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Abstract. Yaw misalignment strategies can increase the power output of wind farms by
mitigating wake effects, but finding optimal yaws requires overcoming both modeling errors
and the growing complexity of the problem as the size of the farm grows. Recent works have
therefore proposed decentralized multi-agent reinforcement learning (MARL) as a model-free,
data-based alternative to learn online. These solutions have led to significant increases in total
power production on experiments with both static and dynamic wind farms simulators. Yet
experiments in dynamic simulations suggest that convergence time remains too long for online
learning on real wind farms. As an improvement, baseline policies obtained by optimizing offline
through steady-state models can be fed as inputs to an online reinforcement learning algorithm.
This method however does not guarantee a smooth transfer of the policies to the real wind farm.
This is aggravated when using function approximation approaches such as multi-layer neural
networks to estimate policies and value functions. We propose an imitation approach, where
learning a policy is first considered a supervised learning problem by deriving references from
steady-state wind farm models, and then as an online reinforcement learning task for adaptation
in the field. This approach leads to significant increases in the amount of energy produced over
a lookup table (LUT) baseline on experiments done with the mid-fidelity dynamic simulator
FAST.Farm under both static and varying wind conditions.

1. Introduction

Wind farms are subject to the so-called “wake effect”: when a wind turbine extracts energy
from the wind, the wind speed downstream decreases and its turbulence increases. This leads to
sub-optimal conditions for the energy production of the turbines located downstream. This can
be mitigated by wake steering strategies, that use controllable actuators on upstream turbines
to deflect the wake away from downstream turbines [1]. In this article, we focus on strategies
relying on yaw misalignment, that increase the angle between the rotor and the wind direction
(or ?yaw”) to redirect the wake.

Formally, we consider a wind farm with M turbines. The spatial organization of the turbines
in the farm is called a layout. We assume that we observe the freestream wind conditions at
the entrance of the wind farm w = (uno, Poo) With us and ¢, respectively the wind speed and
wind direction. For a space of admissible yaw angles ) defined to respect physical constraints
on the wind turbine, we consider the vector vy € YM of turbine yaws in the wind farm. The
individual power outputs of the turbines {Pi, ..., Py} are then a function of w and . We want
to find the optimal yaws v* : 7* = arg max,, P(y,w) with P(y,w) := Zi‘il P;(y,w). Designing
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efficient methods of cooperative control to find optimal yaw angles is however a challenging
task. Classical optimization algorithms can be fed a model of the wind farm and output the
yaws that maximize its power output estimation. This method has been used to extract a lookup
table (LUT) of optimal yaws as a function of wind conditions [1], which can then be deployed
in the field. Yet its performance is limited by the fidelity of the model: without feedback, it
cannot recover from model inaccuracies, and the yaws deployed have indeed turned out to be
sub-optimal in certain field campaigns [2].

To overcome these limitations, several multi-agent Reinforcement Learning (RL) methods
have been proposed as model-free and data-based alternatives for wind farm control via wake
steering [3]. In RL, learning agents infer the best actions solely by observing the system’s
responses to input changes. In the last decade significant progress has been achieved by RL
methods for many sequential decision-making problems with successful applications in various
fields including games, robotics or biology. By formulating farm power output maximization as a
distributed optimization problem, decentralized multi-agent RL solutions have led to significant
increases in total power production on experiments with both static [1, 4, 5] and dynamic wind
farms simulators [6, 7]. In particular, decentralized learning approaches bypass the exponential
dependency of the search space on the number of turbines, and promise to be more tractable
by modeling every turbine as an agent following a local learning algorithm [5, 7-9]. Yet new
evaluations on dynamic simulations suggest that convergence time remains too long for online
learning on real wind farms [7, 10].

As an improvement, baseline policies obtained by optimizing through steady-state models
can be fed as inputs to an online reinforcement learning algorithm: this can both improve the
speed of adaptation to changing wind conditions and serve as a safe reference for an algorithm
as it searches better policies.

