reference plane-based tortuosities (sg and sm), plane-based
tortuosities (sB, sP, sG and sGr ) and stochastic tortuosities
(TAða1;a2Þ).

Tortuosity name Symbol Equation

Minimal sg (2)
Mean sm (3)
Forward/backward sP (4)
Weighted mean sB (5)
Limit sG (6)
Morphological reconstruction sGr (7)
Arithmetic M-tortuosity TAða1;a2Þ (15)

Fig. 5. M-tortuosity as a function of a1 and a2. Average M-tortuosity values with their corresponding confidence intervals lr,
computed on 40 realizations of model (3). Screening of parameters a1 = {�10, �5, �2, �1, 0, 1, 2, 5, 10} and a2 = {�10, 0, 10}. (a)
Harmonic means representative tortuosities TH. (b) Arithmetic means representative tortuosities TA.
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Considering Figure 6a, despite the fact that the M-tor-
tuosity values are globally smaller, close to the values of sg,
it behaves similarly to the state-of-the-art definitions. The
values of almost all the plane-based definitions, excepted
sg, are very similar when compared to sg and the M-tortu-
osity (see Table 3). The smaller Vp, the bigger the tortuos-
ity. As mentioned above, TAð�10;�10Þ attests of bigger values
of lr than TAð10;�10Þ, because of short paths promotion.
These values of (a1, a2) correspond to the minimal and max-
imal values of the M-tortuosity, providing an indication of
its range of values. Consequently, the lowest M-tortuosity
values are obtained for long geodesic paths of source points
near pc, probably shorter than the longest ones, and the big-
gest M-tortuosity are obtained for short geodesic paths of
source points near pc, probably the shortest ones.

Considering Figure 6b, for the plane-based tortuosities,
the more heterogeneous the microstructure, the bigger the
tortuosity, excepted for the specific case of sg which
decreases. The behavior of sg in Figure 6b is expected. Con-
sidering that the volume outside and inside the aggregates
is equal, the more heterogeneous the microstructure, the
more porous the outside of the aggregates increasing the
probability to find a straight path connecting the entry
plane to the exit plane. The M-tortuosity behaves differ-
ently. The long geodesic paths promotion (TAð10;�10Þ) leads
to a behavior similar to plane-based definitions but with
lower values. The short geodesic paths (TAð�10;�10Þ) attest
of a large diversity of values, seen through lr. Indeed,
the M-tortuosity values of models (1), (4) and (5) are
indistinguishable considering the confidence intervals.

Table 3. Tortuosities of microstructures. Average tortuosities with the corresponding standard deviation std, computed
on 40 realizations of each model. Models (1), (2) and (3) assess the impact of volume fraction. Models (4) and (5) assess
the impact of heterogeneity. Models (1’), (2’) and (3’) assess the impact of anisotropy; all propagating direction are
evaluated, x (compression direction) and y (perpendicular direction) are displayed as well as the mean value (mean) over
the three spatial directions.

Tortuosity

sg sm sB sP sG sGr

Model lr lr lr lr lr lr
(1) Mean 1.0178 1.0444 1.0444 1.0471 1.0511 1.0500

0.0006 0.0001 0.0001 0.0001 0.0002 0.0003
(2) Mean 1.0525 1.0855 1.0855 1.0892 1.0936 1.0945

0.0007 0.0002 0.0002 0.0002 0.0004 0.0006
(3) Mean 1.1334 1.1872 1.1875 1.1891 1.1951 1.2049

0.0013 0.0009 0.0009 0.0005 0.0013 0.0018
(4) Mean 1.0161 1.0460 1.0461 1.0491 1.0539 1.0525

0.0006 0.0001 0.0001 0.0001 0.0003 0.0006
(5) Mean 1.0130 1.0478 1.0479 1.0513 1.0575 1.0563

0.0007 0.0002 0.0002 0.0002 0.0005 0.0008
(1’) x 1.0906 1.0847 1.0849 1.0906 1.0985 1.0973

0.0014 0.0004 0.0004 0.0003 0.0006 0.0010
(1’) y 1.0128 1.0323 1.0323 1.0342 1.0378 1.0366

