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A B S T R A C T

The design of an offshore wind turbine to resist fatigue damage during its whole service life requires to estimate
an expectation over the pluri-annual joint statistics of wind and wave variables. Using a full factorial-based
integration for the estimation of the cumulative fatigue damage represents a tremendous computational cost
with aero-servo-hydro-elastic solvers which is generally not affordable by industrial designers. To overcome
this limitation, strong approximations with lumping of environmental discretized joint probability (scatter
diagram) are generally employed. We present in this paper a new method, called MAKSUR, involving the
iterative enrichment of a design of experiments tailored to provide a good approximation of the long term mean
damage. This method relies on a Kriging response surface with a learning criterion defined as the variance of
the mean damage integral. It is compared to another previous similar approach called AK-DA, also dedicated
to damage prediction, but is shown to converge more efficiently and with less numerical parameters to define
by the user. The potential of the method for offshore wind turbine is demonstrated by a realistic 6D floating
wind turbine case study with six wind and wave input variables.
1. Introduction

Offshore Wind is currently in active development and is expected
to play a key role in transition to renewable energy, as illustrated by
the 111 GW ambitious target for European Union [1], for the installed
capacity of offshore wind power in the EU by 2030. To achieve this
goal, a reduction of Levelized Cost of Energy (LCOE, sum of total
cost divided by the sum of total energy produced over the installation
lifetime) is required. A significant part of current LCOE is due to
conservatism in Offshore Wind Turbine (OWT) design as a way to
cope with epistemic uncertainty. OWT design must satisfy multiple
limit states [2]: ultimate, fatigue, accidental, and serviceability for the
various configurations of wind, wave, current loading, and also turbine
states (operational or not). They represent several thousand costly
aero-servo-hydro-elastics simulations [3]. Among these limit states,
Fatigue Limit State (FLS) is specifically challenging for the numerical
cost as it must sample the whole distribution of environmental loads
which is expected to occur during the OWT service life. Indeed, FLS
considers the mean expectation of damage over the environmental load
distributions that may occur during service life (about 25 years for
OWT). On top of efficiency, an accurate enough prediction is needed
to reduce the high safety factor accounting for multiple uncertainties,
specifically the uncertainty of maximum cycle laws from experimental
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tests and the uncertainty deriving from the assumption of independent
loading events implied when using Palmer–Miner cumulative rule for
damage [4,5].

Environmental loads of OWT, from winds, waves and currents are
represented by finite number of parameters (see details in Section 3)
with a joint distribution generally provided in discretized tables called
scatter diagrams with only partial view of the correlation (e.g. projected
on 2D plane for the wave significant height and wave peak period
according to bins of standard deviation of wind speed and bins of
directions as in [3,6]).

The current practice of OWT industrial designers is to compute FLS
with a reduced discretized version of the input joint distribution by
means of lumping of scatter diagrams blocks (also known as blocking),
as illustrated by the 10 to 50 required number of sea states mentioned
in [7]. However OWT standards like the latter or [8] based on [9]
do not give details on the lumping strategy, excepted for the standard
deviation of wind speed. Indeed, for the Normal Turbulence Model used
in FLS design load cases DLC 1.2 and DLC 6.4, IEC [9] indicates that
damage estimate over the standard deviation of wind speed distribution
can be replaced by a representative value as the 90% quantile of
the standard deviation of wind speed for a given time-averaged wind
speed bin. Note however that Q90 was chosen representative for blade
vailable online 31 May 2024
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composite material with high 𝑚 exponent (typically ten to fourteen).
or other OWT components, with steel material (𝑚 going from three

to five), like the tower or some foundations, the Q90 would produce
a too conservative fatigue estimate [10]. Traditional wave lumping
methods from oil and gas engineering have used high quantile for the
wave height, due to its direct relation to the wave amplitude, and to
select few quantiles of wave period to account for more complex wave
structure interaction. This should produce a conservative prediction of
damage. However, the case of OWT and more specifically of floating
ones is more complex due to interaction with aerodynamic loading,
OWT controller in pitch and torque and OWT mechanical properties
involved in dynamics as damping and stiffness [11]. This results in
numerous possible resonance issues at initial stage of design with rotor
harmonics which may not be well captured for damage estimate by too
simplistic blocking [5,12].

Several lumping approaches dedicated to OWT have been suggested
in the literature among which we distinguish that of Passon and Bran-
ner [6] which suggest use a lumping either on the wave height and
wave period by computing a damage equivalent value in analogy to
the Damage Equivalent Load. It has been later improved to consider
the wind–wave correlation as presented in [12]. The latter computes,
for each OWT component to design against FLS and for or a given bin of
time-averaged wind speed, a contour when damage in the wave height
and wave period joint space corresponds to a target damage computed
with a full factorial analysis (during which the damage is evaluated at
each point of a sample covering the joint space). One may also note
other approaches to select a reduced number of variable sets according
to their contribution to the total expectation of damage [13] or by
means of statistical regression [14].

An increasingly popular family of methods used to face the compu-
tational limit, without the approximation of the lumping approaches,
is that of surrogate modelling. This strategy aims at building, from a
Design Of Experiments (DoE), an approximate function reproducing
the results of the costly simulator with a low computational cost. A
large variety of surrogates have been suggested among which popular
ones are Polynomial Interpolation, Radial Basis Interpolation (RBI),
Gaussian process modelling (GP) often known as Kriging, Support Vec-
tor, Polynomial Chaos Expansion (PCE) and Artificial Neural Network
(ANN). Examples of application in prediction of long term mean fatigue
of OWT can be found in [15] with PCE accounting for turbulence
stochasticity, [16–18] with GP, [19] with RBI and [20] with ANN.
Cons and pros can be considered for the choice of the most appropriate
method, as discussed in several reviews [21–25]. A specific comparison
between PCE and universal Kriging for reliability fatigue analysis of
OWT is discussed in [26,27] and conclude to a higher accuracy of
Kriging but with a higher computational cost which must be put into
perspective with the cost of one or a batch of simulations. Whatever
the chosen surrogate method, a particular attention must be paid on
the model prediction quality in order to avoid poor representativity,
overfitting or ill-conditioning if points of the DoE are too close. This is
generally tested by means of bootstrap procedures with varying sample
sizes and cross validation measures like leave-one-out [28,29].

Despite their interest for reducing the simulation cost of subsequent
FLS, for instance when involved in a OWT design optimization, the
common drawback of these methods is the need to compute first a
full factorial analysis i.e. a costly surrogate construction independent
to the final objective of mean damage estimation. To alleviate these
limitations, multiple approaches have been suggested which aims at
predicting the mean damage with a target accuracy but limiting as
possible the number of calls to the simulator.

A first way would be to use Monte Carlo integration with an efficient
sampling of the variable space, like the low-discrepancy quasi random
sampling based on Sobol sequence used in [30]. A presentation and
comparison of different sampling approaches including Latin Hyper-
cube Sampling (LHS), Sobol and Hammersley Sequence sampling can
2

be found in [31]. Dedicated solutions have been developed with surro-
gate models based on adaptive design of experiments (DoE) enrichment
like for instance sparse PCE for failure probability estimation in [32].
Among the various surrogate strategies, GP is well suited for this iter-
ative strategy as it provides by construction an estimate of the model
error with the GP variance and for this main reason will be the one
considered in this study. Note that GP models, with standard settings,
are generally limited to a few dozen of dimensions, the bottleneck
being the size of the learning set required which increases with the
dimension [33].

When dealing with a surrogate of a numerical model output for
estimating a post-process of the output (probability of exceedance,
quantile, optimum, mean...), two potentially complementary learning
strategies are possible: seek for precise surrogate prediction on the
overall variable space and focus on sub-spaces important to the final
post-processed quantity of interest. When possible, a compromise be-
tween this two strategies is often preferred. For GP, a list of Adaptive
Kriging (AK) methods have been developed tailored to different post-
processes of the surrogate such as: optimization [34], excursion set
estimation [35,36], failure probability estimation [37], each with a
dedicated criterion used to enrich the DoE and stopping condition. As a
general rule, all criteria offer a compromise between exploration of the
parametric space and exploitation of learned information important for
the quantity of interest. A comparison of several criteria is given in the
recent review [38].

In the context of expectation estimation, Bayesian Quadrature (BQ)
is a well developed GP based method focused on generating a set of
integration points optimal in terms of variance minimization [39]. This
approach is not adaptive in the sense that it only depends on the
integration point positions with respect to the probability distribution
involved in the expectation and does not consider any model output
evaluation as source of information. Equivalences and deep links with
kernel herding [40] and space-filling designs can be found for instances
in [41,42]. Complexity and rates of convergence of these strategies
are also studied in [43,44]. In a very similar context to ours, Fekhari
et al. [18] applied this optimal Bayesian quadrature strategy for the
expected damage estimation of an OWT in a non-adaptive (in the previ-
ously defined sense) ‘‘one-shot’’ quadrature construction. This strategy
presents the advantage to be fully parallelizable and decoupled with
the simulation part which simplifies its implementation. Nevertheless,
this type of strategy requires an un-informed initialization of the GP
hyperparameters that could benefit from dedicated strategies such as
in [45] and is by essence non-adaptive.

Also, of particular interest for us, Huchet et al. [46] has proposed
a method, called Adaptive Kriging for Damage Assessment (AK-DA),
dedicated to the computation of the long term expectation of fatigue
damage (see details in the next sections). It provides a basis of com-
parison for a new method called MAKSUR suggested in this paper and
which is formulated according to the Stepwise Uncertainty Reduction
(SUR) principle [47].

