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This paper presents a new methodology allowing the discretisation of phase specific transport 
equations within the Volume-of-Fluid interface capturing method framework. The method uses 
a sharp interface algorithm to compute the transport of species concentration. The interface 
reconstruction and advection is provided by the geometric advection scheme isoAdvector [1]
implemented in the OpenFOAM® library. When discretising the transport equation for species, 
lack of consistency with the free surface advection scheme can lead to numerical errors, causing 
conservation or boundedness issues. This work addresses the issue of consistency in convective 
transport of species and is divided in two parts. First, a new interpolation procedure is used 
to compute face values from cell-centered values. Then, the diffusive operator of the transport 
equation is corrected. Finally, a set of test cases are presented to validate the transport equation’s 
consistency with the free surface advection. Species transport across the interface is not part of 
the scope of this article, however, this methodology can further be used to study mass transfer at 
the gas-liquid interface using additional mass source terms that are not discussed here.

1. Introduction

Multiphase catalytic processes are prevalent in diverse industries including commodity and fine chemicals, as well as pharma-
ceuticals. There is a continual innovation and development for such processes in order to improve reaction performance but also to 
comply with evolving environmental and safety regulations [2]. Catalyst testing is often performed in batch or fed-batch reactors 
with volumes of several litres. However, temperature and mixing may be difficult to control due to the relatively large volume of 
the reactor. The reactors are also often operated at high pressure, which requires a further depressurization step. This step might 
be harmful for the products in case of secondary reactions [3]. One alternative to batch reactors is the choice of continuous flow 
capillary microreactors. These types of reactors require much smaller volumes of reagents than batch reactors and temperature con-
trol is easier. For these reasons, microfluidics – as a viable alternative to conventional reactors for catalytic tests – have attracted 
considerable attention over the last years [4–9]. To ensure micro capillaries can perform at least as well as the agitated batch and 
fed-batch reactors, proof is required to demonstrate adequate reaction performance.
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Computational Fluid Dynamics (CFD) is now being considered as a design tool and used in the aim of process optimization and in-
tensification. Nevertheless, simulating reactive two-phase flows requires numerical tools rigorously tested and validated. Indeed, this 
type of flow requires the interface between the fluids to be resolved and also an additional transport equation for the concentration 
to track the species in the domain. Ultimately, this additional transport equation can have an influence on momentum conservation, 
for example due to volume changes [10]. In the present work, the Volume of Fluid (VOF) method is used. This method was first 
detailed in the work of Hirt and Nichols [11]. The coupling of the hydrodynamics solver with species transfer has been addressed in 
several studies, depending on the method used to solve the free-surface flow. For example, front tracking methods [12–16], arbitrary 
Lagrangian-Eulerian (ALE) [17–19], Level-Set (LS) [20,21] and also Volume of Fluid (VOF) [22–28].
In the OpenFOAM® library [29], two different VOF methods exist, the so-called algebraic and geometric VOF. While the algebraic 
VOF solves an equation for the transport of an indicator function [30], the geometric VOF uses a geometric representation of the 
interface and its intersection with cell faces to compute the phase specific fluxes [1,31]. Predicting the surface tension force is the 
main difficulty when using the VOF methods. The formulation of the surface tension force used in most solvers was described as 
the Continuous Surface Force (CSF) developed by Brackbill et al. [32]. However, errors in the estimation of interface curvature are 
responsible for the generation of non-physical (or spurious) velocities [33]. The geometric VOF solvers were designed to reduce 
spurious velocities. An additional interface reconstruction step allows an explicit location of the interface in the cell and thus a better 
prediction of the variable interpolations.
When dealing with species transport and chemical reactions, an advection-diffusion equation for each species must be added to the 
problem. To describe the transport of these species, two methods are possible. Either a unique concentration field is used to describe 
the species in the whole domain (this is the method proposed by Haroun et al. [24] and applied in [25,34] as the Continuous Species 
Transfer (CST)) or two concentration fields can be created, one for each phase. The corresponding concentration field should there-
fore be null in the other phase. This two-field approach was successfully applied in the work of Bothe and Fleckenstein [26].
In order for the concentration fields to be consistent with the interface, one must use the same interpolation weights to compute the 
face values of the field. However, in the geometric VOF method, the volume fraction field 𝛼 is not explicitly interpolated onto the 
cell faces. Our work focuses on a new methodology being able to interpolate a concentration field onto the cell faces, in order to 
stay consistent with the interface. The most important point in a two-field approach is to avoid artificial mass transfer due to badly 
computed face fluxes.
A geometric VOF method is also available in the free software Basilisk (more information on the software can be found in [35,36]) 
and several authors used it to study scalar-transport related cases. Farsoiya and coworkers [37] studied mass transfer in the wake of a 
gas bubble in a turbulent flow, López-Herrera et al. [38] worked on electrohydrodynamics, and multicomponent droplet evaporation 
was simulated by the group of Cipriano [39]. All of these cases rely on the transport of a scalar that must be advected consistently 
with the VOF method provided by Basilisk. To do so, the Bell-Colella-Glaz second order upwind scheme [40] is used to compute the 
face value of the scalar from the cell-centered value. However, this scheme was not implemented in OpenFOAM® and the comparison 
of its performances with classical interpolation schemes available in OpenFOAM® is not part of the scope of the present study.
Consistency with the diffusion operator is also critical. The transport of the free surface is an advection-only equation and there is 
no diffusion of the interface. To be able to stay consistent with the interface, diffusion can only occur in the bulk of the phases and 
the diffusion coefficient must be corrected to stay consistent with the interface. If consistency with both advection and diffusion 
operator is not enforced, artificial mass transfer might arise, causing numerous numerical errors. These numerical errors will lead 
to further numerical issues when adding physical mass transfer on top of the transport equation, which is why consistency with the 
VOF equation is so important when dealing with multiple transport equations.
In this work, a new methodology for the interpolation of a scalar field from the cell centres to the cell faces is presented. These face 
values are used in the divergence operator to compute the flux of the scalar quantity. A correction of the diffusion coefficient in order 
to avoid the diffusive fluxes through the faces of cells containing the interface between phases is also detailed. Finally, test-cases 
evaluating the efficiency of the method are discussed. To our knowledge, no work in the literature focuses specifically on consistency 
of the advection and diffusion operators. The focus of this work is to give an example on how to start with the transport equation in 
order to ensure consistency with the interface. The source code and the test cases presented in this document are available in the git 
repository [41].