0.0009 0.0001 0.0001 0.0001 0.0003 0.0003
(1’) Mean 1.0194 1.0497 1.0497 1.0529 1.0580 1.0567

0.0018 0.0045 0.0045 0.0049 0.0052 0.0053
(2’) x 1.1754 1.1660 1.1664 1.1754 1.1840 1.1890

0.0021 0.0007 0.0007 0.0006 0.0014 0.0021
(2’) y 1.0404 1.0638 1.0638 1.0663 1.0705 1.0705

0.0009 0.0002 0.0002 0.0002 0.0005 0.0006
(2’) Mean 1.0580 1.0977 1.0979 1.1026 1.1084 1.1102

0.0048 0.0088 0.0088 0.0094 0.0098 0.0102
(3’) x 1.4068 1.3967 1.3983 1.4068 1.4187 1.4703

0.0052 0.0020 0.0021 0.0017 0.0040 0.0067
(3’) y 1.1012 1.1430 1.1432 1.1420 1.1528 1.1587

0.0019 0.0007 0.0007 0.0005 0.0017 0.0028
(3’) Mean 1.1565 1.2269 1.2276 1.2300 1.2421 1.2626

0.0142 0.0219 0.0221 0.0228 0.0229 0.0269
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This apparent similarity between models (1) and (4) per-
sists until a1 = �1. For a1 � 0 (short paths not promoted)
and whatever a2, the M-tortuosity increases with the
heterogeneity.

5.3.2 Anisotropic microstructures

As a recall, a compression is simulated in the x direction.
Figures 6c and 6d present the anisotropic case with, in

Figure 6c the decreasing of Vp and in Figure 6d the analysis
of the impacts of (a1, a2) (to be compared to Fig. 5b).

Considering Figure 6c, the behaviors are still similar,
i.e., increasing of the tortuosity with the decreasing of Vp.
In comparison to the isotropic situation, the plane-based
tortuosities behave similarly while being bigger (Fig. 6a).
The M-tortuosity attests of a bigger sensitivity by showing
a larger range of values; bigger maximal values (TAð�10;10Þ)
and smaller minimal values (TAð10;�10Þ).

Table 4. M-tortuosities of microstructures. Average arithmetic M-tortuosities as a function of (a1, a2), with the
corresponding standard deviation std, computed on 40 realizations of each model. Models (1), (2) and (3) assess the
impact of volume fraction. Models (4) and (5) assess the impact of heterogeneity. Models (1’), (2’) and (3’) assess the
impact of anisotropy.

(a1, a2)

(�10, �10) (0, �10) (10, �10) (�10, 0) (0, 0) (10, 0)
Model lr lr lr lr lr lr
(1) 1.0283 1.0102 1.0046 1.0239 1.0085 1.0056

0.0081 0.0006 0.0005 0.0014 0.0001 0.0002
(2) 1.0526 1.0356 1.0230 1.0589 1.0319 1.0262

0.0110 0.0012 0.0016 0.0029 0.0004 0.0005
(3) 1.2050 1.1420 1.1160 1.1954 1.1326 1.1231

0.0437 0.0068 0.0065 0.0076 0.0016 0.0017
(4) 1.0245 1.0119 1.0063 1.0252 1.0100 1.0068

0.0084 0.0010 0.0007 0.0016 0.0003 0.0002
(5) 1.0339 1.0148 1.0078 1.0286 1.0121 1.0083

0.0126 0.0012 0.0009 0.0021 0.0003 0.0003
(1’) 1.0406 1.0106 1.0011 1.0528 1.0101 1.0023

0.0089 0.0006 0.0003 0.0027 0.0002 0.0001
(2’) 1.0858 1.0355 1.0070 1.1080 1.0339 1.0137

0.0170 0.0017 0.0010 0.0059 0.0005 0.0003
(3’) 1.2463 1.1537 1.0708 1.2935 1.1453 1.0930

0.0356 0.0056 0.0068 0.0107 0.0016 0.0014
(a1,a2)

