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Abstract. This paper illustrates the process of design under uncertainty on a practical
case study of an offshore wind farm. We document the entire process through selection
and quantification of relevant uncertainties, definition of probabilistic limit states, reliability
computation algorithms, as well as illustrating the impacts of the analysis through a design
utilization study. The brief introduction in this study draws information and summarizes
outcomes from the extensive works that took part within the EU H2020 HIPERWIND project.
The results from the study show that significant material savings can be achieved by introducing
probabilistic design methodologies, and particularly with the help of an integrated modelling
approach where the entire structure (turbine, tower & foundation) is considered as a whole.

1. Introduction
It is well known that the structural integrity of engineering structures is affected by various
uncertainties. This effect is especially pronounced for wind turbines due to the highly variable
environmental conditions in which they operate. In the classical wind turbine design process, the
effects of uncertainty in environmental conditions, material strength, and modelling accuracy are
accounted for by the application of safety factors. As an alternative, the uncertainty information
can be fully integrated into the design by employing probabilistic models and propagating the
uncertainties through the entire modelling chain, carrying out a so-called probabilistic design or
design under uncertainty. In addition to a much more complete understanding of uncertainty,
this approach may provide cost savings by reducing conservatism wherever the uncertainty
can be reduced. Recently, IEC TS 61400-9 ED1 [1] has provided a formal framework for the
application of probabilistic design to wind energy. Nevertheless, probabilistic design is rarely
carried out in practice due to the added complexity and the difficulty in assessing the associated
uncertainties. Aiming to demonstrate the impact of probabilistic design techniques, the EU
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Horizon2020 HIPERWIND project [2] develops, improves and tests methodologies that can
showcase the entire process of design under uncertainty for concrete use cases.

The primary goal of this study is to provide a brief practical demonstration of how
probabilistic methodologies can be used to assess the design integrity and reduce the material
usage while ensuring sufficient reliability. The paper illustrates the approach on an use case
of a fixed-bottom offshore wind farm with monopile foundations. Throughout this process, we
also aim to show 1) what are the main sources of uncertainty and how they can be quantified
throughout the wind turbine design modelling chain, 2) how the uncertainty information is
integrated in the wind turbine design process, and 3) what are the potential benefits and
challenges with design under uncertainty.

2. Methodology
According to standard practices, the adequacy of a design solution is assessed through
formulating and evaluating a limit state function g(X), where X represents a set of (potentially
stochastic) environmental conditions and design variables. For a given design scenario, g(X) > 0
points to survival of the structure, while g(X) ≤ 0 represents failure. Often the equation is
divided in two terms, g(X) = R(X)−S(X), where S(X) represents the loads (actions) affecting
the structure, while R(X) represents the resistance of the structure - i.e., its ability to withstand
such loads. With a deterministic design approach, a number of design scenarios are evaluated
under varying environmental conditions and specific critical events, see e.g. IEC61400-1 [3]. Any
sources of uncertainty besides the external conditions are accounted for by introducing safety
factors in the limit state equation. A design solution is deemed adequate if the resistance is
greater than the loading for all design scenarios considered, i.e., (1/γm)R− γfS > 0, where γm
and γf are safety factors for material strength and loads, respectively.

In contrast, a probabilistic design procedure will explicitly take stochasticity and uncertainties
into account by introducing them as components of X which in this case is a random vector with
joint probability distribution fX(x). Rather than involving safety factors, the adequacy of the
design is determined by assessing whether the total probability of failure, pf = P (g(X) ≤ 0), is
sufficiently low. Computing this failure probability is the main subject of structural reliability
analysis [4]. This methodology increases the complexity of the analysis with two specific
hurdles: 1) defining a probabilistic limit state that takes all relevant uncertainties (epistemic and
aleatory) in the modelling chain into account, and properly quantifying them, which may require
significant amounts of data and modelling efforts, and 2) dealing with distributions rather than
single samples leads to significantly (up to orders of magnitude) higher computational budgets,
thus relying on simplifying assumptions and greedy sampling techniques. The present study
shows an example of how these challenges are solved for a concrete case study.