2. Modelling

2.1. The Volume of Fluid method

The VOF methods use an indicator function to represent the discontinuity between the two phases. This step function is defined 
as:

𝐻(x, 𝑡) =
{

0 in the gaseous phase
1 in the liquid phase

The volume fraction 𝛼 of the liquid phase for a cell 𝑖 can be derived as follows:

𝛼𝑖(𝑡) =
1

𝐻(x, 𝑡) d𝑉 (1)
2

𝑉𝑖 ∫
Ω𝑖
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where Ω𝑖 represents the cell 𝑖 and 𝑉𝑖 = ∫
Ω𝑖

d𝑉 its volume. The volume fraction of the gaseous phase is implicitly defined as 1 − 𝛼. The 

resulting evolution equation for 𝐻 is obtained from the continuity equation:

𝜕𝐻

𝜕𝑡
+∇ ⋅ (U 𝐻) = 0 (2)

with the condition that ∇ ⋅𝑈 = 0. Two categories of VOF methods exist. The algebraic VOF method, uses equation (2) to implicitly 
capture the interface position. In OpenFOAM® , it is used along with the Multidimensional Universal Limiter for Explicit Solution 
(MULES) to provide a sharper interface. The solver is named interFoam and was historically the first implemented in OpenFOAM®

. More details about its formulation and performance can be found in the work of Deshpande and coworkers [30] and in the work of 
Bilger et al. [42].
The issue with algebraic VOF methods is the smearing of the interface. Geometric methods used in combination with a reconstruction 
algorithm provide a sharper interface representation [33]. For surface tension dominated flows (i.e. low capillary numbers flows), 
the prediction of the surface tension force offered by the interFoam solver is not sufficient and generates spurious currents [43,44]. 
Therefore, the geometric VOF method isoAdvector has been chosen in this work and will be presented in the following section.

2.2. The geometric VOF algorithm isoAdvector

Recently, a geometric VOF solver has been developed in OpenFOAM® . It differs from the algebraic VOF solver in the explicit 
reconstruction of the interface from the volume fraction field. With a sharper interface calculation, the curvature prediction, and 
therefore the computation of surface tension force, can potentially be improved. The drawback of geometric methods is the dif-
ficulty of implementation compared to algebraic method. isoAdvector is a numerical method developed for the advection of a 
passively advected surface. It was implemented in OpenFOAM® to be used in multiphase solvers to advect the interface between two 
incompressible, isothermal fluids. Full details on the algorithm are available in [1]. The present section will be used to give some 
background on the method, which will be necessary to explain the contribution of this work.
isoAdvector introduces two novel features. First, the reconstruction step uses the concept of isosurfaces to locate the interface 
in each cell. Then, the intersection between the interface and the face (the face-interface intersection line, FIIL) is updated with 
a vertex-interpolated velocity to allow the computation of the phase specific face fluxes. The starting point is the phase indicator 
function, which is computed in each cell based on the phase densities 𝜌1 and 𝜌2:

𝐻(x, 𝑡) =
𝜌(x, 𝑡) − 𝜌2
𝜌1 − 𝜌2

(3)

The volume fraction is defined exactly as equation (1). After some manipulation and integration in time, the new time step volume 
fraction of cell 𝑖 is given by:

𝛼𝑖(𝑡+Δ𝑡) = 𝛼𝑖(𝑡) −
1
𝑉𝑖

∑
𝑓

𝑠𝑖𝑓 Δ𝑉𝑓 (𝑡,Δ𝑡) (4)

In equation (4), 𝑠𝑖𝑓 on face 𝑓 equals +1 or −1 to ensure that 𝑠𝑖𝑓 𝑑S points out of cell 𝑖. Δ𝑉𝑓 is the volume of fluid transported across 
face 𝑓 during a time step. It is computed as:

Δ𝑉𝑓 (𝑡,Δ𝑡) =

𝑡+Δ𝑡

∫
𝑡

∫
𝐴𝑓

𝐻(x, 𝜏)U(x, 𝜏) ⋅ 𝑑S 𝑑𝜏 (5)

with 𝐴𝑓 the surface of face 𝑓 . To guarantee mass conservation, this “volumetric face flux” is used to update both cells sharing face 
𝑓 .
isoAdvector is originally distributed with a reconstruction algorithm called isoAlpha. This algorithm is based on the idea of 
“isosurfaces”, i.e. surfaces of same volume fraction. The isosurface 0.5 is often used to visualize the concept of interface between two 
phases. However, this isosurface does not necessarily cut a cell into two subsets of volumes corresponding to the volume fraction of 
the cell. Therefore, isoAlpha uses the volume fraction field information to find which isovalue best fits the liquid distribution in 
each cell. This description of isovalues implies that the interface is not connected between cells.
The computation of fluxes will now be explained. All the details are inspired from the papers of the authors [1,45]. The basic concepts 
are presented to understand the importance of the developments made in the current study.Fig. 1 illustrates a simple case where 
an interface translates in a cubic cell. To translate the interface, the cell-centered velocity field is interpolated onto the interface 
centroid. The previous time step velocity is used and considered constant.

Fig. 2 and 3 illustrate the time evolution of the interface. The initial area immersed in the liquid phase is given in Fig. 2 by 𝐴𝑖𝑚(𝑡). 
During a time step, the portion of the face that will be swept by the interface is given by the area of the polygon 𝐴𝑖𝑚(𝜏) −𝐴𝑖𝑚(𝑡). Using 
the letters defined in Fig. 3 together with the approximation of constant velocity during a time step, the position of the intersection 
at an intermediate time 𝜏 can be expressed as:

𝐵 =𝐴+ (𝐶 −𝐴) 𝜏 − 𝑡
𝐸 =𝐷 + (𝐹 −𝐷) 𝜏 − 𝑡

(6)
3

(𝑡+Δ𝑡) − 𝑡 (𝑡+Δ𝑡) − 𝑡
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Fig. 1. Advection of a free surface with isoAdvector during a time step Δ𝑡.

𝑡 𝜏 𝑡+Δ𝑡

𝐴𝑖𝑚(𝑡)

𝐴𝑖𝑚(𝜏)

𝐴𝑖𝑚(𝑡+Δ𝑡)

Fig. 2. Liquid immersed part of the top face (𝐴𝑖𝑚) during a time step Δ𝑡.

𝑡

𝜏

𝑡+Δ𝑡

A

B

C

D

E

F

Fig. 3. Illustration for the computation of the liquid immersed area.