SUR main idea is to select a new point which will minimize an
expected uncertainty measure (often involving the GP posterior vari-
ance) when including this new point. In our work the uncertainty
measure considered is the posterior expectation variance. For fixed
GP hyperparameters our SUR approach is then completely equivalent
to the optimal BQ one either with a ‘‘one shot’’ or sequential design
construction. As will be presented, the main difference between our
approach and BQ resides in the optimization of the hyperparameters
that we achieve after each add of batch of integration points leading
to a batch-sequential adaptive strategy. The optimization of the GP hy-
perparameters enables to capture information about the model output
(partial annual damage 𝑑, see (1)) variability. The adaptive aspect of
our approach also lies in the stopping criterion (coefficient of variation)
of the DoE enrichment, which involves the available model output data.

This paper should be seen as a straightforward introduction of the

SUR formalism for expectation estimation which introduce a natural
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adaptive criteria that improves a known strategy (AK-DA) used in OWT
reliability. Moreover the introduced SUR strategy has as particular case
the mentioned non-adaptive BQ method used for instance in [18].

The content of this paper is the following. Section 2 gives the prin-
ciples of AK-DA and MAKSUR adaptative kriging methods. Section 3
presents a Floating OWT (FOWT) case study inspired from the SBM
Offshore/IFPEN TLP floater concept [48], with a generic 6 MW wind
turbine and 6D wind and wave variable space, for a site in the East
coast of United States [49]. Section 4 illustrates their application to a
theoretical 2D (mean and standard deviation of wind speed only) case,
with an artificial strongly non uniform damage distribution. Section 5
illustrates a more realistic application to the FOWT case study. Finally,
conclusions and perspectives are given in Section 6.

2. Adaptive Kriging strategy for damage estimation

2.1. The general framework

Let 𝑋 be a random vector taking values in 𝛺𝑋 ⊂ 𝑅𝑛𝑋 with known
probability density function (pdf) 𝑓𝑋 . It is composed of continuous
random variables with finite variance. Let 𝑑 ∶ R𝑛𝑋 → R+ be the short
term partial annual damage occurring at a specific localization of the
structure. The total annual damage 𝐷 is defined as follows:

𝐷 = E𝑋 [𝑑(𝑋)] = ∫𝛺𝑋

𝑑(𝑥)𝑓𝑋 (𝑥)𝑑𝑥 (1)

where E𝑋 is the expectation with respect to the distribution of X.
We can estimate 𝐷 with the Monte Carlo method by considering a

sample of 𝑋 of size 𝑛𝑀𝐶 denoted X𝑀𝐶 leading to the following Monte
Carlo estimator of 𝐷:

𝐷𝑀𝐶 = 1
𝑛𝑀𝐶

∑

𝑥∈X𝑀𝐶

𝑑 (𝑥) . (2)

This estimation however necessitates 𝑛𝑀𝐶 evaluations of 𝑑 which
can be prohibitive when one evaluation of 𝑑 requires one call to
an expensive simulator. To avoid a large number of simulations, we
implement in this paper an adaptive approach based on a surrogate
model.

In this paper, the chosen surrogate model is a Kriging model [33,
50]. This technique consists in considering 𝑑 as a realization of a
stochastic process. The a priori distribution of this process is assumed to
be stationary and Gaussian with autocorrelation function chosen by the
user. The DoE, the evaluations of 𝑑 at the DoE, and the Bayes’ rule are
then used to obtain the a posteriori distribution given the evaluations
of the model at the initial DoE. This a posteriori process, denoted 𝑑,
emains a Gaussian process whose mean and autocorrelation function
an be analytically computed (see Appendix A for more detail). Thus,
t each point 𝑥 ∈ 𝛺𝑋 , the Kriging model provides a prediction of
(𝑥) in the form of a Gaussian random variable with mean 𝜇(𝑥) and
ariance 𝜎(𝑥)2. In particular for any 𝑥, 𝑥′ ∈ 𝛺𝑋 , from the stationarity
ypothesis, the posterior covariance is only a function of 𝑥 and 𝑥′

nd therefore in the sequel will be referred to as 𝑐(𝑥, 𝑥′). The mean
unction 𝜇 is used as predictor while the standard deviation function 𝜎
easures the accuracy of the predictor. This surrogate model technique

s particularly well suited for small dimension problem (when 𝑛𝑋 is
mall) and for a sequential strategy since 𝜎 enables to identify areas
here the surrogate model needs to be refined.

The Kriging random version of the total damage

̃ = ∫𝛺𝑋

𝑑(𝑥)𝑓𝑋 (𝑥)𝑑𝑥 (3)

s a Gaussian random variable (see for instance 35) with known mean
𝐷̃ = E𝑋 [𝜇(𝑋)] and variance 𝜎2

𝐷̃
= E𝑋,𝑋′ [𝑐(𝑋,𝑋′)], with 𝑋′ a ran-

om variable independent and identically distributed as 𝑋, or more
xplicitly:

2
̃ = 𝑐(𝑥, 𝑥′)𝑓𝑋 (𝑥)𝑓𝑋 (𝑥′)𝑑𝑥𝑑𝑥′. (4)
3

𝐷 ∫𝛺𝑋
∫𝛺𝑋
The Monte Carlo random estimator of 𝐷 based on the surrogate
model is given by

𝐷̃𝑀𝐶 = 1
𝑛𝑀𝐶

∑

𝑥∈X𝑀𝐶

𝑑 (𝑥) . (5)

Since 𝑑 is a Gaussian process, 𝐷̃𝑀𝐶 is also a Gaussian random
ariable with mean and variance given by

̃𝑀𝐶 ∶= E
[

𝐷̃𝑀𝐶

]

= 1
𝑛𝑀𝐶

∑

𝑥∈X𝑀𝐶

𝜇(𝑥) (6)

and

𝜎2𝑀𝐶 ∶= Var
(

𝐷̃𝑀𝐶

)

= 1
𝑛2𝑀𝐶

∑

𝑥∈X𝑀𝐶

∑

𝑥′∈X𝑀𝐶

𝑐
(

𝑥, 𝑥′
)

. (7)

Since the surrogate 𝑑 is fast to evaluate, the MC sampling X𝑀𝐶 is
onsidered large enough for the approximation error between the two
andom variables 𝐷̃ and 𝐷̃𝑀𝐶 to be negligible. Note that the integration

error could naturally (according to the central limit theorem) be mod-
elled as a centred Gaussian variable, added to 𝐷𝑀𝐶 , with a variance of
order of magnitude 1∕𝑛𝑀𝐶 . Another equivalent way to account for the
integration error would be to consider a noisy GP with noise variance
estimated jointly with the other hyperparameters. In the rest of the
article the integration error is considered negligible and only the GP
epistemic uncertainty will be dealt with.

In this introduced framework we implement the following active
kriging strategy. First, a DoE composed of 𝑛0 points of 𝛺𝑋 is created
and denoted X0

𝑑 . The expensive function 𝑑 is then evaluated at each
point of X0

𝑑 . The results are used to build an approximation model of
𝑑 called surrogate model and denoted 𝑑. To improve the accuracy of
this surrogate model, an enrichment procedure composed of cycles of
enrichment is then carried out. An enrichment cycle aims at selecting
new points of 𝛺𝑋 where the fitting of the surrogate model must be
improved. The expensive function 𝑑 is then evaluated at each of the
enrichment points and the surrogate model is updated. At the end of
the enrichment procedure, the quantity of interest 𝐷𝑀𝐶 can then be
estimated simply by replacing 𝑑 with the updated surrogate model pre-
dictor, without additional simulations. The AK strategy is summarized
in Algorithm 1.

Algorithm 1 AK strategy

Build the initial DoE: X0
𝑑

Calibrate the initial Kriging model of 𝑑 from X0
𝑑 : 𝑑

𝑘 ← 0 ⊳ number of enrichment cycles
while the stopping condition is not met do

selection of the enrichment points: select 𝑛𝑒𝑛𝑟 points of 𝛺𝑋
using one of the approaches described in Sections 2.2, 2.3, and 2.4

Evaluate 𝑑 at the new points ⊳ requires 𝑛𝑒𝑛𝑟 simulations
Update the DoE and use it to recalibrate the Kriging model
𝑘 ← 𝑘 + 1

end while
Provide the statistical estimator 𝐷̃𝑀𝐶 of 𝐷 given in (5) where 𝑑 is
the Kriging model calibrated from the updated DoE.
As estimation for 𝐷 use for instance 𝜇𝑀𝐶 in (6) or any desired
quantile.

The parameter 𝑛𝑒𝑛𝑟 corresponding to the number of points added
uring each cycle of enrichment to the DoE is chosen by the user. When
𝑒𝑛𝑟 = 1, the enrichment is said sequential and the enrichment is said
ultipoint when 𝑛𝑒𝑛𝑟 > 1.

The stopping condition of the adaptive procedure considered in this
aper involves the coefficient of variation of 𝐷̃𝑀𝐶 defined as follows:

𝐶.𝑜.𝑉𝑀𝐶 =
𝜎𝑀𝐶
𝜇𝑀𝐶

. (8)

The stopping condition is met when, at the end of a cycle of
enrichment, 𝐶.𝑜.𝑉 is below some threshold chosen by the user. Other
𝑀𝐶
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stopping conditions can be considered such as the maximum number of
cycles of enrichment.

In the following sections, we describe three approaches to perform
the selection of the enrichment points: an uncorrelated (meaning it does
not take into account the correlations of 𝑑 between MC sample points)
approach, the method suggested in [46] called AK-DA, and finally, a
method introduced in this paper: MAKSUR. The AK strategy described
in Algorithm 1 will then be applied on two test cases with the three
different enrichment approaches to compare their performance.