We propose an imitation approach, where learning a policy is first considered a supervised
learning problem by deriving references from steady-state wind farm models, and then as an
online reinforcement learning task for adaptation in the field. This approach allows us to
significantly increase the amount of energy produced over a LUT baseline on experiments done
with a 3 turbines wind farm in the dynamic simulator FAST.Farm [11] under varying wind
conditions,

2. Background: Multi-Agent Reinforcement Learning for wind farm control

In reinforcement learning (RL), agents try to directly learn the best mapping from states to
(probabilities on) actions by interacting with an environment. Formally, we define a Markov
Decision Process (MDP) {S, A, r, P}, with S the state space, A a discrete action space, P the
matrix of transition probabilities of the environment and r : S x A — R a reward function.
We write A(s) the subset of actions a € A available in state s. An agent interacts with the
environment by following a stochastic policy a ~ 7(s),s € S,a € A(s), where m(als) is the
probability of choosing action a when in state s. If the policy is deterministic, there exists an a’
for which 7(a’|s) = 1 and we directly write a’ = 7(s). The agent’s goal is then to find a policy 7*
that maximizes the expectation of its infinite-horizon discounted reward, or discounted return:

max E[J|dy] J:= Zﬁkr(sk,ak)
k=0

with dy a distribution over initial states, 0 < 8 < 1 the discount factor, sy the initial state, and
{8k, ak }k=0..00 the trajectory of the agent in the environment under policy . For a policy ,
we define the state value function V; as:

Va(s) :=Eg Zﬁkr(sk,ak)\so =5
k=0
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with ap ~ 7(sg). For any state s, Vi(s) is therefore the expected value of following policy 7
starting from state s. The value function can be conditioned on taking an action a in s, in which
case it becomes the state-action value function Qx(s,a) = Ex ¢ [r(s,a) + YVz(s') | s,a]l. Tt is a
solution of the fixed point Bellman Equation:

Va(s) =E, [r(s, a) + BVx(s") | 8] (1)

with a ~ 7(s) and s’ ~ Ps 4. The optimal state value function V* can then be introduced as :
Vs, V*(s) = Vrz=(s) = maxy Vz(s).

Several RL algorithms can be applied to wind farm control problems, but recent work has
focused on actor-critic approaches [12]: Deep Deterministic Policy Gradient (DDPG) is used in
[13-16], Proximal Policy Gradient (PPO) in [8], and a custom actor-critic method is developed
by [17]. In the following, we briefly introduce this family of algorithms. Among the different
strategies to learn an approximation of the optimal policy 7*, actor-critic methods directly
update a policy parameter 6 € R? defining a policy 7y : S — mp(als), with the goal to maximize
the expectation of the total return EJ(0) = E,,[J|dy]. To avoid the explosion of variance that
would be caused by a direct estimation of the objective in the field - recall that the policy is
stochastic, actor-critic methods rather maintain an estimate of V;, or Q,, the value functions
for the current policy my. The value function V; can then be estimated by a function V,,
parameterized by v € R?, for a b € N. Recall that V; satisfies (1), so that the learning objective
for V,, can be defined by the minimization of a squared error called the Temporal Difference
(TD) § (2) for any state transition (s,r,s’):

5(s,r, ") =r(s,a) + BVi(s) — Vr(s), L, =10(s,r, 5’)2 (2)

with a ~ 7m(s) and s’ ~ P, 5. Much of the recent progress in applying reinforcement learning to
various problems has relied on using deep neural networks for parameters 6§ and v.

When several agents interact in the same environment to maximize a shared reward however,
we say that this is a task of cooperative multi-Agent RL (MARL) [18]. The agents can equally
be thought of as solving a distributed optimization problem [19]. Problems of this type are
commonly formalized with an extension of the MDP model called the decentralized partially
observable MDP (Dec-POMDP): instead of observing the global state s € S, every agent
i €{1,...,M} only has access to a partial observation of the global state defined by a function
fi. The s; = fi(s) € S; are known as the local states, and every agent learns a local policy
mi(a;|s;). For one agent, all others can be considered part of the environment, and existing
standard RL algorithms can therefore be used to learn an optimal local policy. If all agents
learn at the same time however, each of them is faced with an ever evolving environment, and
the convergence guarantees of RL algorithms developed for single-agent problems no longer hold.
Yet letting agents run these algorithms on their local observations with no centralized control and
no other communication than the shared reward, an approach referred as Independent Learning,
has recurrently produced good empirical results on various experiments [20] from simple grid
tasks [21] to complex games [22].

3. Application to wind farm control
The wake steering problem for wind farm control can be seen as a cooperative multi-agent
RL problem. At each time-step, every agent i observes a local state made of freestream wind
measures w = (u>, ¢) and its local yaw ~;, and takes a local action commanding an increase or
decrease of this yaw. All agents then receive a reward from the system, signaling whether their
collective action has improved the total power output.

Under the Independent Learning approach introduced above, learning can be done in a
decentralized manner with M RL agents separately learning local optimal policies to maximize
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a shared reward. And indeed, this approach has been successfully applied to the wind farm
control problem: significant increases were obtained by [5, 9, 23] on experiments with steady-
state models like FLORIS [24] and PyWake [25], and by [7, 10] on mid-fidelity dynamic models
like and FAST.Farm [11] and the control-oriented WFSim [26], all using independent learners.