It is possible to obtain the area from Fig. 3 with the relation:

𝐴𝑖𝑚(𝜏) −𝐴𝑖𝑚(𝑡) =
1
2
|𝐴𝐸 ×𝐷𝐵| (7)

After manipulation, it appears that the time dependent immersed area is a second-order polynomial:

𝐴𝑖𝑚(𝜏) −𝐴𝑖𝑚(𝑡) = 𝑎𝜏2 + 𝑏𝜏 + 𝑐 (8)

Letters 𝑎, 𝑏 and 𝑐 are obtained after combining equations (6) and (7) and identifying the terms according to their order in the 
polynomial. When this second-degree polynomial is integrated over time, it gives a third-degree polynomial, which is quite easy 
to fit. For this reason, isoAdvector is computationally efficient compared with other geometric VOF solvers. The procedure is 
applicable to any grid topology, including polyhedral meshes. The volumetric face flux Δ𝑉𝑓 (𝑡, Δ𝑡) is used to define 𝛼𝑓 , which is the 
part of the face that is immersed in the liquid. The definition of the liquid immersed part of face 𝑓 is:

Δ𝑉𝑓
4

𝛼𝑓 =
𝐹𝑓Δ𝑡

(9)
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The volumetric face flux 𝐹𝑓 results from the velocity-pressure solver. isoAdvector uses a converged velocity from the old time 
step. Species transport is then performed thanks to the face-area-averaged volume fraction after the interface advection. This face 
value 𝛼𝑓 is the cornerstone of our developments as it will be used to enforce consistency with isoAdvector.

2.3. The piecewise linear interface construction

The original algorithm proposed by [1] in combination with isoAdvector to reconstruct the interface from the volume fraction 
field was called isoAlpha. The algorithm determines the best isovalue for the isosurface to match the actual amount of liquid inside 
the cell. The drawback of the method is the connectivity of the interface. Indeed, the interface is not necessarily connected between 
cells. Note that this is also the case for some other reconstruction schemes such as the Piecewise Linear Interface Construction (PLIC) 
(see [46] for a description of the method). A new implementation of PLIC is now available in combination with isoAdvector
(see [31] for more details). The PLIC method is interesting because it allows a very precise curvature prediction. This new implemen-
tation is available as a separate git repository [47] and the solver is called interFlow. Benchmark tests have shown the robustness 
of interFlow for the resolution of surface tension dominated flows [43], reducing the intensity of parasitic currents by two orders 
of magnitude compared with MULES or isoAdvector isoAlpha. Our choice of using interFlow was thus motivated by its good 
performance in capillary flows. The remainder of this document considers only interFlow as the VOF solver. Nevertheless, other 
VOF solvers could be used provided that adequate face values are returned by the VOF solver.

2.4. The two-field approach

In chemical engineering, concentration or mass fractions are often used to describe chemical species. Concentration is useful 
when comparing multiple reactions to obtain reactions rates or yields. To represent the species distribution in the domain, a transport 
equation is required to follow the species concentrations in every control volume. As was mentioned in the introduction, there are 
two possibilities to describe the concentration field. The single-field approach has been used by Haroun and coworkers [24] to 
study chemical mass transfer at a gas-liquid interface. Marschall et al. [25] then developed the Continuous Species Transfer using 
a different computation for the diffusion coefficient in the interface region. Maes and Soulaine [34] also have successfully included 
volume change and derived the Compressive-CST (C-CST), which improves consistency with MULES of interFoam. To avoid the 
difficulty of the discontinuous concentration field at the interface, the two-field approach is interesting as it uses two separate fields 
to describe the concentration in the domain. It also avoids the complicated computation of the phase properties in the cells where 
both phases exist. In the two-field approach, the interface concentration is directly accessible through the linear extrapolation of 
the phase concentration to the interface. The two-field approach is also more consistent with a geometric VOF method, see [34]. 
Bothe and Fleckenstein [26] used the two-field approach for the transport of concentration. Later, the same authors included volume 
change to multi-component mass transfer [10]. Both single field and two-field approaches can yield good results. However, the most 
important thing to keep in mind is artificial mass transfer. Artificial mass transfer occurs when the concentration of a given species 
becomes non-physical in a phase. It is artificial because the fluxes responsible for the creation of non-zero concentration come from 
the discretisation of the transport equation.
The difficulty with modelling two-phase flows is making the transport of concentration with the interface advection resulting from 
the VOF solver consistent. Consider a simple case of a gas bubble containing a dilute species that is advected in a channel filled 
with liquid. The dilute species in the gas is not soluble in the liquid. Therefore, its concentration should remain zero everywhere in 
the liquid phase. If the concentration of the species becomes non-zero in the liquid phase, this is because there is a flux of species 
entering a cell filled with liquid.
The averaging tools needed to derive a transport equation consistently with a geometric VOF method such as isoAdvector are 
as follows. Consider a gas-liquid two-phase flow; in a two-field approach, the concentration of a species 𝐶𝑘 is split into a liquid 
concentration field and its gaseous counterpart:

𝐶𝑘,1(x, 𝑡) =
{
𝐶𝑘(x, 𝑡) in phase 1
0 in phase 2

(10)

𝐶𝑘,2(x, 𝑡) =
{

0 in phase 1
𝐶𝑘(x, 𝑡) in phase 2

(11)

Two averaged quantities can be expressed, namely the volume average and the phase average. The volume average is the quantity 
that is transported on the computational grid in a Finite Volume Method (FVM) framework. It is the concentration averaged over the 
volume 𝑉 of a cell:⟨

𝐶𝑘,1
⟩
𝑉
= 1
𝑉 ∫
𝑉1

𝐶𝑘,1 𝑑𝑉 (12)

Note that since 𝐶𝑘,1 must be zero in the gas phase, integrating over 𝑉1, which is the volume of liquid inside the cell, or over 𝑉 , which 
is the total volume of the cell, are equivalent. A similar definition holds for phase 2. The phase average can be defined as:⟨

𝐶𝑘,1
⟩
𝑉

= 1
𝐶𝑘,1 𝑑𝑉 (13)
5

1 𝑉1 ∫
𝑉1
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𝛼 = 1

𝐶𝑘,1 = 1

𝛼 = 0

𝐶𝑘,1 = 0

𝛼 = 1

𝐶𝑘,1 = 1

L G Linlet

inlet outlet

outlet

L = 0.01m

Fig. 4. Schematic of a one-dimensional channel used to test the advection performances of interpolation schemes.