At the beginning of the 𝑘th cycle of enrichment, we have X𝑘−1
𝑑

the DoE resulting from the (𝑘 − 1)-th cycle. We denote X𝑐 the set of
candidate points for the enrichment and X𝑒𝑛𝑟 the enrichment points
selected during the current cycle of enrichment.

2.2. A reference heuristic enrichment criterion

For the uncorrelated approach, we introduce only the sequential
enrichment in this paper. Here, the selection of the enrichment point
is performed by solving Eq. (9):

𝑥𝑒𝑛𝑟 = argmax
𝑥𝑐∈X𝑐

𝜇(𝑥𝑐 ) × 𝜎(𝑥𝑐 ) × 𝑓𝑋 (𝑥𝑐 ) (9)

where X𝑐 = X𝑀𝐶 . At the end of the 𝑘th cycle of enrichment, X𝑒𝑛𝑟 =
{𝑥𝑒𝑛𝑟}.

Thus, the uncorrelated approach aims at selecting among the Monte
Carlo sample of 𝑋 a point 𝑥𝑐 where the prediction of the partial
damage 𝜇(𝑥𝑐 ), the uncertainty of prediction 𝜎(𝑥𝑐 ), and the probability
of occurrence 𝑓𝑋 (𝑥𝑐 ) are large.

Algorithm 2 𝑘-th enrichment cycle with the sequential uncorrelated
pproach
Select 𝑥𝑒𝑛𝑟 solution of equation:

𝑥𝑒𝑛𝑟 = argmax
𝑥𝑐∈X𝑐

𝜇(𝑥𝑐 ) × 𝜎(𝑥𝑐 ) × 𝑓𝑋 (𝑥𝑐 )

X𝑘
𝑑 ←

{

X𝑘−1
𝑑 ,X𝑒𝑛𝑟

}

2.3. The AK-DA enrichment criterion

The AK-DA approach aims at selecting the points from the Monte
Carlo sample which contribute the most to Var

(

𝐷̃𝑀𝐶

)

given in Eq. (7).
To do so, the selection of the 𝑛𝑒𝑛𝑟 enrichment points in Algorithm 1
is performed in an iterative way. During each iteration, the selected
enrichment point 𝑥𝑒𝑛𝑟 is the candidate with the larger contribution to
Var

(

𝐷̃𝑀𝐶

)

:

𝑥𝑒𝑛𝑟 = argmax
𝑥𝑐∈X𝑐

|

|

|

|

|

|

∑

𝑥′∈X𝑀𝐶

𝑐
(

𝑥𝑐 , 𝑥
′)
|

|

|

|

|

|

. (10)

During the first iteration, X𝑐 = X𝑀𝐶 . At the end of each iteration,
once the enrichment point 𝑥𝑒𝑛𝑟 is selected, the set of candidates X𝑐
is updated by keeping only the points 𝑥𝑐 such that 𝑑(𝑥𝑐 ) is weakly
correlated with 𝑑(𝑥𝑒𝑛𝑟) (i.e. such that |

|

|

𝑐
(

𝑥𝑐 , 𝑥𝑒𝑛𝑟
)

|

|

|

≤ 𝑟 where 𝑟 is a
parameter chosen by the user). This parameter 𝑟 has a major impact on
the procedure since it eliminates the candidates for enrichment which
are too close to 𝑥𝑒𝑛𝑟. It thus avoids having two enrichment points very
close together and providing no further information. However, this
parameter 𝑟 must be chosen by the user and is not easy to define a
priori.

This way, the enrichment points selected during a cycle of enrich-
ment have a large contribution in Var

(

𝐷̃𝑀𝐶

)

and the information
provided by the evaluation of 𝑑 at these points is not redundant.

The AK-DA approach is summarized in Algorithm 3.
In [46], AK-DA is introduced by evaluating the total damage from a

regular grid of long term variables which is suited for a small dimension
𝑛𝑋 . In this paper, a Monte Carlo approach is preferred and therefore,
the AK-DA enrichment is slightly modified accordingly.
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Algorithm 3 𝑘-th enrichment cycle with multipoint AK-DA approach
X𝑐 ← X𝑀𝐶 , X𝑒𝑛𝑟 ← ∅
𝑖 ← 0
while 𝑖 < 𝑛𝑒𝑛𝑟 or X𝑐 ≠ ∅ do

Select 𝑥𝑒𝑛𝑟 solution of Eq. (11)

𝑥𝑒𝑛𝑟 = argmax
𝑥𝑐∈X𝑐

|

|

|

|

|

|

∑

𝑥′∈X𝑀𝐶

𝑐
(

𝑥𝑐 , 𝑥
′)
|

|

|

|

|

|

(11)

X𝑒𝑛𝑟 ← {X𝑒𝑛𝑟, 𝑥𝑒𝑛𝑟}
X𝑐 ←

{

𝑥𝑐 ∈ X𝑐 such that |

|

|

𝑐
(

𝑥𝑐 , 𝑥𝑒𝑛𝑟
)

|

|

|

≤ 𝑟
}

𝑖 ← 𝑖 + 1
end while
X𝑘
𝑑 ←

{

X𝑘−1
𝑑 ,X𝑒𝑛𝑟

}

Contrary to the original AK-DA criterion, the modified version we
suggest with a Monte Carlo estimation does not require to know the
distribution of the long-term variables. Only a Monte Carlo sample is
required, which in practice is given directly from the measurement of
wind and wave statistics. We thus avoid the fitting of a parametric
distribution and its related uncertainty [51]. This remark holds as well
for the MAKSUR criterion introduced below.

2.4. Active Kriging based on a Stepwise Uncertainty Reduction approach
for mean estimation

The new enrichment approach introduced in this paper is called
MAKSUR for Mean estimation with AK based on Stepwise Uncertainty
Reduction. It aims at selecting the design point(s) that will theoretically
minimize, w.r.t. a new design point, the expected posterior variance of
𝐷̃ given the values of damage 𝑑 at the selected design point.

Sequential enrichment.
Since 𝐷̃ is the integrated damage estimated with a GP model as

integrand, the uncertainty on 𝐷̃ is epistemic and derived from the GP
model uncertainty through the integration. For a DoE of size 𝑀 , we
would like to find the couple (𝑥𝑀+1, 𝑑(𝑥𝑀+1)) to add to the GP learning
DoE such that the uncertainty on 𝐷̃, with the upgraded GP model, is
reduced. The uncertainty measure considered is the variance and since
the integrand value 𝑑(𝑥𝑀+1) is unknown at this point, it is replaced
with its GP posterior prediction. The selection criteria is then defined by
considering the expected variance of 𝐷̃ w.r.t the GP posterior prediction
at 𝑥𝑀+1. In practice the posterior variance of the MC estimator 𝐷̃𝑀𝐶 is
considered, leading to the following optimal selection of a design point
candidate 𝑥𝑀+1 such that:

𝑥𝑀+1 = argmin
𝑥𝑐∈X𝑀𝐶

E𝑑(𝑥𝑐 )

[

Var
(

𝐷̃𝑀𝐶
|

|

|

𝑑(𝑥𝑐 )
)]

(12)

In this sequential setting, with one enrichment point added at each
iteration and fixed hyperparameters, the variance term can be explicitly
formulated as

Var
(

𝐷̃𝑀𝐶 |𝑑(𝑥𝑐 )
)

= 1
𝑛2𝑀𝐶

∑

𝑥∈X𝑀𝐶

∑

𝑥′∈X𝑀𝐶

[

𝑐(𝑥, 𝑥′) −
𝑐(𝑥𝑐 , 𝑥)𝑐(𝑥𝑐 , 𝑥′)

𝑐(𝑥𝑐 , 𝑥𝑐 )

]

, (13)

with 𝑐 the current posterior covariance function (built with the DoE of
size 𝑀) which explicit expression is given by (29) in the appendix. We
can notice that the variance term (13) does not involve the posterior
Gaussian prediction 𝑑(𝑥𝑐 ) but only 𝑥𝑐 . Therefore in this particular
SUR setting, the expectation in (12) can be removed. From simple
manipulations on (13) the optimal design point selection boils down
to

𝑥𝑀+1 = argmax 1
𝜎(𝑥 )

|

|

|

|

∑

𝑐
(

𝑥𝑐 , 𝑥
′)
|

|

|

|

. (14)

𝑥𝑐∈X𝑀𝐶 𝑐 |

|

𝑥′∈X𝑀𝐶
|

|



Structural Safety 110 (2024) 102483A. Cousin et al.

d

k
t
t
u
{

𝑥

w
b
𝑛
t
n
𝑛
T
m

r
W

Multipoint enrichment.
Formulas for multipoint enrichment by batches are also available

with MAKSUR from GP update formulas introduced in [52]. Neverthe-
less, this latter strategy involves a NP-hard, non-linear, multivariate
optimization problem that can be very difficult to tackle [53]. In
practice, as also pointed out in [53], a sub-optimal greedy version of
the batch optimization problem can be preferred consisting in adding
iteratively one point at a time. Indeed, this latter strategy is much
easier to implement and involves a less complex optimization problem
to solve at each iteration. The iterative version will be presented below
and used in the numerical section.