(�10, �10) (0, �10) (10, �10)
Model lr lr lr
(1) 1.0222 1.0081 1.0071

0.0025 0.0003 0.0005
(2) 1.0524 1.0309 1.0318

0.0045 0.0005 0.0011
(3) 1.1918 1.1294 1.1294

0.0112 0.0016 0.0021
(4) 1.0205 1.0094 1.0084

0.0028 0.0003 0.0005
(5) 1.0285 1.0113 1.0100

0.0043 0.0004 0.0005
(1’) 1.0632 1.0083 1.0027

0.0072 0.0003 0.0002
(2’) 1.1274 1.0293 1.0157

0.0148 0.0007 0.0008
(3’) 1.3446 1.1326 1.0952

0.0426 0.0024 0.0022
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The (a1, a2) pair corresponding to the maximal tortuosi-
ties is different from the isotropic case. Indeed, the maximal
M-tortuosities are obtained for the promotion of short geo-
desic paths far from pc, probably longer the shortest ones,
while the minimal ones correspond to the promotion of long
geodesic paths near pc as in the isotropic situation (Fig. 6a).
Figure 6d provides explanations. Indeed the evolution of
the arithmetic M-tortuosity for the model (3’) as a function
of a1 2 {�10, �5, �2, �1, 0, 1, 2, 5, 10} and according to
a2 2 {�10, 0, 10}, behaves similarly to the isotropic situa-
tion for long geodesic paths promotion (close to a1 = 10);
the classification reversing between the different curves cor-
responding to the various a2 values. However, an additional
reversing is noticed for a1 between �2 and �1, when short
geodesic paths start to be promoted. Similarly to the plane-
based tortuosities which identify anisotropy by the differ-
ences between the x, y, z directions (x and y are given in
Table 3), this second classification reversing could be a solu-
tion for anisotropy detection.

5.3.3 Discriminative power

Discriminative power is the ability of quantitatively distin-
guishing between two situations, i.e., two distinct
microstructures. The tortuosity contrast focuses on small
parameters differences by considering the contrast between
neighboring models (here multiplied by 1000 to ease the
reading). Consequently, the discriminative power is here
seen through the absolute value of the tortuosity contrast;
the sign provides indications about the tortuosity evolution,
i.e., its behavior. The results are presented in Tables 5 and
6; the same parameters selection as above is considered.

Considering the discriminative power and all scenarios,
the tortuosity contrasts highlight some differences between
the plane-based tortuosities and the M-tortuosity. Despite
the M-tortuosity is inherently complementary to the usual
descriptors, some values of (a1, a2) allow the M-tortuosity
to be in the same range of values as the state-of-the-art def-
initions. For the isotropic and the anisotropic homogeneous

Fig. 6. Tortuosities with respect to porous volume fraction, morphological heterogeneity and structural anisotropy. Average
tortuosities with their corresponding confidence intervals lr, computed on 40 realizations of each model. (a) Porous volume fraction Vp

decreasing with models (1), (2) and (3). (b) Morphological heterogeneity increasing with models (4) and (5). (c)–(d) Structural
anisotropy with in (c) decreasing Vp with models (1’), (2’) and (3’), and in (d) average arithmetic M-tortuosity values of model (3’)
with a screening of parameters a1 = {�10, �5, �2, �1, 0, 1, 2, 5, 10} and a2 = {�10, 0, 10}.
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scenarios, the discriminative power is inversely proportional
to Vp. For the isotropic heterogeneous scenario, the discrim-
inative power increases. For the last scenario, comparing
isotropic and anisotropic situations at constant Vp, the dis-
criminative power increases as Vp decreases. Moreover, as a
global statement, this monotonic evolution of the tortuosity
discriminative power seems to tend toward infinity when
models tend toward the morphological limit; the percola-
tion threshold q of the Vp for the volume fraction based
scenarios, isotropic and anisotropic, complete aggregation
for heterogeneity based scenario and complete compression
for isotropy vs. anisotropy scenario. In other words, the dis-
criminative power increases as a function of microstructure
parameters, whatever the tortuosity definition or the type
of microstructure, among the tortuosity and the models
considered.