The phase average represents how the concentration is distributed within the phase. The two averages can be linked by the volume 
fraction:⟨

𝐶𝑘,1
⟩
𝑉
= 1
𝑉 ∫
𝑉1

𝐶𝑘,1 𝑑𝑉 =
𝑉1
𝑉

1
𝑉1 ∫

𝑉1

𝐶𝑘,1 𝑑𝑉 = 𝛼
⟨
𝐶𝑘,1

⟩
𝑉1

(14)

Equation (14) is very important since both averaged quantities will be used in the following, depending on the situation.

2.5. Face interpolation

In this section, the basic interpolation tools used in section 3 are presented. Consider the transport equation for a scalar quantity 
𝜙 with a diffusivity 𝐷 and a volumetric source term 𝑆𝑣:

𝜕𝜙

𝜕𝑡
+∇ ⋅ (U𝜙) = ∇ ⋅ (𝐷∇𝜙) +𝑆𝑣 (15)

In FVM, this equation is integrated over a control volume and time. The divergence theorem is then used to convert the convection 
and viscous volume integrals into surface integrals on the contour of the control volume of unit normal n:

∫
𝑉

∫
Δ𝑡

𝜕𝜙

𝜕𝑡
𝑑𝑡 𝑑𝑉 + ∫

Δ𝑡
∫
𝐴

U ⋅ 𝐧 𝜙 𝑑𝑡 𝑑𝑆 = ∫
Δ𝑡

∫
𝐴

𝐷 𝐧 ⋅𝛁𝜙 𝑑𝑡 𝑑𝑆 + ∫
𝑉

∫
Δ𝑡

𝑆𝑣 𝑑𝑡 𝑑𝑉 (16)

The mid-point assumption stating that the integral is approximately equal to the mean value of the face variable multiplied by the 
surface of the face is used. This product can be approximated by the value at the centre of the face 𝑓 multiplied by the face area:

∫
𝐴

𝜙𝑑𝐴 ≈ 𝜙𝑓𝐴𝑓 (17)

In the cell-centered OpenFOAM® FVM framework, the only known value of 𝜙 is at the cell centres. Therefore, a surface interpolation 
scheme is needed to provide the face value 𝜙𝑓 from the cell centered values of the two cells sharing the face. In most numerical 
codes, a weight 𝑤 is computed on each face depending on the selected scheme. This weight is then used to compute the face value 
𝜙𝑓 with respect to the two cell centered values 𝜙𝑃 and 𝜙𝑁 :

𝜙𝑓 = 𝜙𝑁 +𝑤(𝜙𝑃 − 𝜙𝑁 ) (18)

In the following of the text, different linear interpolation schemes are used: first order upwind differencing (UD), second order 
central differencing (CD) and Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL), which is also known as van 
Leer’s scheme [48–52]. The interest of MUSCL is the bounding option that limits over- and under-shoots.

2.6. The importance of consistency for the transport of a passive scalar

Numerical diffusion is a well-known issue when trying to advect a sharp profile. This issue has motivated significant numerical 
developments, including the VOF method. When transporting a concentration field in two-phase flow, the same issue occurs for 
the concentration field. Indeed, the preservation of the species interface discontinuity imposed by thermodynamics requires the 
same kind of treatment as free surface flows. In an analogous manner, this “chemical interface”, where the fluid properties and 
concentrations undergo a jump, must coincide with the hydrodynamic gas-liquid interface resulting from the VOF solver. If it does 
not coincide, then artificial mass transfer has occurred because the concentration value is not what it should be. This issue can be 
seen on a simple test case of a bubble of gas flowing in a channel of liquid. Consider a dilute species inside the liquid phase that 
does not transfer through the interface and has uniform concentration. Since there is no concentration gradient in the liquid phase, 
the system corresponds to a purely advective case and the concentration should follow the interface. The set-up is illustrated in 
Fig. 4; the liquid is water and the gas air. To simulate this test-case, a 1D channel of 0.01m is discretised with 1000 1D cells. A gas 
bubble is initialized and in the liquid the species has a concentration of 1kgm−3 . The CFL number is set to 0.1 with an adaptive time 
6

step, the simulations last 0.7 s. The objective is to verify if the advection of the concentration field is consistent with the advection 
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Fig. 5. Comparison between the volume fraction field profile and nondimensionalized concentration field profiles obtained with different interpolation schemes. (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

of the interface. An OpenFOAM® function object called scalarTransport is added in the controlDict to add a passive scalar 
transported by the two-phase flow. The diffusivity of this scalar is set to zero and several interpolation schemes used in the divergence 
term are compared. In Fig. 5, the concentration profiles obtained with these different interpolation schemes after 0.4 s are shown.
The use of a first order UD scheme to interpolate the concentration onto the cell faces leads to an over-diffused concentration profile. 
This numerical diffusion spreads the initially sharp concentration profile, making it non-zero in the gas phase. Fig. 5 shows that the 
UD scheme in red fails to prevent artificial mass transfer. The use of higher order interpolation schemes to preserve the sharp profile 
has been proposed. However, second order schemes tend to be oscillatory, which might be an issue for bounded variables. In Fig. 5, 
the CD scheme, displayed as a blue curve, shows over- and under-shoots of the concentration profile. They result from the inaccurate 
face concentration prediction of the CD interpolation scheme. These over- and under-shoots are damaging for the simulation as 
they break thermodynamics of saturation or provide negative concentrations. The MUSCL scheme is interesting as it avoids over-
and under-shoots. Furthermore, the profile obtained with the MUSCL scheme is sharper than with the UD scheme, thus, reducing 
artificial mass transfer. Nevertheless, none of these three schemes give fully satisfactory results, i.e. a bounded concentration profile, 
without artificial mass transfer. This work aims at presenting a new methodology that was successfully applied to the transport of 
concentration consistently with the geometric VOF method using isoAdvector.

3. Sharp interface consistent scalar transport equation

In section 2.6, it has been shown that discretising the transport equation consistently with the interface advection is crucial to 
avoid artificial mass transfer. In this section, a new methodology to discretise the transport of concentration will be described to 
overcome the issue of consistency with the advection of the free surface. Concentration transport is the first step to build a coupled 
reactive two-phase flow solver. If the transport step is not as accurate as possible, the prediction of reaction will inevitably be 
impacted.