Let us consider a cycle of 𝑛𝑒𝑛𝑟 enrichments with X𝑒𝑛𝑟 = {𝑥(𝑒𝑛𝑟,1),… ,
𝑥(𝑒𝑛𝑟,𝑛)} the set of 𝑛 enrichment points already selected during this cycle.
The (𝑛+1)th enrichment point is the solution of the following problem:

𝑥(𝑒𝑛𝑟,𝑛+1) = argmin
𝑥𝑐∈X𝑀𝐶

Var
(

𝐷̃𝑀𝐶 |D𝑥𝑐

)

(15)

where D𝑥𝑐 = {𝑑(𝑦), 𝑦 ∈ {𝑥𝑐 ,X𝑒𝑛𝑟}}. Indeed, as shown in [52] and
iscussed previously in the sequential case with 𝑛𝑒𝑛𝑟 = 1 (Eq. (12) and

(13)), for fixed hyperparameters, we can compute the posterior vari-
ance of 𝐷̃𝑀𝐶 |D𝑥𝑐 from the set of design points {𝑥𝑐 ,X𝑒𝑛𝑟} and without
nowing the values of 𝑑 on {𝑥𝑐 ,X𝑒𝑛𝑟}. Similarly to the sequential case,
he criteria does not need an expectation w.r.t. the posterior predic-
ions. We refer to Appendix B for the computation of Var

(

𝐷̃𝑀𝐶 |D𝑥𝑐

)

sing only the covariance function of 𝑑 and the set of design points
𝑥𝑐 ,X𝑒𝑛𝑟} leading to the equivalent optimization problem

𝑒𝑛𝑟,𝑛+1 = argmax
𝑥𝑐∈X𝑀𝐶

(

𝑎1,… , 𝑎𝑛, 𝑎𝑥𝑐
)𝑇

𝛴−1
D𝑥𝑐

(

𝑎1,… , 𝑎𝑛, 𝑎𝑥𝑐
)

(16)

here 𝑎𝑖 =
∑

𝑥∈X𝑀𝐶
𝑐(𝑥(𝑒𝑛𝑟,𝑖), 𝑥), 𝑎𝑥𝑐 =

∑

𝑥∈X𝑀𝐶
𝑐(𝑥𝑐 , 𝑥) and 𝛴D𝑥𝑐

given
y (32) in Appendix B. To summarize, the problem (16) is solved
𝑒𝑛𝑟 time (total number of desired enrichment points) by updating
he objective as formalized. The whole enrichment procedure does
ot require any costly evaluation of the simulator function 𝑑(⋅). The
𝑒𝑛𝑟 simulations are launched in batch after the enrichment cycle.
he sequential enrichment can be seen as the particular case of the
ultipoint one when 𝑛𝑒𝑛𝑟 = 1.

The MAKSUR approach is summarized in Algorithm 4.

Algorithm 4 𝑘-th enrichment cycle with multipoint MAKSUR approach
X𝑒𝑛𝑟 ← ∅
𝑖 ← 0
while 𝑖 < 𝑛𝑒𝑛𝑟 do

Select 𝑥𝑒𝑛𝑟 according to Eq. (16)
X𝑒𝑛𝑟 ← {X𝑒𝑛𝑟, 𝑥𝑒𝑛𝑟}
𝑖 ← 𝑖 + 1

end while
X𝑘
𝑑 ←

{

X𝑘−1
𝑑 ,X𝑒𝑛𝑟

}

Discussion.
The MAKSUR approach has several advantages compared to AK-DA:

• with MAKSUR, it is not required to provide the parameter 𝑟 which
influences the performance of AK-DA.

• with AK-DA, the size of candidate set decreases with each itera-
tion which can lead to an empty set X𝑐 before the 𝑛𝑒𝑛𝑟-th iteration.
Therefore, during this last cycle, less than 𝑛𝑒𝑛𝑟 enrichment points
are selected. This can result in a sub-optimal use of the computer
resources (for instance if 𝑛𝑒𝑛𝑟 calculations can be carried out in
parallel). With MAKSUR, during each cycle of enrichment, 𝑛𝑒𝑛𝑟
points are always selected.

• for 𝑛𝑒𝑛𝑟 = 1, the criteria (14) gives a theoretical validation to
the covariance based criterion (10) introduced for AK-DA in [46]
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corrected in MAKSUR with the appropriate factor 1∕𝜎(𝑥𝑐 ). Indeed
according to (10), the AK-DA criterion selects points strongly pos-
itively (or negatively) correlated with the MC sampling set (abso-
lute sum term) enabling optimal global variance improvement.
Meanwhile, according to (14), MAKSUR criterion encompasses
the AK-DA one (absolute sum term) but additionally favours less
uncertain points i.e. with small posterior variance (via factored
term) further enhancing the expected variance minimization.

In [46], the enrichment points of AK-DA are selected from the
grid used to evaluate the damage. For fair comparisons, enrichment
candidates in the three approaches mentioned in the present paper
are considered from the Monte Carlo sample used to estimate the
damage. However, this enrichment strategy could benefit from using
an optimization algorithm to select enrichment points from the entire
domain 𝛺𝑋 .

2.5. Illustration of an enrichment step using MAKSUR and AK-DA

To illustrate the enrichment procedure using the AK-DA and MAK-
SUR criteria, let us consider a simple 1D case. Let 𝑋 be a uniform
andom variable on [0, 2𝜋] from which we draw a Monte Carlo sample.
e consider 𝑑(𝑥) = 1.25𝑥+sin(3𝑥) and we train an initial kriging model

from a DoE composed of four points (see Fig. 1). We then compute
the AK-DA and MAKSUR criteria (with respectively Eqs. (11) and (16))
for every point of the Monte-Carlo sample and display it in Fig. 1. The
enrichment point for each criterion is the one maximizing it. They are
denoted 𝑥𝐴𝐾𝐷𝐴 and 𝑥𝑀𝐴𝐾𝑆𝑈𝑅.

The enrichment point 𝑥𝑀𝐴𝐾𝑆𝑈𝑅 is added to the initial DoE and a
new kriging model is trained from this new DoE. The same operation is
done with 𝑥𝐴𝐾𝐷𝐴. The resulting kriging models are displayed in Fig. 2.

From each kriging model, we can estimate the total damage 𝐷̃ and
display it in Fig. 3. These total damage estimations are normal random
variables since we consider the uncertainty of the kriging. The means
and variances of these variables are given by Eqs. (6) and (7). We
observe that the estimations of the total damage has been improved
with the enrichment step: the mean of the distributions are closer to the
reference damage computed with Eq. (2). Moreover, we also observe
that the variance of the total damage using the MAKSUR criterion is
smaller than the initial one and the one using the AK-DA criterion.
Indeed the MAKSUR criterion aims at selecting the point that minimizes
the expected variance of the total damage estimated with the new
kriging model i.e. the one enriched with a new design point (given
by Eq. (15)) while AK-DA selects the point which contributes the most
to the variance of the initial total damage estimated with the current
kriging model. For fixed hyperparameters and after enrichment with
respective criteria, the MAKSUR variance is necessarily smaller than
the AK-DA one as illustrated in Fig. 3.

3. A 6D floating wind turbine case study based on an ANN of
fatigue damage at the top of a mooring line

3.1. Wind and wave parameters

For FLS, wind speed process is assumed Gaussian and stationary
on ten minutes, while the wave elevation process is also Gaussian but
stationary on one to three hours. Designers generally start with histor-
ical wind and wave data over several years collecting measurements
on met-masts and buoys, eventually completed with other sources by
means of Measure-Correlate-Predict strategies (cf appendix F of 9).
From historical data, one may compute joint probabilistic distribution
of wind and wave random parameters, by means of parametric or
non parametric fitting methods. The results will always include an
uncertainty [51] which can be large when it is extrapolated for the
OWT service life of the order of 25 years. The wind and wave random
parameters generally considered in the literature to represent each
stationary state are given in Table 1.
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Fig. 1. Initial kriging model (left) and enrichment criteria (right).
Fig. 2. Enriched kriging models using MAKSUR (left) and AKDA (right).
Fig. 3. Estimation of the total damage using the initial and enriched kriging models.

One may also consider additional variables like a coefficient of verti-
cal shear for a wind profile in relation to the atmospheric stability [54],
misalignment of the rotor, additional loading on the structure with sub-
marine currents, marine growth, or multiple sets of wave components
to describe the superposition of several sea states (e.g. wind sea and
swell). We will however limit to the six above mentioned variables in
this paper, the method presented being easily extendable to additional
variables, up to the curse of dimensionality, with some limitations
6

Table 1
Wind and wave stationary state variables. In the first column abbreviations used in
Fig. 6 are between brackets.

Variable Description Unit

𝑈 Time-averaged wind speed at hub height (m/s)
𝜎𝑈 Standard deviation of wind speed at hub height (m/s)
𝜃𝑤𝑖𝑛𝑑 (WDIR) Wind heading (degree)
𝐻𝑠 (WVHT) Wave significant height (m)
𝑇𝑝 (DPD) Wave peak period (s)
𝜃𝑤𝑎𝑣𝑒 (MWD) Wave heading (degree)

detailed below. Let us denote 𝑋 a random vector collecting all these
environmental site variables.

3.2. Floating offshore wind turbine case study

We are interested in analysing the performance of the different AK
criterion presented in Section 2 to compute efficiently the long term
fatigue damage of a FOWT. In this perspective, we selected a realistic
case study with a generic six MW wind turbine supported by a SBM
Offshore/IFPEN TLP floater concept depicted in Fig. 4, which is derived
from the concept presented in [48].

The site conditions are extracted from the station 4408 of a USA
National Data Buoy Center which is located near Nantucket on the
East coast of USA. A total of 60 673 sextuplet (𝑈 , 𝜎𝑈 , 𝜃𝑤𝑖𝑛𝑑 , 𝐻𝑠,
𝑇𝑝, 𝜃𝑤𝑎𝑣𝑒) have been considered from recorded time period between
2007–2017, with 8-min statistic for the wind and 20-min statistics for
the wave. Note that wind conditions are provided at buoy depth and
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Fig. 4. 3D view of the FOWT with SBM Offshore/IFPEN TLP floater concept after [49].