2.1. Joint distribution definition
We distinguish between three types of stochastic variables included in X = {V,Z,U}: 1)
environmental random variables constituting a random vector V, 2) random variables Z, called
system variables, independent from V, and 3) model uncertainty variables U. The variables in
Z represent properties which affect the structural behavior such as e.g., material stiffness. Each
structure under consideration (e.g., a wind turbine) is considered to represent a single realization
from the probability distribution of Z. On the other hand, the variables in V are external to
the structure and represent conditions that will be continuously changing over the lifetime of
the structure, such as environmental parameters. As a result, the distribution of V needs to be
determined and sampled with respect to a short-term reference period. In the present study we
use a 10-minute reference period which is the broadly accepted standard for wind measurements.
Figure 1 shows an overview of the elements of the modelling chain considered by our work,
and the associated uncertainties. In order to reduce the problem to a manageable extent, the
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Figure 1: Overview of the random external variables and model uncertainties considered in the
analysis.

primary focus is on the loading side of the limit state equation. The material resistance is
considered probabilistic (included in Z), but no concrete efforts are made for refining the models
or quantifying the uncertainties on this side of the equation. Instead, generic values are taken
from literature (see Section 3.3). As shown in Figure 1, the load-related random variables can
be broadly grouped in two categories. The first category is the stochastic inputs to the load
modelling chain, which contains a combination of aleatory uncertainties (e.g. due to random
variation in the environmental conditions V, and the soil stiffness, which is considered part of Z
because it affects the structural behavior), as well as some epistemic uncertainties due to, e.g.,
measurement uncertainty. The second category, uncertainties in the modelling chain, comprises
only epistemic uncertainties affecting the models that are used (referred to as variables U).

2.2. Limit state definition
We consider two limit states: Fatigue (FLS) and Ultimate (ULS). While these are subjected
to separate reliability calculations, they both follow the variable selection and categorization as
presented in Figure 1. A major difference between the limit states is that ULS considers the
probability of a single excursion (loads exceeding resistance) at any time, while FLS considers
the probability that the accumulated loading cycles will exceed the fatigue capacity. This leads
to differences in the way V is treated, where ULS uses directly the joint probability of any given
combination of values in V, while in the FLS case each evaluation of the limit state function
requires a numerical integration over the joint probability distribution of V.

For the ULS, g is defined in equation (1) where ∆T represents the duration of the considered
period, t is the time variable, QoI is some time-dependent quantity of interest such as the stress
at some location of the structure and ρ is a threshold such as the yield strength.

g(V,Z,U) = ρ(Z)− max
t∈[0,∆T ]

QoI(t,V,Z,U) (1)

Hence, failure occurs if the quantity of interest exceeds the threshold over the time period.
Note that for a given set of environmental conditions V, structure parameters Z and model
parameters U, QoI(t,V,Z,U) is still random since it depends also on the short-term variation
represented with random realizations of wind and wave time series in the simulations.

As discussed, the FLS case involves computing the total fatigue damage accumulated in a
critical point of the structure and conditioned on the environmental variables for a given Z
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realization. This is denoted as global damage, Dglobal and is computed as a weighted sum
(expectation) over V: Dglobal = EV[D(V,Z,U)] where D(V,Z,U) represents marginal fatigue
damage for a given 10-minute combination of conditions v and for given realizations of system
variables z and model uncertainties u. Using this notation, the FLS limit state equation becomes

g(V,Z,U) = DCR −Dglobal(V,Z,U) (2)

where DCR ∈ Z stands for the critical damage leading to fatigue-induced failure of the
structure.

2.3. Use case description
The proposed methodologies are applied on the use case of the Teesside offshore wind farm,
which has been operated by EDF since 2014. The site consists of 27 SWT2.3-93 wind turbines
installed on monopile foundations. There are approximately 5 years of SCADA and met mast
data available to the study team, as well as a wave buoy. The reliability assessment is performed
at the tower base, where the structural resistance is evaluated in terms of Von Mises stresses in
an isotropic material (steel).

The following two sections describe in details the uncertainty modelling and the reliability
computation tasks, respectively.

3. Uncertainty and distribution modelling
3.1. Environmental distributions
The distributions of 10-minute environmental conditions statistics were established based on
the site measurements as described in Section 2.3. A total of six environmental variables were
considered: wind mean speed U , turbulence σU , significant wave height Hs, wave peak period
TP , wind direction θ, and wave direction α. A conditional distribution model was fit to all
variables, with more details including distribution parameters given in [23, 24]. A significant
source of uncertainty was found in the conditional distribution models, for combinations of
extreme conditions (environmental contours). The uncertainty is partly due to lack of data
(only few years available), but is also very much affected by arbitrary choices of distribution
models that can be made. This situation is illustrated in the left hand side of Figure 2. The issue
can however be reduced by using reanalysis data and data from multi-scale model simulations,
as shown in recent studies [9, 10].