3.1. General expression of a transport equation for concentration

The starting point is the following transport equation for the concentration of species 𝑘:

𝜕𝐶𝑘

𝜕𝑡
+𝛁 ⋅ (U𝐶𝑘) = 𝛁 ⋅ (𝐷𝑘𝛁𝐶𝑘) +𝑆𝑣 (19)

This concentration field is split into two fields: two transport equations exist, one for each phase. Note that the phase concentrations 
are defined over the whole domain, but their values must be zero in the “other” phase.

3.2. Discretisation of the advective part of the transport equation

The first step is the discretisation of the advection operator. Only the advective transport of the concentration of species 𝑘 in 
phase 1 is considered; as the same equation can be applied to the other phase:

𝜕𝐶𝑘,1

𝜕𝑡
+𝛁 ⋅ (U𝐶𝑘,1) = 0 (20)

In equation (20), the volume average concentration, as established by equation (12), is used after integration over the volume 𝑉𝑖 of 
7

cell 𝑖 and a time step Δ𝑡:
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Fig. 6. Schematic diagram of two cells cut by the interface with a volume fraction of 0.5.

⟨
𝐶𝑘,1

⟩𝑛+1
𝑉𝑖

=
⟨
𝐶𝑘,1

⟩𝑛
𝑉𝑖
− Δ𝑡
𝑉𝑖

×
∑
𝑓

(n ⋅ U𝐶𝑛
𝑘,1𝐴)𝑓 (21)

The main issue is to determine (𝐶𝑘,1)𝑓 in order to respect the consistency with isoAdvector. In the first implementation, rela-
tion (18) was applied to the VOF equation (2) to calculate the weights that would have produced the fluxes. The linear weight, 𝑤𝛼 , 
can be computed as:

𝑤𝛼 =
𝛼𝑓 − 𝛼𝑁
𝛼𝑃 − 𝛼𝑁

(22)

This weight is then used in relation (18) to obtain the face value for the concentration field:

𝐶𝑘,𝑓 = 𝐶𝑘,𝑁 +𝑤𝛼(𝐶𝑘,𝑃 −𝐶𝑘,𝑁 ) (23)

This computation of the face weights is consistent with isoAdvector because it will enforce proportionality between the face flux of 
liquid and the face flux of concentration. However, this method is not applicable to a geometric VOF method such as isoAdvector. 
A simple example can illustrate cases where the face weight 𝑤𝛼 is not defined. 
In the idealized case depicted in Fig. 6, two neighbouring cells 𝑃 and 𝑁 with a volume fraction of 0.5 share a face 𝑓 . A similar 
situation might occur in cases with a large curvature for instance. The portion of face 𝑓 that is immersed in the liquid phase is 0.75. 
Therefore, 𝛼𝑓 is not included between the values of cells 𝑃 and 𝑁 . For isoAdvector, this is not an issue since 𝛼𝑓 comes from 
relation (9). The undefined weights can be replaced by some weights calculated with an UD scheme for example. UD is preferred 
because it is unconditionally bounded and stable. This solution has been implemented and tested. In practice, there were far too 
many faces where the undefined weights were replaced using UD leading to an over-diffused interface, with a lot of inconsistencies 
and artificial mass transfer. Using a hybrid formulation with an already existing interpolation scheme was not satisfactory either.
The new methodology uses the phase average concentration. Since isoAdvector calculates the amount of liquid that flows through 
a face, it is consistent to use the phase average concentration from relation (13) to determine the amount of species 𝑘 that flows 
through a face during a time step. The phase average is determined from the volume average, which is stored at a cell centre and 
from relation (14):

⟨
𝐶𝑘,1

⟩
𝑉1

=

⟨
𝐶𝑘,1

⟩
𝑉

𝛼
(24)

To obtain the face value, the cell phase average concentration is multiplied by 𝛼𝑓 , and gives the amount of species 𝑘 in phase 1 that 
flows through face 𝑓 :

(𝐶𝑘,1)𝑓 = 𝛼𝑓

⟨
𝐶𝑘,1

⟩
𝑉

𝛼
(25)

Following this, the question of which cell centre value (
⟨
𝐶𝑘,1

⟩
𝑉𝑃

or 
⟨
𝐶𝑘,1

⟩
𝑉𝑁

) should be used to compute the face value is raised. 
In line with the isoAdvector approach, the direction of the flow is followed so that the upwind cell is used. The basic algorithm is 
shown below in Fig. 7.
In this algorithm, alphaPhi is the flux returned by isoAdvector. The method can be applied to any solver (e.g. interFoam) as 
long as alphaPhi is accessible. The algorithm works in parallel and the basic communication function was modified to exchange 
data only when it is needed. In the bulk of each phase, a MUSCL scheme is applied to limit numerical diffusion, however, any higher 
order scheme could be used. The tolerance called “alphaTol” should be chosen accordingly to the tolerances of isoAdvector; 
these tolerances are used to determine whether the liquid volume in a cell should be considered as meaningful or not. If the liquid 
volume is not meaningful, it can be regarded as noise left by the advection process and the algorithm should not try to transport 
concentration in the cell. Since relation (25) is divided by the volume fraction, the scheme can become very oscillatory, especially 
when the volume fraction field is wiggly. In order to prevent these issues, it was necessary to work at low CFL numbers (≤ 0.1) and 
8

to use a limiter, for which the development will be presented later.
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scalar Cf = 0 ;
if (alphaf > alphaTol)
{

if (alphaPhi > 0 && alphaOwn > alphaTol)
{
Cf = alphaf * COwn / alphaOwn ;

}
if (alphaPhi < 0 && alphaNei > alphaTol)
{
Cf = alphaf * CNei / alphaNei ;

}
}
else
{

Cf = 0 ;
}
return Cf ;

Fig. 7. Function computing the face concentration.
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Fig. 8. Simple 1D uniform structured stencil for the integration of the diffusion equation.