Table 2
Marginal fitting distributions according to the offshore Nantucket buoy data. 𝛤 and 𝐼0
are the gamma function and the modified Bessel function of order 0, respectively.

Data Distribution pdf

𝑈 Weibull(𝜇, 𝜆, 𝑘) 𝑘
(

𝑥−𝜇
𝜆

)𝑘−1
𝑒−

(

𝑥−𝜇
𝜆

)𝑘
, 𝑥 > 0

0, 𝑥 ≤ 0

𝐻𝑠 , 𝑇𝑝 Gamma(𝜇, 𝜆, 𝑘) 1
𝛤 (𝑘)

(

𝑥−𝜇
𝜆

)𝑘−1
𝑒−

(

𝑥−𝜇
𝜆

)

𝜃𝑤𝑖𝑛𝑑 , 𝜃𝑤𝑎𝑣𝑒 Von Mises(𝜇, 𝜆, 𝑘) 1
2𝜋𝐼0 (𝑘)

𝑒𝑘 cos
(

𝑥−𝜇
𝜆

)

Table 3
Marginal fitting parameters defined in Table 2.
Data 𝜇 𝜆 𝑘

𝑈 −0.16 m/s 7.11 m/s 1.85
𝐻𝑠 0.28 m 0.66 m 2.16
𝑇𝑝 1.45 s 0.70 s 9.69
𝜃𝑤𝑖𝑛𝑑 −1.92 rad 1 rad 0.31
𝜃𝑤𝑎𝑣𝑒 2.71 rad 1 rad 1

should be higher at wind turbine hub height, depending on the vertical
profile (wind shear) of the site. This correction was not taken into
account in [49]. Joint distribution were fitted against this buoy data
with python Scipy.stats package, for the marginal distributions of 𝑈 ,
𝜃𝑤𝑖𝑛𝑑 , 𝐻𝑠, 𝑇𝑝, 𝜃𝑤𝑎𝑣𝑒, with results given in Tables 2 and 3.

The turbulence standard deviation 𝜎𝑈 is not provided in the buoy
data so that a log-normal distribution is considered, after the suggestion
of IEC [9] with following mean and standard deviation for a class C low
turbulence :

E
[

𝜎𝑈 |𝑈
]

= 0.09𝑈 + 0.456

Var
(

𝜎 |𝑈
)

= 0.1682 (17)
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𝑈

Fig. 5. pdf of the 𝜎𝑈 − −𝑈 distribution.

where quantities are given in m/s. This joint probability is illustrated
in Fig. 5.

Given the dominant role of time-averaged the wind speed 𝑈 on
the wind turbine mechanical behaviour, an hybrid strategy has been
considered in [49], with an imposed sampling on that dimension and
a LHS sampling over the left 5D, for each imposed 𝑈 . The sampling
along 𝑈 is chosen between cut in and cut out steady wind speed
every two metre per second, plus two additional points near the rated
speed, defining a total of thirteen 𝑈 points. The rated wind speed
corresponds to a drastic change in the characteristic curves of the
wind turbine (aerodynamic thrust and torque, electrical production)
in steady regime, due to a change in the blade and the generator
torque controller (see e.g. 55 for details on wind turbine behaviours
and controller).

Thanks to a specific test on the new supercomputer Jean Zay
owned by GENCI, IDRIS and CNRS (the most powerful one dedicated
to research in France), it was possible to sample intensively the full
6D domain, with 20 000 points of a maximin LHS for each time-
averaged wind speed imposed value. The total of 260 000 computations
represents a greater sampling effort than previous works in the liter-
ature [27,30]. As damage of an OWT is the result of a multiphysics
process, its long term expectation may be better approximated with
a sampling of computations that is defined according to the input
variables joint distribution. Several ways are suggested to define such
sampling based on the representation of the correlation with either
an a priori parametric 2D dependencies [56] or non parametric cop-
ulas [57]. In [49], the specific case of wind turbulence is using the
parametric definition of Eq. (17) by sampling on the unit square and
then use the inverse of the Cumulative Density Function (CDF) of the
lognormal distribution to transform in the physical space. For the other
4D (𝜃𝑤𝑖𝑛𝑑 , 𝐻𝑠, 𝑇𝑝, 𝜃𝑤𝑎𝑣𝑒), the choice was to follow the methodology
in [58] which requires only correlation matrices. As shown in Fig. 6, the
first step is to define the LHS for 4 independent variables with standard
normal distributions. Second step is to multiply the LHS matrix (20
000 𝑥 4) with the empirical correlation matrix after triangulation by
means of Cholesky factorization. The last step uses inverse of CDF to
convert the sampling into the space of chosen distributions mentioned
previously. The resulting sample points provide a good approximation
of the empirical correlation as can be seen in Fig. 7.

Each sextuplet of environmental parameters is representing a 𝑥
value (see Section 2) and is used to generate a set of wind and wave
loading and to simulate one hour of the lifetime of a FOWT with
dedicated Deeplines WindTM software. This length of simulation is
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Fig. 6. Methodology of Zang and Pinder [58] to generate a LHS according to the 4 input variables with their correlation, after [49]. WDIR, WVHT, DPD and MWD correspond
respectively to 𝜃𝑤𝑖𝑛𝑑 , 𝐻𝑠, 𝑇𝑝 and 𝜃𝑤𝑎𝑣𝑒.
Fig. 7. 2D-Comparisons between Kernel Density Estimation of the buoy data with obtained LHS for U = 8, 12 and 14 m/s, after [49].
considered long enough to sample the main frequencies of both wind
and wave Gaussian processes. Finally, a post-treatment of the damage
8

𝑑(𝑥) (see Eq. (2)) at the top of one of the three mooring lines is done.
It is assumed that 1 h is also long enough to get a small enough
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variance of 𝑑(𝑥), in agreement with the conclusions of the sections 4.3.2
of Müller et al. [59] for two FOWT case studies. The interested reader
may also found a detailed study of the convergence of fatigue prediction
according to simulation length, for a fixed foundation OWT case study
in [60].

Consequently, there is no need to use several stochastic replications.
The Rainflow cycle counting which is described in [61] and imple-
mented in [62], is applied to the time series of the tension 𝑇 (𝑡) at
the top of the selected mooring line. The result of this algorithm is
a collection of 𝑛 tension ranges 𝛿𝑇𝑖 with 𝑖 ranging from 1 to 𝑛, and
the associated number of cycles 𝑛𝑖. An experimental and confidential
fatigue law is then used to relate each tension range to a cycle Number
𝑁𝑖 corresponding to damage rupture (see e.g. 63 for examples of such
fatigue laws). The short-term partial damage is then computed as the
ratio :

𝑑(𝑥) =
𝑛
∑

𝑖

𝑛𝑖
𝑁𝑖

. (18)

The computation of the long term annual damage 𝐷 of Eq. (1) from
the Deeplines WindTM simulations is achieved in two steps. For each 𝑈 ,
we assume the 20 000 samples according to (𝜎𝑢, 𝜃𝑤𝑖𝑛𝑑 , 𝐻𝑠, 𝑇𝑝, 𝜃𝑤𝑎𝑣𝑒) to
be large enough and built according to the joint distribution so that
it is equivalent to a MC integral (Eq. (2)) on that sub-space. Then
the thirteen conditional expectations E[𝑑(𝑋)|𝑈 ] values are integrated
over the Weibull pdf of time-averaged the wind speed 𝑈 . The resulting
reference annual damage is :

𝐷𝑟𝑒𝑓 = 0.008344 (19)

3.3. ANN surrogate models in 2D and 6D

The cost of a single one hour aero-servo-hydro-dynamic simulation
with Deeplines WindTM is about ten hours of computation. To facilitate
applications on this case study of several AK methods that will be
documented in the next sections, two surrogate models which are fast
to run are computed with ANN.

A reduced 2D problem (𝑑 ∶ R2 → R+) is considered for a first sim-
plified application (see Section 4), with only 𝑈 and 𝜎𝑈 input variables.
The Multi-layer Perceptron Regressor method of
sklearn.neural_network python package is applied on a set of 150
Deeplines WindTM simulation results. The ANN options are 100 neurons
in two hidden layers and rectified linear unit function (i.e. max(0, 𝑥))
as activation functions. The cross validation of this 2D ANN has been
checked on a validation DoE and is satisfying as can be seen Fig. 8.

For the full dimensional problem (𝑑 ∶ R6 → R+), the same
methodology has been applied on the whole set of 260 000 simulation
results. The quality of this 6D ANN is also satisfying, as shown by Fig. 9
despite a wider dispersion around the diagonal in particular for the
smallest values (which might be due to a more complex input–output
relation in this area). The contribution of these small damage points to
the long term mean annual damage should however be small.

Finally, both neural networks are trained on log(𝑑) which explains
why the values of y_predict and y_test in Figs. 8 and 9 are negative.

4. Application to a 2D simplified case study

4.1. Description of the 2D case study

A first application is carried out by simplifying the 6D case study
of the fatigue at the top of a mooring line described in Section 3
to a 2D problem. Indeed, in this section we will neglect the wave
and orientation pluri-annual variables, to keep only time-averaged the
wind speed 𝑈 and the standard deviation of wind speed 𝜎𝑈 . For the
sake of simplifications, the computational cost is drastically reduced
by replacing the multiphysics simulator (Deeplines Wind™) by the 2D
ANN presented in Section 3. Furthermore, to test the robustness of
9

Fig. 8. Training vs. Test Data of the 2D ANN.