The above comments about the tortuosities behaviors
are underscored by the focus on the contrast sign. Compar-
ing isotropic and anisotropic microstructures at constant Vp
(three last lines of Tables 5 and 6), the plan-based tortuosi-
ties decrease in the y direction, similarly to theM-tortuosity
when long geodesic paths are promoted, and increase in the
x direction, the one of the compression, similarly to the
M-tortuosity when short geodesic paths are promoted.
Globally, the mean values over the x, y, z directions increase
with the anisotropy which have been highlighted in Figures
6a and 6c. TheM-tortuosity (Table 6) increases similarly for
a1 < 0 but starts decreasing at a1 = 0, whatever a2, meaning

that long geodesic paths are less tortuous in average for
anisotropic microstructures than for isotropic ones.

5.4 Overall view

Considering all scenarios, the plane-based tortuosities are
equivalent, excepted sg which is always smaller and the only
tortuosity to decrease in the heterogenity scenario. On
closer inspection, sB is almost equal to the classical sm, sP
is a little bit bigger than sB while sG and sGr are generally
the biggest; sGr is bigger than sG except for the heterogene-
ity scenario. In the anisotropic scenario, the differences
between the tortuosity values according to the direction is
a way to detect anisotropy in a microstructure. In this case,
considering tortuosity behaviors as functions of Vp, there
is a contradiction for the plane-based definitions; in the
x direction (compression direction) the tortuosities are
bigger than the isotropic case, in the y direction the tortu-
osities are smaller. Globally, according to the mean tortuos-
ity, the anisotropy induces an increasing of the tortuosity.

Let consider theM-tortuosity with the arithmetic defini-
tion. Globally, the short geodesic paths makes increase the
tortuosity (a1 tends toward minus infinity), while increasing
the uncertainty about the mean value. For isotropic scenar-
ios (Figs. 6a and 6b), it provides smaller tortuosity values
than the other plane-based definitions, excepted for the
model (3). For anisotropic scenario, the situation is differ-
ent. The power factor a1 provides a certain control of the

Table 5. Tortuosity contrast and discriminative power (plane-based tortuosities). Tortuosity contrasts, computed on
each pair of neighboring models and multiplied by 1000. Models contrasts (2)–(1) and (3)–(2) focus on volume fraction.
Models contrasts (4)–(1) and (5)–(4) focus on heterogeneity. Models contrasts (2’)–(1’) and (3’)–(2’), and (1’)–(1), (2’)–
(2) and (3’)–(3) focus on anisotropy; two propagating direction are evaluated, x (compression direction) and y
(perpendicular direction).

Tortuosity

Models sg sm sB sP sG sGr

(2)–(1) Mean 16.7722 19.2918 19.3079 19.7127 19.8148 20.7342
(3)–(2) Mean 37.0333 44.7515 44.8455 43.8383 44.3430 48.0245
(4)–(1) Mean �0.8235 0.7855 0.7960 0.9559 1.3239 1.2092
(5)–(4) Mean �1.5124 0.8427 0.8557 1.0286 1.6917 1.7781
(2’)–(1’) x 29.1309 36.1049 36.1845 37.4475 37.4696 40.1041
(2’)–(1’) y 13.4701 15.0265 15.0357 15.2992 15.5176 16.1124
(2’)–(1’) Mean 18.5355 22.3713 22.4062 23.0458 23.2910 24.6905
(3’)–(2’) x 72.3689 90.0302 90.4532 89.6071 90.1563 105.7989
(3’)–(2’) y 28.3907 35.8888 35.9602 34.2690 37.0315 39.5332
(3’)–(2’) Mean 44.5010 55.5838 55.7895 54.6308 56.8537 64.2439
(1’)–(1) x 6.9698542 18.9416136 18.9984366 20.3329788 22.0123757 21.9026839
(1’)–(1) y �2.3933944 �5.88022862 �5.88897808 �6.28823676 �6.39779919 �6.48961922
(1’)–(1) Mean 0.82760245 2.53647373 2.5502427 2.7526925 3.25508346 3.16580604
(2’)–(2) x 20.0463449 35.7749669 35.8928035 38.1020339 40.0873376 41.7567377
(2’)–(2) y �6.44152978 �10.1851369 �10.1993753 �10.7462245 �10.7905948 �11.1304736
(2’)–(2) Mean 2.59147916 5.61729475 5.64983032 6.08728922 6.73277598 7.1240219
(3’)–(3) x 53.4442072 78.9423319 79.3866642 82.9512547 88.1696935 100.491996
(3’)–(3) y �13.3856754 �18.5636667 �18.6052757 �20.0874668 �18.6192558 �20.1281987
(3’)–(3) Mean 10.0713305 16.4756856 16.6203024 16.9045713 19.273502 23.3909106
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sensitivity to geodesic paths length. This is a complemen-
tary insight over the whole microstructure. Moreover,
beside this first benefit, the M-tortuosity probes the
microstructures in random directions, not only the x, y, z
ones, and succeeds in detecting the anisotropy (Fig. 6d).
Consequently, the M-tortuosity reveals to be a good candi-
date to characterize thoroughly complex microstructures
where propagation direction is delicate to impose. More-
over, the choices of (a1, a2) could be motivated by the appli-
cation, if the local diffusion is to be analyzed as in [25].