3.3. Discretisation of the diffusive part of the transport equation

The second part of the transport equation consists in a diffusion equation:

𝜕𝐶𝑘,1

𝜕𝑡
= 𝛁 ⋅ (𝐷𝑘,1𝛁𝐶𝑘,1) (26)

The diffusion equation must be discretised implicitly in time:⟨
𝐶𝑘,1

⟩𝑛+1
𝑉𝑖

=
⟨
𝐶𝑘,1

⟩𝑛
𝑉𝑖
+ Δ𝑡
𝑉𝑖

×
∑
𝑓

(𝐷𝑘,1n ⋅𝛁𝐶𝑛+1
𝑘,1 𝐴)𝑓 (27)

Two things must be considered carefully. Firstly, the diffusion coefficient must be defined consistently with the two-field approach. 
The liquid diffusivity of species 𝑘 must be zero in the gas phase for example. Besides, the concentration gradient must be examined 
thoroughly. Indeed, the difference between the volume average and the phase average can lead to a non-zero face concentration 
gradient. When this gradient is computed based on the volume average concentration, it can be non-zero even though there is 
actually no difference in concentration in the phase. These circumstances can occur on a face separating a bulk cell from a cell cut 
by the interface. Fig. 8 shows an example of three 1D cells of a structured uniform mesh. The interface between the gas 𝐺 and the 
liquid 𝐿 is shown in red.
The gradients of volume average concentration on faces 𝑤 and 𝑒 are computed as:

𝒏𝑤 ⋅ (𝛁𝐶𝑘,1)𝑛+1𝑤
=
𝐶𝑛+1
𝑘,1,𝑃 −𝐶𝑛+1

𝑘,1,𝑊

Δ𝑥
(28)

𝒏𝑒 ⋅ (𝛁𝐶𝑘,1)𝑛+1𝑒
=
𝐶𝑛+1
𝑘,1,𝐸 −𝐶𝑛+1

𝑘,1,𝑃

Δ𝑥
(29)

The interface cell 𝑃 is partially filled with liquid and therefore 𝐶𝑛+1
𝑘,1,𝑃 < 𝐶

𝑛+1
𝑘,1,𝐸 (since there is no mass transfer). However, 𝐶𝐸,𝐿 = 𝐶𝑃 ,𝐿

because the species is perfectly mixed in the liquid phase. There is no concentration gradient in the liquid and therefore, no chemical 
diffusion should happen. If the diffusion equation is solved using the volume average concentration, the difference in volume fraction 
9

will create artificial diffusion. To tackle this problem, the phase average must be used to compute the diffusive fluxes. This is 
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Advection of the volume averaged concentration

Bounded

Compute the phase averaged concentration

Correct the face values

Advect the volume averaged concen-
tration with the corrected face values

Compute the mass source term

Diffuse the phase averaged concentration

Compute the new volume averaged concentration

yes

no

Fig. 9. Flowchart of the global algorithm for the transport of concentration.

consistent with the two-field approach since it is the concentration gradient within the phase that must promote chemical diffusion. 
The new equation can be solved to obtain the phase average concentration:⟨

𝐶𝑘,1
⟩𝑛+1
𝑉𝑖,1

=
⟨
𝐶𝑘,1

⟩𝑛
𝑉𝑖,1

+ Δ𝑡
𝑉𝑖

×
∑
𝑓

(𝐷𝑘,1n ⋅𝛁𝐶𝑛+1
𝑘,1 𝐴)𝑓 (30)

𝑉𝑖,1 corresponds to the volume of phase 1 inside cell 𝑖. The new face gradients in Fig. 8 are expressed in terms of phase average 
concentration:

𝒏𝑤 ⋅ (𝛁𝐶𝑘,1)𝑛𝑤 = 1
Δ𝑥

(
𝐶𝑛
𝑘,1,𝑃

𝛼𝑛
𝑃

−
𝐶𝑛
𝑘,1,𝑊

𝛼𝑛
𝑊

)
(31)

𝒏𝑒 ⋅ (𝛁𝐶𝑘,1)𝑛𝑒 =
1
Δ𝑥

(
𝐶𝑛
𝑘,1,𝐸

𝛼𝑛
𝐸

−
𝐶𝑛
𝑘,1,𝑃

𝛼𝑛
𝑃

)
(32)

Once the diffusion equation is solved and the new time step phase average concentration is obtained, the new time step volume 
average concentration is computed using relationship (14), together with the new time step volume fraction field.

3.4. Final description of the algorithm

The final implementation of the new algorithm uses both volume average and phase average concentrations, as it was presented 
in the previous section 3.3. This implementation also integrates limiters to avoid over- and under-shoots of the concentration field. 
10

The flowchart describing the algorithm is shown in Fig. 9.
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The major improvement of this algorithm is the statement “bounded”, which is used to verify if the advection step has produced 
unboundednesses in the concentration field. Limiting the face concentration is not trivial because it can take any positive value 
depending on the system, the flow etc. To derive a limiter, the definition of the phase average concentration and the thermodynamic 
value of the saturation of the liquid phase 𝐶∗

𝑘,1 are used. The phase average represents the concentration of a given species in the 
liquid or the gas phase of the cell. If there is only one species, it will be equivalent to density since the species is alone in its phase. 
On the other hand, the saturation is a thermodynamics limit which imposes the maximum concentration in a mixture. This depends 
on the other species in the mixture, but also on temperature and pressure. The ratio between the phase average concentration and 
the saturation limit is computed. This ratio represents the quantity of the species the phase can still accept. Finally, the creation of 
under- or over-shoots by the advection process can be evaluated. This is useful when dealing with cells that are close to saturation or 
almost empty of fluid. However, it is not possible to limit the concentration of a cell when the species is still being transferred and 
the phase is far from being saturated because there are no ways of limiting the concentration other than this physical limit. In the 
algorithm, the logical statement “bounded” uses the degree of filling of phase 1 to assess the “space” left for species 𝑘:

degree of f illing =

⟨
𝐶𝑘,1

⟩
𝑉1

𝐶∗
𝑘,1

(33)

The sequence of the “bounded” statement is described with the flowchart in Fig. 10.
The important part in the correction of the advection step is the evaluation of unboundedness. The bounded nature of the “degree 
of filling” is used in order to verify how the interpolation scheme produces over- and under-shoots. Since the degree of filling comes 
from the phase average concentration, the interpolation scheme is slightly modified, and the degree of filling value in the upwind 
cell is multiplied by the face values of the volume fraction field. The result gives information on how much the face is “saturated” 
by species 𝑘. The degree of filling of the face cannot be negative nor can it be greater than one. There are two options to bound 
the face values. The first is to clip values that are negative and greater than unity. However, this may create a conservation error. 
The second option is to redistribute the excess of concentration (i.e. values over the saturation concentration) in the neighbouring 
cells. In the current implementation, the clipping option was chosen for two reasons. Firstly, because isoAdvector itself offers a 
clipping option and it is compulsory to be as consistent as possible with isoAdvector. The other reason comes from the origin of 
the unboundednesses. The error occurs because the volume average concentration is divided by the volume fraction field to obtain 
the phase average concentration. When the cells are almost empty and the volume fraction is close to zero, any small error on the 
volume fraction has a large impact on the phase average concentration. Redistributing this error does not result in better advection 
since the error does not have any physical meaning in the first place.