Few experiments have so far evaluated RL methods on simulators with both dynamic wake
propagation and turbulent wind inflow, but preliminary results also point towards decentralized
learners being faster than centralized alternatives. In [27], an RL approach for wake steering
where a centralized learner controls 3 turbines in a row of 4 was tested on HAWC2Farm [28]
with a turbulence intensity of 7.5%. When the wind direction was aligned with the turbine row,
which corresponds to the case with the largest wake effect, no significant increase in total power
production was observed within the first 72h (¢oo = 2°) and 96h (¢poo = 0°) of the simulation. In
[10], a similar experiment was done in FAST .Farm with 3 aligned turbines under ¢, = 0° and a
turbulence intensity of 8%. Decentralized learners achieve an increase of 15% over the baseline in
the first 96h, finally converging towards the optimal yaws in 125h. In [7], we introduced another
decentralized approach called Delay-Aware Fourier Actor Critics (DFAC) and evaluated it on
WFSim. We now test it our 3-turbine FAST.Farm experiment. The case considered has 3
NREL 5 MW turbines with a rotor diameter of D = 126m aligned in a row, and separated
by a distance of 4D. In order to replicate realistic wind conditions, we use the turbulent-wind
simulator TurbSim [29] to simulate a time series of 3D wind velocity vectors in the flow field.
Our wind inflow has an average freestream velocity u3® = 8m/s with a turbulence of 8%. The
wind is directed orthogonally to the axis of the turbine rows, i.e ¢ = 0°. The sampling period
in FAST.Farm is set to 3s. DFAC takes into account wake propagation time by using a delayed
reward collection module. At each iteration the actor-critic parameters of agent ¢ are only
updated after a delay rd;(w) dependent on the position of the corresponding turbine in the
farm, the distance to its neighboring turbines, the current freestream wind speed and direction
w, and a safeguard multiplier m > 0 which is an hyperparameter of the method. Further details
about the algorithm are found in [7]: in the subsequent work, we use m = 7, continuous action
spaces [—1,1] and for all other hyperparameters we take the default values introduced in the
paper. Because DFAC has a stochastic component directing the yaw exploration in the system,
we run it 4 times, each time initializing the controller with a different random seed. At the
turbine level, the yaw command computed by the DFAC algorithm at every iteration is directly
sent to a DISCON wind turbine controller interface. We plot the one-hour averaged power
production outputs for the 4 different runs in Fig. 1. Starting from a greedy strategy where all
turbines are facing the wind, DFAC is able to find the optimal yaws in 35h simulated hours, for
a final increase of 21% over a greedy baseline, and a 3% increase over a LUT baseline derived
with FLORIS. For comparison purpose, we will then use the DFAC algorithm as our starting
point

Although these experiments point towards a method that can learn and adapt faster, the
convergence time remains too slow for a deployment under real wind conditions. The experiments
are made under stationary wind, with the mean of the wind velocity staying constant across
the simulation, and the algorithm goes through a relatively long period of exploration. This
is in part because it learns from scratch in the environment, meaning that it does not exploit
any prior knowledge of the system. Several pre-training methods can be used to speed up
learning and prepare a transfer towards more realistic wind condition. Because the algorithm
is model-free and only interacts with the inputs and outputs of the system as a black box, any
wind farm simulator can be used for pre-training RL algorithms, and the learned policies then
used as initialization in the real farm. We tested this approach on our 3-wind turbine layout:
DFAC was first trained on a FLORIS simulation of the farm, and continued to learn in the
FAST.Farm environment. These experiments failed, with DFAC instead exhibiting a decrease
in power production at the beginning of the FAST.Farm simulation. The question of adaptation
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of RL algorithms from simulation to the real case is indeed not a trivial one. This problem is
known in the RL literature as "knowledge forgetting”[30], but to the best of our knowledge it
has not been discussed in the literature of RL algorithms for wind farm control, where most
algorithms are both trained and evaluated on the same simulator [3].

To solve this issue we want a method that can:

(A) From any model, efficiently learn ” good-enough” values on the full state-action space offline

(B) Allow for straightforward weight transfer to the field without significant performance loss.

We will see in the next section that for any set of optimal yaws, it is easy to derive analytic
expressions for the policies and their respective value functions. Finding correct weights that
approximate these functions can then be done by any supervised learning procedure.