Special attention was paid to detecting and describing load-inducing transient events, via flow
acceleration statistics. Such statistics were not available at Teeside, so the 17 years of offshore
data analyzed from Høvsøre [7, 8] were applied to Teeside (open sea directions). Extreme
accelerations are not necessarily turbulence, and do not correlate well with 10-minute U or σu.
A constrained turbulence simulation approach was used to reproduce an ensemble of P99 of
accelerations, showing that there are cases where the IEC can under-predict certain loads [6].
These transient events were integrated in the reliability analysis by using the synthetic gust
function

Ugust(t) =
aTrise

π

[
1.0 + tanh

(
π(t− tgust)

Trise

)]
, (3)

where tgust is the time of the maximum acceleration and the random variables a and Trise
represent the acceleration and rise time respectively. Based on the probability distribution of
acceleration events from the Høvsøre data, synthetic events with 50 year return period were
generated and integrated in preliminary Monte-Carlo simulations. These results show that
extreme accelerations have a strong impact on the ULS loads. Nevertheless, in the present case
the stationary ULS cases produced highest loading and the reliability analysis proceeded with
stationary ULS only.
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Figure 2: Illustration of uncertainties in the description of environmental conditions. Left:
illustration of uncertainty in Hs distribution due to different choices of marginal probability
distributions. Right: normalized input variable vector components for the largest tower bottom
Von-Mises stresses at different distances (joint exceedance probabilities) in standard space,
illustrating the relative contribution of environmental variables to the extreme stresses.

3.2. Model uncertainties
3.2.1. Wakes model Steady-state wake models are commonly used for wind farm production
predictions during pre-design stage due to their low computational cost. However, their
simplified formulations may lead to approximations. This uncertainty was evaluated on the
Teesside case study by comparing wake models of the FarmShadow™ library [11] to a higher-
fidelity model: the Dynamic Wake Meandering (DWM) of HAWC2 [12]. The quantity of interest
is the incoming wind speed urotor and its standard deviation σurotor . A design of experiment
of simulations was computed on a 3D subspace of V : free-field wind speed U , its standard
deviation σU , and direction θwind. A Gaussian process response surface was computed for both
approaches to interpolate their differences across the 3D subspace. Results reveal small overall
differences in wake deficit but higher discrepancies in turbulence intensities. Notably, significant
uncertainty arises when a turbine is directly downstream of others, highlighting the need for
improved superposition models. More details and quantification of this model uncertainty can
be found in HIPERWIND Deliverable 3.2 [13]. For the present study, wake model uncertainty
did not have a direct effect on the end results (see Section 3.4).

3.2.2. Blade aerodynamics model A thorough comparison was made between conventional
Blade Element Momentum (BEM) approaches using Deeplines Wind™, DIEGO, and HAWC2,
and the more advanced Vortex-based model within Deeplines Wind™ [14]. Comparison was done
over a 3D input space (σU , U and yaw angle). The outputs encompassed production, Damage
Equivalent Loads (DEL) at the blade root, forces along the blades, and forces integrated over
the rotor. Gaussian process interpolations were computed from design of experiments of the
simulations which were iteratively enriched to provide a good estimate of the differences between
BEM and Vortex for production and design outputs. It was found that outside a domain of high
turbulence and wind speed, differences between BEM and Vortex remained small for this fixed-
foundation case, as illustrated in Figure 3. More details can be found in [15].
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Figure 3: Normalized power and thrust time-averaged curves estimated with the metamodels
for a fixed-bottom offshore wind turbine. BEMs stands for the average of BEM models.

3.2.3. Hydrodynamics model The approximation of Mac Camy & Fuchs (MCF) correction on
mudline bending moment of a monopile was studied. Changing either monopile radius, water
depth, wave load order or wave stretching models may produce about ±10% change in the
Damage Equivalent Loads with some conditions for which MCF is non-conservative.

3.3. Distributions of system variables and material properties
For the material and resistance properties such as yield strength and uncertainty in the fatigue
strength DCR, we assume standard reference values from literature. The fatigue property
distributions are based on [16]. The uncertainty in the soil stiffness is based on internal
experience from EDF.