Finally, if the purpose is to analyze microstructures
using a unique scalar value, it is of interest to identify the
values of (a1, a2) to simulate the state-of-the-art definitions
in applications they do not fit. As the discriminative power
of theM-tortuosity is often larger than the usual definitions,
no perfect matching is reachable. In the isotropic scenarios,
a1 = �10 leads to closer tortuosity values to the plane-
based ones. Still in the isotropic scenarios, for the specific
case of sg, the closest curves are obtained for a1 around
�2 for the volume fraction scenario. For the heterogeneity
one, the behaviors are too different; a1 � 0 ensures the
M-tortuosity to increase. The value of a2 impacts less the
final result, which is expected with isotropic microstruc-
tures. Nonetheless, it seems that when a2 tends toward
minus infinity the tortuosity increases but large values of
lr add uncertainty in the average value. Indeed, a2 has an
influence over the confidence interval; in the volume

fraction scenario as well as in the heterogeneity one,
a2 = 0 provides the lowest lr values. In the anisotropic sit-
uation, the range of M-tortuosity values encompasses the
state-of-the-art tortuosity values. The closest values are
obtained for a1 = a2 = �10. For the specific case of sg,
the closest curves are obtained for a1 = �1, whatever a2.

6 Conclusion

Based on a stochastic process, theM-tortuosity fits with the
characterization of complex microstructures where propa-
gation directions are delicate to impose, such as irregular
piece of materials or atypical contexts. The extension pre-
sented in this work provides versatility through additional
parameters making explicit the consideration of percolation
while giving the opportunity to the user to adapt the char-
acterization to the application. A brief review of morpholog-
ical visions of tortuosity is presented and theM-tortuosity is
compared to these state-of-the-art descriptors.

The new parameter a1 added to the original M-tortuos-
ity definition provides a certain sensitivity to geodesic paths
lengths, allowing to promote long or short geodesic paths.
a2 promotes or inhibits eccentricity in microstructure prob-
ing. The other parameters, named q, embed percolation to
get a proper disconnection and isolation insensitivity, one
ofthe distinctions with the state-of-the-art. Moreover, the

Table 6. Tortuosity contrast and discriminative power (M-tortuosity). M-tortuosity contrasts as a function of (a1, a2),
computed on each pair of neighboring models and multiplied by 1000. Models contrasts (2)–(1) and (3)–(2) focus on
volume fraction. Models contrasts (4)–(1) and (5)–(4) focus on heterogeneity. Models contrasts (2’)–(1’) and (3’)–(2’),
and (1’)–(1), (2’)–(2) and (3’)–(3) focus on anisotropy.