4. Imitation-based DFAC

Let us consider a LUT mapping wind conditions to yaws in a specific farm Mgapy : (W) —
(v, ..., ’y]/\\/f/‘) This can be obtained through an optimization routine with a steady-state model.
Then, the optimal local policies with respect to the LUT simply return the largest allowed step
towards the LUT yaw in every state. If the policies of all agents are following this simple rule,
every step will lead towards an increase in the total power output. Let us assume that this step
is always rewarded by the maximal reward 7, the corresponding value functions can then also
be derived any agent ¢ and any local state s;: for all s; = (v;, w) € S;,

min(A, MFarm(W)i — %’) if v < MFarm(W)i

M (52) = max(—A, Yi — MFarm(W)i) if v > MFarm(W)i (3)
0 otherwise
T-1 T
iM _ k_ —p _ | Mrarn(W)i — 7il
V"% (si) = rup Z B = 1w 5 where T' = { A (4)

k=0
where with A the upper bound on absolute change in the yaw command at every iteration. The
learned policy is therefore deterministic.

Note however that the policy deployed in the field will not be deterministic: to improve upon
the initial baseline, agents must explore different actions for every state. DFAC therefore samples
from a Gaussian distribution centered around the current estimate of optimal actions, with an
adaptive standard deviation parameter o. The assumption that all policies keep increasing
the production until they reach the LUT yaws will therefore not hold even when the yaws are
optimal. In particular, eq. (4) is a lower bound on the value function of the Gaussian policy
whenever 7; = Mgarn(W);, and an upper bound elsewhere: it is overestimating the difference
between states with the highest and lowest values. Formally, it will not satisfy the fixed point
equation eq. (1) for a stochastic policy. To adjust the estimate, we can train the learned value
functions to minimize their Temporal Difference losses eq. (2) on a small additional sample of
rewards estimates collected under the Gaussian policies. These reward estimates can be easily
computed with a steady-state model.

We can therefore adopt the following methodology:

(i) Generate a training dataset from the model-derived optimal policy and value functions 7

and VM
(ii) Offline, learn parameterized functions V,, and 7y approximating the model-derived optimal
policies and value functions by minimizing the Mean Squared Error loss

(iii) Offline, adjust estimate by minimizing the TD error with rewards estimated under stochastic
policies
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(iv) Online, start learning the RL functions in the dynamic environment from the policies learned
offline

We detail our methodology in the following paragraphs. A pseudo-code is also provided in
algorithm 1.

4.1. Generate o training dataset

Algorithm 1 Imitation learning for DFAC (IDFAC)

Require: Number of agents M, T' > 0, Wind distribution W, RL parameters 8 € (0,1), C € N*,
FE < C Batch size B, Steady state model model, Standard deviation o
Init Policy and value function parameters {6;}i—1. ., {vi}ti=1..m, D = 0,D" = (), Neural
networks my, V,,

(i) Generate the training dataset
forc=1...Cdo
w < sample(W)
MeEparn(W) < model.optimize_yaws(w)
for vy € [YNZ| do
fori=1...Mdo
('717 )
— (m M(2;)) eqgs. (3) and (4)
D «—DuU (z xz,yl)
end for
end for
end for
(ii) Learn V,, and 7y offline
fori=1...Mdo
f; < minibatchSGD(6;,D, Ly, B) eq. (5)
v; <— minibatchSGD(v;, D, L, B) eq. (5)
end for
(iii) Adjust estimate V, to minimize the TD error
forc=1...Edo
w < sample(W)
v + sample(YM)
fori=1...Mdo
Z; = (’Yiu W)
a; < ng(xi,a)
end for
r < get_reward(model, w,y,a)
fori=1...Mdo
v; < Vé(xi,r, (i + ai, w)) eq. (2)
end for
end for
Return 6, v

We first need to extract a representative range of wind conditions. We assume that we
either have a wind distribution for velocity and direction, or otherwise that we can extract
SCADA wind measurements from a currently operating farm to extract an empirical distribution.
The construction of the dataset then follows the following procedure: we first sample C wind
conditions from the training data, with C' being an hyperparameter of the method. To better
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cover the space of wind conditions, we assume that velocity and direction are independent, and
sample them separately. This gives a set of wind condition W = w] _1.

We then use the FLORIS software to simulate the farm with a low ﬁdehty model, and the
Serial-Refine algorithm [31] to find the optimal yaws with respect to the steady-state model.
The Serial-Refine (SR) algorithm has been introduced by NREL in 2022 specifically for wake-
steering optimization problems in FLORIS models, it is a search algorithm that finds solutions
equivalent to the previously used default routine, but at a fraction of the computation time.
Once the optimal yaws are found, we use the policy (3) and value (4) equations to create a
training dataset. For every integer in the yaw space v; € ), we create the corresponding pair
(x4,y;) representing a data point and its label

T, = (7i7W)7 Yi = (WM('%'Z)7VM<$Z)) .