3.4. Choosing variables to include in the reliability analysis
Calculations considering wake-induced effects have indicated that wind turbines belonging to
the outermost rows with maximum exposure to ambient conditions are subjected to the most
significant loading. This applies to both ULS and FLS. Therefore, the FLS calculations are
considering a single worst-case-scenario turbine located in the outermost row of the wind farm,
without explicitly considering wake model uncertainties. Similarly for the ULS case, the ambient
conditions can be considered as a worst-case reference for any wind turbine in the wind farm. The
effect of aerodynamics uncertainties was also omitted as the calculations indicated that it has
relatively small effects (more information can be found in [17]. The uncertainty in hydrodynamics
was estimated primarily for the fatigue case, where it was found that the material (and system)
uncertainties prevail, hence the latter were retained for keeping the overall problem sufficiently
simple. Based on these considerations, the final choice of variables in U and Z was made. These
variables are defined in Tables 1 and 2, for ULS and FLS respectively.

4. Reliability assessment
4.1. Ultimate limit state analysis
The ULS analysis considers extreme event scenarios with conditions that can have stationary
or transient character. As also discussed in equation 1, the variability of the signals presents
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Table 1: Description of variables used in the stationary ULS calculations in addition to the
environmental variable vector V

Group Symbol Description Marginal distribution Comment

U θ Yaw misalignment Uniform
(µ = 0,±8◦)

Z ρ Yield strength log-normal
(stress in MPa) (µ = 335, σ = 0.1µ)

Table 2: Description of variables used in the FLS calculations in addition to the environmental
variable vector V

Group Symbol Description Marginal distribution Comment

Z S Soil coefficient Normal Applied to the
(µ = 1, σ = 0.2) soil stiffness matrix

Z DCR Critical damage log-normal Cf. (JCSS, 2011)
(Miner’s sum at failure) (µ = 1, σ = 0.3)

U θ Yaw misalignment Truncated Normal Deg.
(µ = 0, σ = 5◦, −10◦,+10◦)

U a S-N curve coefficient log-normal
(µ = 1, σ = 0.3)

itself in both short-term scales (within a single realization), and over the long-term (i.e., during
service life). The primary challenge then encompasses finding a ULS methodology exploring
both the long-term and short term parametric spaces sufficiently well. This can be especially
challenging with the case of small failure probabilities, where additional effort is required to
achieve precise and converged results.

Several methods were compared for the stationary case in order to overcome this challenge
in the most efficient way, on a simplified case study. To avoid huge computational effort at
that stage, a new dynamic surrogate modelling approach was developed, based on an auto-
regressive model with exogenous input model (mNARX [25]). This surrogate allows to accurately
predict load time series from wind turbulence input time series, replacing aero-servo-hydro-elastic
simulations. From the results of this comparison, the sequential sampling strategy introduced in
[20] was selected as most feasible ULS approach for a realistic case study. It computes the short
term probability of failure given the long term by fitting a Generalized-Extreme-Value (GEV)
distribution of maximum output. Kriging is then used to extrapolate the GEV parameters
for integrating the failure probability over long-term space. New simulations are computed
iteratively only at regions found important to evaluate the ULS. The resulting computations
effort is thus optimized for a given accuracy on failure probability estimate. The left hand side
of figure 4 illustrates the iterative enrichment of Design of Experiments by this method. Here,
7000 simulations were needed to obtain a sufficiently accurate failure probability estimation (5
iterations of 70 long-term points and for each long-term configuration 20 random seeds are used
to fit the GEV distribution).

For the transient case, the short term variation is not so important since the failure is mainly
driven by the occurrence of gust events which can be described by few parameters. Thus,
classical reliability methods in small dimension (see [18]) can be applied.
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Figure 4: Left: points of simulations required by the sequential sampling approach in mean
wind speed vs turbulence space. Right: Convergence of the proposed sampling methodologies
for FLS, compared to standard Monte Carlo sampling.

4.2. Fatigue limit state analysis
Fatigue damage accumulates over time, meaning that in the FLS case the probability of failure
increases with time, and pf is defined as the annual probability of failure of the structure at
the last year of its intended lifetime. Particular challenges with the FLS approach included 1)
the need to integrate over the distribution of V at each limit state evaluation, which effectively
introduces a double numerical integration loop (as the reliability computation itself is a numerical
integration problem), and 2) the presence of system variables Z which alter the system dynamic
behavior at each iteration. The latter makes it impossible to use simple efficient solutions
such as mapping the system behavior with a surrogate model. The possible solutions are
computationally demanding: either to recompute the dynamic behavior of the system at each
iteration with a full-fidelity model, or train a highly complex surrogate model which also maps
the variables in Z. These considerations drove the choice of reliability assessment methods
towards maximum sampling efficiency while still using the full-fidelity aeroelastic model at each
reliability iteration. As a result we used a flexible and efficient method, called “kernel-herding”,
to perform given-data uncertainty propagation for probabilistic fatigue assessment (i.e., directly
subsampling from environmental data without inferring a probabilistic model).