Fig. 9. Training vs. Test Data of the 6D ANN.

the AK methods, an arbitrary Gaussian function centred on (U=25,
𝜎𝑈=2.5) has been added to the damage predicted by the 2D ANN,
still in the (𝑈, 𝜎𝑈 ) space: The effect of the Gaussian function on the
partial damage variations is clearly visible by its red spot on the left-
hand side graph of Fig. 10. On the right-hand side graph of Fig. 10,
damage variations are displayed with a logarithmic scale to improve
its visibility: it corresponds to the 2D pdf displayed on Figs. 5 and 11
with a linear scale.

4.2. Sequential enrichment

Three criteria have been suggested for this study: an uncorrelated
approach, AK-DA, and MAKSUR, described respectively in Section 2.2,
2.3 and 2.4. For the three approaches, the implementation described
below is chosen.

4.2.1. Implementation
For the AK strategy, the Kriging implementation of the OpenTURNS

Python package [64] is used with a constant trend and an anisotropic
5/2-Matérn covariance kernel which is a flexible kernel and suited for
the expected smoothness of the damage.

To compare the different criteria with a sequential enrichment,
during each cycle of enrichment, only one new point is added to the
previous DoE (𝑛𝑒𝑛𝑟 = 1). The hyperparameters are updated at each
calibration of the Kriging model. The points of the successive DoEs are
standardized and each hyperparameter is selected in [10−5, 10] using
the multistart Truncated Newton Constrained solver implemented in
OpenTURNS from 20 initial points. This configuration enables to obtain
good hyperparameters within a reasonable time.

The cycles of enrichment end when the coefficient of variation
𝐶.𝑜.𝑉𝑀𝐶 defined in Eq. (8) goes below 1% which is considered suffi-
ciently accurate.
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Fig. 10. Damage 𝑑(𝑥) (left graph) and occurring damage 𝑑 × 𝑓𝑋 on a log scale (right graph).
Fig. 11. Contour plot of the pdf 𝑓𝑋 (U, 𝜎𝑈 ) and Monte Carlo sample of 10.000 points.

To analyse the sensitivity to the initial DoE, 10 initial DoEs are
built. These DoE are maximin LHS [65,66] of 20 points. This maximin
LHS is a simple sampling method that optimizes the coverage of the
2D domain and is therefore well suited to calibrate the initial kriging
model. Moreover, considering a sample of size 10 times the dimension
of the input space usually provides a good initial DoE. This results in 30
analyses: a analysis corresponding to the estimation of the total damage
using one of the three enrichment criteria from one of the ten initial
DoEs.

A Monte Carlo sample of 𝑛𝑀𝐶 = 10.000 points is obtained from
the 2D probability density function 𝑓𝑋 (Fig. 11) which is used in
the enrichment procedure. The total damage is then approximated by
𝐷𝑀𝐶 (2) where 𝑑 is replaced with the ANN described in Section 4.1
and we obtain 𝐷𝑀𝐶 = 0.01405. This reference value will be used to
compare the different enrichment strategies.

4.2.2. Numerical results
Table 4 gathers the results of the 30 analyses. Each column corre-

sponds to an indicator of performance: the first one is the estimated
damage which corresponds to E

[

𝐷̃𝑀𝐶

]

, the second one is the number
of cycle of enrichment needed to complete the method and finally the
error in percentage between the estimation E

[

𝐷̃𝑀𝐶

]

and the damage
of reference 𝐷𝑀𝐶 . For each approach (each row), the mean over the
ten analyses (i.e. from the ten different initial DoEs) of each indicator
is given as well as the extreme values (i.e. min–max values).

Fig. 12 shows the evolution of the total damage estimation (left
graph) and of the variance of the estimator (right graph), during
the 18 first cycles of enrichment starting. The whiskers represent the
variability due to the choice of the initial DoE. More precisely, the
10
whiskers cover the min–max range, the boxes extend from the first
quartile to the third quartile with a line at the median.

All methods have converged to the total damage 𝐷𝑀𝐶 (Table 4 and
left graph of Fig. 12). We can notice that a few Kriging results give very
high reference damage log values, basically around 1.3 at cycles 6, 9
and 12 indeed the Gaussian function increases the model complexity
and makes it difficult to optimize Kriging hyperparameters. The issue
disappears in the following cycles, with the addition of new points.
MAKSUR approach has the fastest convergence speed with the lowest
number of enrichment cycles, on average 22 (Table 4) with always
the lowest total damage variance for cycles higher than 6 (green box
plots on the right graph of Fig. 12). To obtain the same precision, the
uncorrelated and AK-DA criteria need respectively on average 180.9
and 31.1 cycles of enrichment.

4.3. Multipoint enrichment

To further analyse the behaviour of the different criteria, the mul-
tipoint version of AK-DA and MAKSUR are also implemented.

4.3.1. Implementation
The implementation of the methods described in Section 4.2.1 is

conserved except that 5 enrichment points are added during each
enrichment cycle (𝑛𝑒𝑛𝑟 = 5).

As mentioned in Section 2.3, the parameter 𝑟 involved in the AK-
DA multipoint criterion is difficult to choose a priori. To study the
sensitivity of this criterion to 𝑟, two different and reasonable values
are considered here: 𝑟 = 0.3 and 𝑟 = 0.9.

4.3.2. Numerical results
The results are displayed in Table 5 and Fig. 13.
Although during the first few enrichment cycles, the choice of initial

DoE has a large influence on the damage estimate, after four cycles we
see that all analyses provide a good approximation of the total damage.

On average, MAKSUR criterion stops after 5.1 cycles. With 𝑟 = 0.3,
AK-DA stops after 7.6 cycles and is more restrictive than AK-DA with
𝑟 = 0.9 in term of candidate points which gives worse results.

A comparison of the third and fifth enrichment cycles between
MAKSUR and AK-DA 𝑟 = 0.3 criteria are displayed on Figs. 14 and
15. For the 1st and 2nd cycle of enrichment MAKSUR and AK-DA
select approximately the same points. At the 3rd enrichment cycle,
the zone of interest, which corresponds to the maximum damage area
(𝑙𝑜𝑔10(𝑑 × 𝑓𝑋 ) = −2.4) around the Gaussian function centre is reached
by several MAKSUR points. At the 5th enrichment cycle, the solution
is fully recovered by MAKSUR: Fig. 15 matches perfectly the solution
(Fig. 10). AK-DA criterion needs two more enrichment cycles to recover
the solution ( Table 5).
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Table 4
Results of MAKSUR, AK-DA and an uncorrelated criteria for the 2D case from an initial DoE of 𝑛0=20 points with 𝑛𝑒𝑛𝑟 = 1
point per cycle.

Damage estimation E
[

𝐷̃𝑀𝐶

]

# cycles of enrichment Error (%)

uncorrelated 0.01405 [0.01403–0.01406] 180.9 [104–299] 0.08 [0.01–0.15]
AK-DA 0.01394 [0.01360–0.01414] 31.1 [23–41] 0.91 [0.03–3.25]
MAKSUR 0.01405 [0.01387–0.01444] 22.0 [18–26] 1.01 [0.30–2.76]
Table 5
Results of MAKSUR and AK-DA for the 2D case from an initial DoE of 𝑛0 = 20 points with 𝑛𝑒𝑛𝑟 = 5 points per cycle.

Damage estimation E
[

𝐷̃𝑀𝐶

]

# cycles of enrichment Error (%)

AK-DA r = 0.3 0.01401 [0.01386–0.01407] 7.6 [5–9] 0.38 [0.00–1.41]
AK-DA r = 0.9 0.01401 [0.01376–0.01408] 9.5 [8–11] 0.45 [0.04–2.11]
MAKSUR 0.01412 [0.01400–0.01427] 5.1 [3–7] 0.68 [0.15–1.55]
Fig. 12. Evolution of the total damage estimation (left graph) and of the variance of the estimator (right graph), during the 18 first cycles of enrichment starting from an initial
DoE of 𝑛0 = 20 points with 𝑛𝑒𝑛𝑟 = 1 point per cycle. Total damage 𝐷𝑀𝐶 is plotted by a red dash on the left graph. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Fig. 13. Evolution of the total damage estimation (left graph) and of the variance of the estimator (right graph), during the four first cycles of enrichment starting from a DoE
of 𝑛0 = 20 points with 𝑛𝑒𝑛𝑟 = 5 points per cycle. Total damage 𝐷𝑀𝐶 is plotted by a red dash on the left graph. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
5. Application to a realistic floating wind turbine case study

To illustrate the performance of the AK fatigue criteria introduced in
the previous sections, let us now consider in this section the complete
6D problem for the damage at the top of the FOWT mooring line
which was detailed in Section 3. To fasten the computations, we use
the 6D surrogate neural network presented in the same section. This
simplifications has no consequence on the result interpretation as we
will consider the cost performance as the number of calls to the ANN.

In this section we will compare the multipoint version of AK-DA (for
𝑟 = 0.5 and 𝑟 = 0.9) and MAKSUR.
11
5.1. Implementation

The implementation of the methods described in Section 4.2.1 is
conserved except that during each cycle of enrichment, 10 new enrich-
ment points are added to the previous DoE (𝑛𝑒𝑛𝑟 = 10) to observe how
the criteria perform when we increase the number of enrichment points
per cycle.

Here again, the analysis are repeated from a set of 10 different
initial DoEs leading to 30 analysis (10 per criterion). Since the input
space is in 6D, the initial DoEs are composed of 60 points.