4. Validation of the numerical method

This section will detail several test cases set up to demonstrate the performance of the methodology presented and its compatibility 
with isoAdvector.

4.1. Validation of the advective transport

The discretisation of the advection operator and its consistency with isoAdvector is tested first. The test case uses a dilute 
species with a uniform and constant concentration in the liquid phase equal to the saturation concentration 𝐶∗

𝑘,1 = 1 kgm−3 . The 
concentration gradients are initially zero such that the case is a pure advection case. The volume average concentration field must 

be equal to 𝛼𝐶∗
𝑘,1 at every time step. To evaluate this condition, the difference 𝛼 −

⟨
𝐶𝑘,1

⟩
𝑉𝑖

𝐶∗
𝑘,1

must be monitored. This test case uses 

the fact that the phase average concentration in the cell should stay equal to the saturation concentration at all times. The set up is 
the same as the one presented earlier in Fig. 4.
Fig. 11 compares the custom interpolation scheme with the MUSCL in a 1D context as presented in Fig. 5. The custom interpolation 
scheme provides a much more accurate concentration profile than the classical MUSCL scheme. The black and blue curves cannot 
be differentiated, hence proving that the custom scheme yields a concentration profile that is perfectly consistent with the volume 
fraction.
The second test case presented corresponds to the same problem as the first test case but for a Taylor flow in two dimensions. 
Increasing the number of dimensions renders the problem more challenging, due to more degrees of freedom and to the surface 
tension force calculation.
Fig. 12 compares the liquid phase concentration field obtained after advection with three different interpolation schemes in a 2D 
channel with 50 cells per diameter. The numerical diffusion induced by the UD scheme creates a lot of artificial mass transfer as it 
can be seen on the diffused concentration profile at the top of Fig. 12. Even with a second order MUSCL scheme, a lot of artificial 
mass transfer arises. Nevertheless, with the interpolation scheme developed in this work, the concentration field coincides strictly 
with the interface, as we will see.
In order to assess the performances of the new interpolation scheme, the 𝐿1 norm is introduced to measure the difference between 
the volume fraction field and the ratio between the volume average concentration and the saturation concentration:

𝐿 =
𝑛∑|||𝛼 −

⟨
𝐶𝑘,1

⟩
𝑉𝑖

||| (34)
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1
𝑖
||| 𝑖

𝐶∗
𝑘,1

|||
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Advection of the volume averaged concentration

Computation of a temporary phase average concentration field

Computation of the degree of filling of phase 𝑘

Interpolation of the degree of filling with the custom interpolation scheme
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Clip ∉ [0; 1]

Continue to the other transport steps

yes

no

Fig. 10. Flowchart for the correction of the advection process.

In equation (34), 𝑛 is the total number of mesh cells. If the advection scheme is consistent with isoAdvector, then 
⟨
𝐶𝑘,1

⟩
𝑉𝑖
=

𝛼𝑖
⟨
𝐶𝑘,1

⟩
𝑉𝑖,1

. Since the relation 
⟨
𝐶𝑘,1

⟩
𝑉𝑖,1

= 𝐶∗
𝑘,1 is imposed, the 𝐿1 norm should be small. To compare multiple refinement levels, 

𝐿1 is divided by the total number of mesh cells to obtain what is called “mean error”:

mean error =
𝐿1
𝑛

(35)

Fig. 13 compares the mean error generated over time by three interpolation schemes on the liquid phase concentration field of a 
two-dimensional Taylor flow in a microchannel. The artificial mass transfer arising from numerical diffusion in Fig. 12 is quantified 
with the time evolution of the error. The error created by the UD scheme and the MUSCL scheme is around 0.01 which is seven 
orders of magnitude larger than the error created by the custom interpolation scheme developed in this work which is around 10−9 .
Fig. 14 shows the mean error resulting from advection for different mesh refinement levels. Even though the error does increase 
with time for the coarsest mesh, its maximum value remains very small compared with the saturation concentration (1 kgm−3). 
12

Increasing the mesh resolution decreases the error as it can be seen by the red and blue curves. However, such a level of refinement 
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Fig. 11. Comparison between the volume fraction field profile and nondimensionalized concentration field profile obtained with the custom interpolation scheme.

Fig. 12. Liquid phase concentration field in a 2D Taylor flow obtained with a UD scheme (top), a MUSCL scheme (middle) and the custom interpolation scheme 
(bottom) developed in this work.

has a significant impact on numerical cost and a compromise should be made with respect to the users needs.
The final test case uses a 3D channel with a square cross section of 1mm. The refinement is the same as the 2D case in the axial 
direction. The base mesh is made of 50 cells across the width and height of the channel. Fig. 15 compares the mean error for the 2D 
and the 3D cases. The 3D simulation gives lower error than the 2D case and this may be explained by a better interface advection by
isoAdvector in 3D than in 2D.
The results obtained with the custom interpolation scheme show that it can be used to advect a concentration field with minimal 
artificial mass transfer. Increasing mesh refinement seems to enhance the results, which is consistent with the fact that it is based on
isoAdvector. However, a higher level of refinement is at the expense of a larger numerical cost.

4.2. Validation of the diffusive transport

Since there is no molecular diffusion in the VOF equation (2), the diffusion coefficient in the species concentration equation 
must be corrected to make it consistent with a two-field approach. If the diffusion coefficient is not updated at each new time step, 
diffusive fluxes can make the phase average concentration become non-zero in cells that do not contain phase 1.
To test the method proposed in section 3.3, a structured 1D mesh is used. The channel length L = 0.01m has 1000 cells. The gas-liquid 
13

interface is initially located at 0.2505 L and moves at 0.01ms−1 . There are three species: the liquid is water, the gas is air and there 
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Fig. 13. Comparison of the error evolution with time for the three different interpolation schemes of the 2D case presented in Fig. 12.