(a1, a2)

Models (�10, �10) (0, �10) (10, �10) (�10, 0) (0, 0) (10, 0)

(2)–(1) 11.6585 12.4112 9.0540 16.8155 11.4334 10.1831
(3)–(2) 67.5180 48.8562 43.4857 60.5600 46.5211 45.0741
(4)–(1) �1.8375 0.8327 0.8099 0.6516 0.7427 0.6364
(5)–(4) 4.5627 1.4065 0.7480 1.6446 0.9999 0.7313
(2’)–(1’) 21.2390 12.1347 2.9192 25.5741 11.6728 5.6274
(3’)–(2’) 68.8360 53.9952 30.7437 77.2097 51.1185 37.6858
(1’)–(1) 5.9563 0.2122 �1.7625 13.9149 0.7468 �1.6181
(2’)–(2) 15.5383 �0.0644 �7.8974 22.6745 0.9862 �6.1740
(3’)–(3) 16.8621 5.0881 �20.6544 39.3874 5.5946 �13.5743

(a1, a2)

Models (�10, �10) (0, �10) (10, �10)
(2)–(1) 14.5242 11.1650 12.0952
(3)–(2) 62.1177 45.6178 45.1820
(4)–(1) �0.8518 0.6512 0.6547
(5)–(4) 3.8986 0.9231 0.7583
(2’)–(1’) 29.3014 10.3329 6.4218
(3’)–(2’) 87.8860 47.7690 37.6804
(1’)–(1) 19.6453 0.0638 �2.2011
(2’)–(2) 34.4187 �0.7685 �7.8748
(3’)–(3) 60.2747 1.3874 �15.3884
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M-tortuosity probes the microstructures in random direc-
tions, not only the x, y, z ones, particularly adapted to
applicative situations where propagation direction is
undefined or if only local diffusion is to be quantified. The
M-tortuosity is compared to some state-of-the-art defini-
tions in three specific situations thanks to Boolean models.
The tortuosity behavior with respect to porous volume frac-
tion, morphological heterogeneity and structural anisotropy
is evaluated.

As a result, the M-tortuosity behavior is equivalent to
the state-of-the-art definitions while being inherently com-
plementary thanks to the new parameters. Globally, the
short geodesic paths promotion (a1 < 0) leads to an increase
in tortuosity, contrary to the long geodesic paths promo-
tion. In the isotropic scenario, the M-tortuosity behaves
similarly to the plan-based tortuosities but its values are
smaller. However, while the anisotropy does not affect the
behavioral aspect, the M-tortuosity sensivity leads to a lar-
ger range of values, encompassing the state-of-the-art tortu-
osities. The optimal values of (a1, a2) to get closer to the
plan-based tortuosities are discussed. The M-tortuosity is
a potential candidate to replace these definitions in situa-
tions where they are not adapted to and used in diffusion
and conductivity analyses. Moreover, one of the advantages
of theM-tortuosity relies in the microstructure characteriza-
tion as a function of the parameters (a1, a2), allowing,
among other things, to detect anisotropy without imposed
propagation direction.

These statements are supported by the discriminative
power analysis, based on contrast in tortuosity values of
pairs of neighboring models. This highlights once again
the similarity of the M-tortuosity to the classical definitions
considering isotropic microstructures while providing addi-
tional details about tortuosity behavior at different scales,
especially in the heterogeneity case. Last but not least, ani-
sotropic microstructures point out the differences to the
classical definitions. This specific situation of structural ani-
sotropy highlights the contradiction in tortuosity behaviors
considering plane-based tortuosities; tortuosity increases or
decreases with anisotropy according to the propagation
direction. The mean value of the x, y, z directions is consid-
ered for comparison with the M-tortuosity. Considering the
M-tortuosity and the standard tortuosties, the detection of
the anisotropy is connected to how it impacts the tortuosity
according to the length of the geodesic path. The anisotropy
leads to increase the tortuosity of short geodesic paths, sim-
ilarly to its impact in the x direction (compression direc-
tion), and to decrease the tortuosity of long geodesic
paths, similarly to its impact in the y or z directions.

The versatility of the M-tortuosity relies on the various
operators it could provide, as demonstrated in [15, 25]
which is now enriched by parameters allowing to adapt
the computations to the applications. In the future, two
main points will be investigated. The first one is the hetero-
geneity case in the results and discussion section, which
points out certain limitations of considering only scalar
values to represent the tortuosity of complex microstruc-
tures. In this case, a dimension adapted to the required
description using 3D maps, curves or histograms could turn
the M-tortuosity a manyfold tortuosity. The second point

concerns its use on real microstructure samples as the one
of Figure 1.

The M-tortuosity and the state-of-the-art tortuosities
discussed in this article are freely available in [35].
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