The resolution of problems (11) and (16) during the MAKSUR and
AK-DA approaches require to evaluate the covariance of 𝑑 between



Structural Safety 110 (2024) 102483A. Cousin et al.
Fig. 14. Comparison between MAKSUR and AK-DA 𝑟 = 0.3 at the 3th cycle of enrichment. The initial DoE is made of 𝑛0 = 20 black points. Points of the 1st and 2nd enrichment
cycles are in light blue. Points of the current enrichment cycle are numbered in dark blue. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
Fig. 15. Comparison between MAKSUR and AK-DA (𝑟 = 0.3) at the 5th cycle of enrichment. The initial DoE is made of 𝑛0 = 20 black points. Points of the 4 1st enrichment cycles
are in light blue. Points of the current enrichment cycle are numbered in dark blue . (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
every point of X𝑀𝐶 . This is very time consuming when considering a
large sample size of the Monte Carlo sample despite any call to the
multiphysics simulator is needed. To reduce the computation time, a
subsample of 10000 points of X𝑀𝐶 is considered and denoted X𝑀𝐶,𝑠.
For AK-DA, problem (11) is replaced with

𝑥𝑒𝑛𝑟 = argmax
𝑥𝑐∈X𝑐

|

|

|

|

|

|

∑

𝑥′∈X𝑀𝐶,𝑠

𝑐
(

𝑥𝑐 , 𝑥
′)
|

|

|

|

|

|

(20)

where, for the first iteration, X𝑐 = X𝑀𝐶,𝑠 (instead of X𝑀𝐶 ). For
MAKSUR, problem (16) is replaced with

𝑥𝑒𝑛𝑟 = argmax
𝑥𝑐∈X𝑀𝐶,𝑠

(

𝑎1,… , 𝑎𝑛, 𝑎𝑥𝑐
)𝑇

𝛴−1
D𝑥𝑐

(

𝑎1,… , 𝑎𝑛, 𝑎𝑥𝑐
)

(21)

where for all 𝑖 we have 𝑎𝑖 =
∑

𝑥∈X𝑀𝐶,𝑠
𝑐(𝑥(𝑒𝑛𝑟,𝑖), 𝑥) and 𝑎𝑥𝑐 =

∑

𝑥∈X𝑀𝐶,𝑠
𝑐(𝑥𝑐 , 𝑥).

To avoid potential bias, at the beginning of every new cycle of
enrichment, these 10 000 points are resampled randomly among the full
Monte Carlo sample.

Finally, since in this case we used the ANN, 𝑑 is nearly instantaneous
to evaluate and the true total damage 𝐷𝑀𝐶 defined in Eq. (2) is
estimated with a large Monte Carlo sample of 60453 points such that
𝐷 = 0.00890. This damage is used as reference to compare the
12

𝑀𝐶
different enrichment approaches. Note that this reference value is close
to that obtained with the real simulator, 𝐷𝑟𝑒𝑓 at the end of Section 3,
with a relative error of about 6.6%. This approximation comes from the
ANN regression illustrated in Fig. 9.

5.2. Numerical results

Table 6 gathers the results of the 30 analyses.
We observe that all the methods provide good estimations of the

damage of reference (with a largest error at 3.04% for one analysis
with MAKSUR). However, MAKSUR requires much less evaluations of
𝑑 to reach a given precision. Indeed, in average only 17.7 cycles of
enrichment are performed with MAKSUR whereas 37.2 and 60.0 are
needed respectively for AK-DA with 𝑟 = 0.5 and 𝑟 = 0.9. This also
highlights the importance of the parameter 𝑟 in AK-DA which has to
be chosen a priori by the user.

To further analyse the behaviour of the different methods, we
display in Fig. 16 the results of the 9 first cycles for each enrichment ap-
proach (the whiskers correspond to the variation over the 10 analyses).
The figure on the left indicates the evolution of the logarithm of the
estimated damage (log10

(

E
[

𝐷̃𝑀𝐶

])

). The red dotted line corresponds
to the damage of reference. The figure on the right shows the evolution
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Table 6
Results of MAKSUR and AK-DA for the 6D case with 𝑛𝑒𝑛𝑟 = 10.

Damage estimation E
[

𝐷̃𝑀𝐶

]

# cycles of enrichment Error (%)

AK-DA r = 0.5 0.00894 [0.00886–0.00910] 37.2 [30–43] 0.57 [0.03–2.28]
AK-DA r = 0.9 0.00895 [0.00878–0.00908] 60.0 [54–68] 0.92 [0.23–2.06]
MAKSUR 0.00889 [0.00867–0.00917] 17.7 [14–23] 1.40 [0.35–3.04]
Fig. 16. Evolution of the damage estimation and of the variance of the estimator during the 9 first cycles of enrichment with 𝑛𝑒𝑛𝑟 = 10..
of the logarithm of variance of the estimator (log10
(

Var
(

𝐷̃𝑀𝐶

))

(this
variance is estimated from X𝑀𝐶,𝑠 as explained earlier).

We note that the accuracy of MAKSUR is at least as good as the
estimation with the best version of AK-DA. Besides, at the end of each
cycle of enrichment, the variance of the estimator is always lower
with MAKSUR which implies a smaller uncertainty on the damage
estimation. Moreover a significant difference between the two AK-
DA methods is observed both for the damage estimation and for the
variance of the estimator.

Finally, the analyses in the paper show that the choice of the initial
DoE has a small influence compared to the choice of the enrichment
criterion. The relative performances of the methods are robust to the
choice of the initial DoE.

6. Conclusion

A new method has been presented to compute the mean expectation
of pluri-annual fatigue damage for offshore floating wind turbines. This
method called MAKSUR for ‘‘Mean estimation with AK and a Step-
wise Uncertainty Reduction’’ belongs to the family of AK approaches.
However it is specifically suited to compute efficiently the full factorial
weighted integral of cumulative damage, accounting for the input vari-
ables joint probabilistic distributions. The specificity of MAKSUR relies
on the enrichment and stopping criteria employed. MAKSUR adapts the
SUR idea [47,67] to integral estimation by selecting iteratively points
which maximize the expected variance (including the new points) of
the integral derived from the Kriging model of the integrand. On a
simplified 2D case, we first demonstrated the efficiency of MAKSUR
compared to the AK-DA method of Huchet et al. [46] and to a naive
approach for which the enrichment criterion is simply the product of
the joint probability of input variables by the variance and the mean
of a Kriging on damage. We also shown on a more realistic 6D wind
and wave variables floating case study that MAKSUR achieves the same
accuracy as the AK-DA method but with a small number of calls to the
wind turbine simulator and with a minimum number of parameters to
be defined by the user. A reference solution was available for this case
study, thanks to a previously computed intensive design of experiments
during a supercomputer challenge. MAKSUR converges to a solution
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close to the reference full factorial damage with only about 237 calls to
the simulator which would enable to compute a full factorial estimate
of long term damage of offshore wind turbine in industrial context.

A perspective to this work could be to modify the enrichment
criterion or the Kriging model in order to account for the positiveness
of the damage. To complete the validation, a robustness study should
be done with respect to input data. Otherwise, when applying this
procedure to a real case of OWT design, one has to extend it for
predicting damage at several locations on the structure, accounting for
the spatial correlation.

This approach dedicated to mean expectation estimation is however
not relevant for cases as Ultimate Limit State design, where the quantity
of interest relates to extreme values. It may also require adaptation in
special cases such as highly non-stationary output where correlation
lengths are very different in different sub-domains of the input space.

Furthermore, the vector of input random parameters 𝑋 can be
extended to a couple of dozen (cf the non exhaustive list of possibilities
below Table 1) as long as the curse of dimensionality is not reached
making the GP model to difficult to estimate.

Last, let us also mention that the efficiency of this AK method
opens the door to more accurate structure design accounting for several
sources of uncertainties (see e.g. 37,68 for examples of distributions
on material resistance or offshore wind turbine conception). A nat-
ural perspective is then to develop new efficient Reliability Based
Design Optimization methods like the one suggested in [37], Stieng and
Muskulus [69] for fatigue constraints.
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Appendix A. Kriging method (or Gaussian process regression)

The Kriging method relies on the assumption that the expensive
function 𝑑 is a realization of a stationary Gaussian random process 𝑑prior
defined for all 𝑥 ∈ 𝛺𝑋 as:

𝑑prior(𝑥) =
𝑝
∑

𝑗=1
𝛽𝑗𝑓𝑗 (𝑥) +𝑍(𝑥) (22)

where the sum ∑𝑝
𝑗=1 𝛽𝑗𝑓𝑗 (𝑥) defines the trend of the process charac-

terized by the unknown coefficients 𝛽1,… , 𝛽𝑝 and the known functions
𝑓1,… , 𝑓𝑝. Besides, 𝑍 is a stationary Gaussian process with zero mean
and its covariance function is given by:

E[𝑍(𝑥)𝑍(𝑥′)] = 𝜎2prior𝑐prior(𝑥 − 𝑥′). (23)

The value of 𝑝, the functions 𝑓𝑗 (𝑗 = 1,… , 𝑝) as well as the function
𝑐𝑝𝑟𝑖𝑜𝑟 are chosen by the user (the latter can be chosen from a family
of parametric correlation functions [33] and is defined by a set of
parameters 𝜃). The unknown parameters 𝜎2𝑝𝑟𝑖𝑜𝑟 and 𝜃 are called the
hyperparameters and characterize the correlation between two points
of the process 𝑍. They represent respectively the variance and the
correlation lengths of 𝑍.