Preliminary evaluations were performed for Dglobal under varying values of the U variables.
The distribution of Dglobal in this analysis shows a central part (mode) roughly between
10−4 and 10−3. Consequently, failures probabilities are low. Using the reference DCR log-
normal distribution, the failure probability pf is about 10−13. Pf is highly sensitive to this
DCR distribution assumption. When considering a positive truncated normal distribution
instead, Pf becomes much higher (about 10−6). However, it remains lower than the 10−4

probability threshold sometimes considered in the literature. A robustness analysis on the
variable distribution parameters confirms that the FLS reliability is mostly driven by DCR.

4.3. Design utilization study
Ideally, optimal design under uncertainty can be obtained by Reliability-Based Design
Optimization (RBDO). Due to the high computational cost of this approach, we apply a
simplification which under certain conditions allows us to obtain an improved design closer
to the target reliability in just a few iterations.

We employ a series of design evaluations, starting with the nominal design parameters of
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the turbines at the Teesside wind farm. A set of simulations from the IEC-61400-3 [22] design
basis are computed for a single turbine. The results are used to identify the most critical limit
states, in this case the maximum Von Mises stress σVM at the monopile basis for stationary
ULS in a case with non-operational turbine. Assuming a beam formulation for the tower and
the monopile, σVM can be derived from the global moment M and vertical force due to the
weight of above part Fz as a function of the external diameter D and thickness t :

σVM = M
64

π (D4 − (D − 2t)4)
+ Fz

4

π (D2 − (D − 2t)2)
. (4)

The annual failure probability of the nominal design for that limit state is estimated with
the procedure described in section 4.1 and the uncertain variables listed in Table 1 - resulting
in annual failure probability in the order of Pf ≈ 10−13, indicating a significant amount of
conservatism which can be explained both by non site-specific loading and deterministic design
with large safety factors.

As a next step, the design parameters are modified in order to reduce the material capacity
and obtain reliability which is closer to the target annual Pf,target = 5 × 10−4. We found that
when reducing the thickness by up to 25%, the changes in M are small enough to assume its
maximum to be constant with respect to design changes, while the contribution of Fz to σVM is
much smaller than that of M . Taking advantage of this crucial simplification, we can compute
the new design as the solution of an optimisation reducing t, under the following contraints: D/t
is unchanged to ensure manufacturability of the solution, natural frequencies of the structure
are farther than 10% from the 3P frequency, monopile basis plastic failure probability is less
than 10−4, shell and beam buckling (same criteria than in WISDEM sotfware of NREL) are
avoided.

Note that the failure probability during this optimization uses the constant-bending moment
assumption to update σVM with D and t change, using the same simulations than for the initial
design reliability estimate.

The solution found led to a mass reduction of 21% with the tower resonance as limiting
criterion. The failure probability of monopile basis plasticity was evaluated more accurately
with new simulations according to the procedure from section 4.1, and was found to be in the
order of Pf ≈ 10−9. Compared to the original design, this is four orders of magnitude closer to
the target reliability, and further adjustment of the design was not possible due to the resonance
constraints becoming active.

5. Conclusions
The present study demonstrated the process of incorporating uncertainties in wind turbine
design, by showing a practical application to an offshore wind farm. Our main conclusions are:

• Use of an integrated modelling approach where the entire support structure system (tower
& foundation) is considered, together with accurate detailed modelling of the environmental
conditions, can lead to significant savings compared to the classical design process that has
been used in early offshore wind farms.

• A clear benefit of taking uncertainty into account is that the impact of taking specific
modelling choices can be evaluated, and the best modelling options can be selected. This
ultimately leads to design improvements.

• Probabilistic design remains a challenge due to its high complexity and often insufficient
information to guide the choices of variables, distributions, and analysis methods.

• The potential of reducing conservatism can be evaluated with design utilization studies
as presented in this work. It was also discussed that in some cases, certain simplifying
assumptions can greatly facilitate this process.
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