Fig. 14. Evolution of the mean error with time for three levels of refinement of a two-dimensional Taylor flow.

is also a species diluted only in water. Water and air are treated by the VOF algorithm itself, while the dilute species is handled by 
a concentration equation as discussed in the former sections. The diffusion coefficient of the diluted species is set to 1 × 10−6 m2 s−1 . 
This value is much larger than typical physical values for diffusion coefficients in liquids in order to amplify any possible issues. The 
diluted species in water will not cross the interface because no mass transfer occurs. Therefore, the diluted species is confined to the 
liquid phase. Its saturation concentration is arbitrarily set to 1 kgm−3 . The concentration of the diluted species is initialized as a step 
at the saturation concentration between 0.1 L and 0.2 L and zero everywhere else. Since the diffusion coefficient is large, the species 
will rapidly diffuse towards the interface and towards the inlet of the channel.
As explained in section 3.3, the phase average concentration and the volume average concentration differ because the volume of 
liquid is smaller than the volume of the cell, in a cell cut by the interface. If the classical FVM volume average variable is used 
to solve the diffusion equation, the concentration profile given in Fig. 16 is obtained. The volume average concentration, which is 
computed using the volume average concentration for diffusion and is indicated by the red curve, is compared with the volume 
average concentration computed using the phase average concentration, shown by the blue. The position of the interface is shown 
by the black curve indicated as “alpha”. The global shapes of the curves are very close, however, the profiles near the interface are 
quite different. The red profile displays a decrease before showing a spike at the interface that comes from the direction of the face 
gradient. Since the volume fraction in the interface cell is smaller than unity, the volume average concentration of the interface cell 
is smaller than the neighbouring cell volume average concentration. This is true before reaching steady state since the concentration 
is initially zero near the interface and there is a transition time before the diffusion from the step profile reaches the interface. Once 
steady state has been reached, however, the maximum concentration will be at the interface because the species cannot evaporate 
14

into air. At 0.5 s, the concentration profile is established such that the interface concentration is at the maximum. There is a volume 
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Fig. 15. Comparison of the mean error evolution between a two-dimensional and a three-dimensional Taylor flow.

Fig. 16. Non-dimensional volume average concentration profiles at 0.5 s.

average concentration gradient near the interface because there is a difference of volume fractions (see relation (14)), and thus, the 
concentration profile shows a kind of wave near the interface. Apart from close to the interface region, the profile looks as expected. 
However without diffusion correction, the profile is badly predicted. This appears clearer when the phase average is plotted instead 
of the volume average, as shown in Fig. 17.
It can be seen in the inset of Figs. 16 and 17 that the slope of the blue line is not vertical. This is because the volume fraction field 
changes from 1 to 0 over three cells, even though the interface is located in only one cell. In Fig. 17, the red curve displays the 
same kind of decrease in concentration before the interface. Indeed, the volume fraction in this region equals one, which is why 
the phase average and volume average are equal. At the interface, the spike in the concentration profile is much larger than in the 
volume average concentration profile of Fig. 16. This is expected since the volume fraction is smaller than one in the interface cell. 
Nonetheless, a spike of concentration at the interface is not physical since diffusion is supposed to smoothen the concentration profile 
with time.
In both Figs. 16 and 17, the blue curve entitled “diffusion correction” displays a much more accurate concentration profile near the 
interface. These blue curves were obtained when the diffusion equation is solved in terms of phase average. Therefore, there is no 
gradient of phase average due to the change in volume fraction in the interface cell. This basic test case shows the importance of 
the phase average when solving for diffusion in a two-field approach. For a single field approach, the issue is not the same since the 
15

concentration field is unique, but not necessarily continuous.
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Fig. 17. Non-dimensional phase average concentration profiles at 0.5 s.

5m

3m

Fig. 18. Gas bubble in a diagonal uniform flow with constant velocity 𝑈 = (1,0.5).

4.3. Disc in steady uniform two-dimensional flow

In part 4.1, test cases with relatively simple flow conditions and uniform structured meshes were used. The present section aims at 
demonstrating the capabilities of the proposed method in more realistic conditions. The same error evaluation based on equation (34)
and the mean error will be used. The test case is the same as proposed by Roenby et al. [1] in their original work on isoAdvector. 
A gas bubble moves in a rectangular domain with a diagonal, uniform and constant velocity field as illustrated in Fig. 18. The 
concentration of this bubble is set identically to section 4.1.
An unstructured mesh made of triangular 2D cells provided by GMSH [53], based on a Delaunay standard algorithm, is compared to 
the uniform, structured, mesh generated with blockMesh. Three levels of refinement are used. For the square mesh, the edge length 
is uniform in all directions. For the triangle mesh, the same edge length is prescribed on the boundaries. The unstructured meshes 
display a larger cells count for the same edge length.
In Fig. 19 we compare three different edge lengths of 0.01m, 0.02m and 0.04m for both square and triangular meshes. Apart from 
the square mesh with 0.04m long edges, which gives a surprisingly low deviation, all cases yield results of a mean error between 
1 × 10−13 and 1 × 10−9 . As these simulations on a 2D triangular mesh give satisfactory results, the method proposed in this work can 
be used for various configurations. However, we need to keep in mind that the error displayed on Fig. 19 quantifies the artificial 
mass transfer by comparing the concentration with the volume fraction computed by isoAdvector. Therefore, a small deviation on 
16

Fig. 19 does not mean that the results are realistic, but only that the method does not introduce additional error in the simulation.
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Fig. 19. Comparison of the mean error evolution for three levels of refinement between square and triangular 2D meshes.

5. Conclusions

This work has been devoted to the implementation of a transport equation for the concentration of chemical species in a Volume-
Of-Fluid framework. It was shown that existing interpolation schemes such as UD, CD or even MUSCL used to compute face values 
from cell centered values are not adapted to the geometric nature of the isoAdvector method and lead to over-diffused concentra-
tion profiles and artificial mass transfer. To overcome this issue and avoid inconsistencies, a new methodology to interpolate scalar 
values from cell centres to cell faces has been developed. This methodology uses the phase average concentration to compute the 
face values in an adequate way, which allows the concentration fields to be non-zero only in their corresponding phases. Numerical 
tools to test the consistency of the new methodology with isoAdvector have been described. Using the 𝐿1 norm and the mean 
error, it was shown that the consistency error caused by advection is very low with the new methodology. It has also been shown 
that increasing mesh refinement provides better results, however, the additional numerical cost induced by refinement is not always 
necessary since the consistency error caused by advection is already very small.
Additionally, it was shown that the diffusive fluxes computed using the classical volume average variables can lead to non-physical 
results. Thus, a new formulation of concentration gradients based on the phase average concentration has been proposed. Compari-
son between corrected and non corrected fluxes has been provided with a test case and it was shown that the use of volume average 
concentration leads to a non-physical concentration profile in the interface region.
In future work, the transport equation for concentration will be extended to include additional source terms. Species transfer at the 
interface will be computed based on the local concentration at the interface. The implementation of chemical reaction with power 
law kinetics will also be investigated.
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