Let X𝑑 = {𝑥𝑖, 𝑖 = 1,… , 𝑛𝐷𝑜𝐸} be a DoE of 𝛺𝑋 . We introduce the
following notations:

𝑓 (𝑥) =
[

𝑓𝑗 (𝑥)
]

1≤𝑗≤𝑝 ,𝐹 =
[

𝑓𝑗 (𝑥𝑖)
]

1≤𝑖≤𝑛𝐷𝑜𝐸 ,1≤𝑗≤𝑝
(24)

𝑟𝜃(𝑥) =
[

𝑐prior(𝑥𝑖 − 𝑥)
]

1≤𝑖≤𝑛𝐷𝑜𝐸
,𝑅𝜃 =

[

𝑐prior(𝑥𝑖 − 𝑥𝑗 )
]

1≤𝑖≤𝑛𝐷𝑜𝐸 ,1≤𝑗≤𝑛𝐷𝑜𝐸
(25)

and 𝑚 the vector
[

𝑑
(

𝑥𝑖
)]

1≤𝑖≤𝑛𝐷𝑜𝐸
.

The DoE and 𝑚 are used to fit 𝜎𝑝𝑟𝑖𝑜𝑟 and 𝜃 usually with the cross-
validation method or the maximum-likelihood (ML) method [70].

The parameter 𝛽 can also be estimated within the ML proce-
dure [71] whose solution is given by:

𝛽 =
(

𝐹 𝑇𝑅−1
𝜃 𝐹

)−1 𝐹 𝑇𝑅−1
𝜃 𝑚. (26)

In this context, it is shown that the prediction of the metamodel
at a new point 𝑥, conditionally to the DoE and 𝑚, follows a normal
distribution 𝑑(𝑥) ∼ 

(

𝜇(𝑥), 𝜎2(𝑥)
)

with:

𝜇(𝑥) = 𝑓 (𝑥)𝑇 𝛽 + 𝑟𝜃(𝑥)𝑇𝑅−1
𝜃 (𝑚 − 𝐹𝛽) (27)

and

𝜎2(𝑥) = 𝜎2𝑝𝑟𝑖𝑜𝑟
(

1 − 𝑟𝜃(𝑥)𝑇𝑅−1
𝜃 𝑟𝜃(𝑥) + 𝑢𝜃(𝑥)𝑇

(

𝐹 𝑇𝑅−1
𝜃 𝐹

)−1 𝑢𝜃(𝑥)
)

(28)

𝑇 −1
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with 𝑢𝜃(𝑥) = 𝐹 𝑅𝜃 𝑟𝜃(𝑥) − 𝑓 (𝑥).
Moreover, for two points 𝑥 and 𝑥′, the predictions of the metamodel
at these points

(

𝑑(𝑥), 𝑑(𝑥′)
)

is a Gaussian vector such that the covari-

ance Cov
(

𝑑(𝑥), 𝑑(𝑥′)
)

, that we denote 𝑐(𝑥, 𝑥′), is given by the following
quation:

(𝑥, 𝑥′) = 𝜎2
𝑝𝑟𝑖𝑜𝑟

(

𝑐prior(𝑥, 𝑥′) − 𝑟𝜃(𝑥)𝑇𝑅−1
𝜃 𝑟𝜃(𝑥′) + 𝑢𝜃(𝑥)𝑇

(

𝐹 𝑇𝑅−1
𝜃 𝐹

)−1 𝑢𝜃(𝑥′)
)

.

(29)

Appendix B. Calculation of the posterior variance

We present in this appendix the calculation of the posterior variance
involved in the MAKSUR approach. Let 𝑑 be the Kriging model of 𝑑
alibrated at the end of the 𝑘 − 1-th cycle of enrichment from the
pdated DoE X𝑘−1

𝑑 . We consider that during the 𝑘th cycle, already 𝑛
terations were performed (with 𝑛 < 𝑛𝑒𝑛𝑟) and therefore 𝑛 enrichment
oints are already selected : X𝑒𝑛𝑟 = {𝑥(𝑒𝑛𝑟,1),… , 𝑥(𝑒𝑛𝑟,𝑛)}. During the
+ 1-th iteration, the new enrichment point is the solution of:

𝑒𝑛𝑟 = argmin
𝑥𝑐∈X𝑀𝐶

ED𝑥𝑐

[

Var
(

𝐷̃𝑀𝐶 |D𝑥𝑐

)]

(30)

here D𝑥𝑐 = {𝑑(𝑦), 𝑦 ∈ {𝑥𝑐 ,X𝑒𝑛𝑟}} and ED𝑥𝑐
stands for the expectation

.r.t. the random vector composed of the 𝑑(𝑦) ∈ D𝑥𝑐 . The distribution
f 𝑑 given D𝑥𝑐 is denoted 𝑑D𝑥𝑐

. We denote 𝑐 and 𝑐D𝑥𝑐
respectively the

ovariance functions of 𝑑 and 𝑑D𝑥𝑐
such that 𝑐(𝑥, 𝑥′) = Cov(𝑑(𝑥), 𝑑(𝑥′))

nd 𝑐D𝑥𝑐
(𝑥, 𝑥′) = Cov(𝑑D𝑥𝑐

(𝑥), 𝑑D𝑥𝑐
(𝑥′)), ∀𝑥, 𝑥′ ∈ 𝛺𝑋 .

Using corollary 1 of Chevalier et al. [52], we have:

D𝑥𝑐
(𝑥, 𝑥′) = 𝑐(𝑥, 𝑥′) − 𝐶(D𝑥𝑐 , 𝑥)

𝑇𝛴−1
D𝑥𝑐

𝐶(D𝑥𝑐 , 𝑥
′) (31)

here 𝐶(D𝑥𝑐 , 𝑥)
𝑇 =

(

𝑐(𝑥(𝑒𝑛𝑟,1), 𝑥),… , 𝑐(𝑥(𝑒𝑛𝑟,𝑛), 𝑥), 𝑐(𝑥𝑐 , 𝑥)
)

and

D𝑥𝑐
=

⎛

⎜

⎜

⎜

⎜

⎝

𝑐(𝑥(𝑒𝑛𝑟,1), 𝑥(𝑒𝑛𝑟,1)) … 𝑐(𝑥(𝑒𝑛𝑟,1), 𝑥(𝑒𝑛𝑟,𝑛)) 𝑐(𝑥(𝑒𝑛𝑟,1), 𝑥𝑐 )
⋮ ⋮ ⋮ ⋮

𝑐(𝑥(𝑒𝑛𝑟,𝑛), 𝑥(𝑒𝑛𝑟,1)) … 𝑐(𝑥(𝑒𝑛𝑟,𝑛), 𝑥(𝑒𝑛𝑟,𝑛)) 𝑐(𝑥(𝑒𝑛𝑟,𝑛), 𝑥𝑐 )
𝑐(𝑥𝑐 , 𝑥(𝑒𝑛𝑟,1)) … 𝑐(𝑥𝑐 , 𝑥(𝑒𝑛𝑟,𝑛)) 𝑐(𝑥𝑐 , 𝑥𝑐 )

⎞

⎟

⎟

⎟

⎟

⎠

. (32)

We can first notice that the variance term can be written as

ar
(

𝐷̃𝑀𝐶 |D𝑥𝑐

)

= 1
𝑛2𝑀𝐶

∑

𝑥∈X𝑀𝐶

∑

𝑥′∈X𝑀𝐶

𝑐D𝑥𝑐
(𝑥, 𝑥′)

nd, according to Eq. (31), does not depend on the random observations
𝑥𝑐 but only on the associated experimental points {𝑥𝑐 ,X𝑒𝑛𝑟} such that

he expectation in Eq. (30) is not necessary. Then again using Eq. (31),
he optimization problem (30) can be reformulated to rely only on the
ovariance function of 𝑑:

rgmin
𝑥𝑐∈X𝑀𝐶

Var
(

𝐷̃𝑀𝐶 |D𝑥𝑐

)

= argmin
𝑥𝑐∈X𝑀𝐶

1
𝑛2𝑀𝐶

∑

𝑥∈X𝑀𝐶

∑

𝑥′∈X𝑀𝐶

𝑐D𝑥𝑐
(𝑥, 𝑥′)

= argmax
𝑥𝑐∈X𝑀𝐶

∑

𝑥∈X𝑀𝐶

∑

𝑥′∈X𝑀𝐶

𝐶(D𝑥𝑐 , 𝑥)
𝑇𝛴−1

D𝑥𝑐
𝐶(D𝑥𝑐 , 𝑥

′)

= argmax
𝑥𝑐∈X𝑀𝐶

(

𝑎1,… , 𝑎𝑛, 𝑎𝑥𝑐
)𝑇 𝛴−1

D𝑥𝑐

(

𝑎1,… , 𝑎𝑛, 𝑎𝑥𝑐
)

where 𝑎𝑖 =
∑

𝑥∈X𝑀𝐶
𝑐(𝑥(𝑒𝑛𝑟,𝑖), 𝑥) for 𝑖 = 1,… , 𝑛 and 𝑎𝑥𝑐 =

∑

𝑥∈X𝑀𝐶
𝑐

(𝑥𝑐 , 𝑥). Thus, in MAKSUR, the selection of a new enrichment point is
done by solving:

𝑥𝑒𝑛𝑟 = argmax
𝑥𝑐∈X𝑀𝐶

(

𝑎1,… , 𝑎𝑛, 𝑎𝑥𝑐
)𝑇

𝛴−1
D𝑥𝑐

(

𝑎1,… , 𝑎𝑛, 𝑎𝑥𝑐
)

.
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