For every wind condition, we obtain a dataset of N = |} N Z| points. The final dataset
concatenates the C' x N samples.

4.2. Learn offiine
We now define the Mean Squared Error losses for the policy £y and for the value function £, :

N ) N 9
=" [ro(wi) — M ()] = [Volwi) = VM (@)] " (5)
=0

=0

We then use a mini-batch gradient descent algorithm ([32]) to learn the parameters 0, v that
best approximate the function.

A small subset of our dataset will now be used to adjust the value estimate (step (iii)). For a
randomly chosen subset of E points z;, with E < C' x N, we sample local actions from Gaussian
distributions centered around 7} (z;) with a standard deviation of 1. The corresponding rewards
are then computed in FLORIS, and the mini-batch gradient descent algorithm used to minimize
the TD loss eq. (2).

5. Results

We now evaluate our method on two FAST.Farm experiments with with our 3-turbine layout.
To work on realistic wind data, we sample C' = 500 wind conditions from SCADA wind velocity
and direction measurements acquired during SMARTEOLE experimental campaigns. The base
DFAC algorithm used features extracted with a Fourier basis to represent the state. To adapt
it to varying wind conditions, we feed theses features to a neural network of 2 hidden layer of 81
units with a hyperbolic tangent activation. We first evaluate imitation-based DFAC (IDFAC)
on our 3-turbine FAST.Farm experiment introduced in section 3. We train the policies and
value functions using a batch size of 32, and 20 passes on the full data for the mini-batch
gradient descent algorithm. We then deploy the algorithm online and compare it to the initial
DFAC without imitation. We run IDFAC 4 times with different random seeds, and measure the
lh-average energy produced during each simulation. We compare the results with the runs of
DFAC, as well as the evolution of yaws during the first experiment for each algorithm, on Fig.
la. Both DFAC and IDFAC improve the greedy baseline by 21%, but all runs of IDFAC achieve
a 18% increase in 11h of simulation time, while it takes between 14h and 22h of simulation for
DFAC to reach the same threshold. Moreover, the yaws during the IDFAC experiments exhibit
less oscillation during exploration, as can be seen on Fig. 1b. We then extend the imitation
approach to a range of wind directions. We use a time series with a turbulence intensity of
8%. Its wind velocity is always centered around 8m/s, while the wind direction varies between
two averages in steps of 50ks, that is approximately 14h. The first mean is 270° from the NW,
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Figure 1: Performance of the DFAC and imitation-based DFAC (IDFAC) algorithms on the
3-turbines layout case simulated on FAST.Farm with stationary turbulent wind. 1h average of
total power output (a) and yaws during the first experiment of each algorithm (b) on 56h of
simulation.
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Figure 2: Performance of the DFAC and imitation-based DFAC (IDFAC) algorithms on the
wind farm of the 3-turbines layout case, simulated on FAST.Farm under turbulent wind.

the direction aligned with the turbines row that corresponds to the most important wake. The
second mean is 244°, a direction that causes no wake effect for the turbine row, and under
which the optimal strategy is simply the greedy one. The step wind direction profile is shown
on Fig. 2a, with its mean and standard deviation measured over 10 minutes. We expect a good
online learning method to maintain the greedy strategy where it is optimal, and still recover
from modeling errors to find the optimal yaws elsewhere. The result of running IDFAC in this
experiment is shown on Fig. 2. As expected, IDFAC maintains the greedy yaws under the
244° step. Under 270°, it first explores around the LUT yaws during the first wind direction
period period (28h of simulated time), and then reaches an increase of 19.23% over the greedy
strategy and of 1.6% over the LUT by the second wind direction period (56h simulated time).
Importantly, power production under IDFAC never falls below the LUT threshold that was used
to initialize it. It only progressively increases over the baseline as the algorithm explores and
learns to recover from model errors.

6. Conclusion
Integrating knowledge from wind farm models with decentralized RL methods is a promising
way to design fast and adaptive algorithms, that can learn optimal wake steering strategies in
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the field. To achieve this, we propose to exploit an imitation-based approach that can exploit
steady-state models to derive initialization policies, and then refine them online. We validate it
in two experiments on the FAST.Farm simulator: our approach accelerates learning compared
to RL-only algorithms and is able to recover from model errors online even under varying wind
conditions. Although our experiments on FAST.Farm under turbulent wind are good proxies
for real environments, our results will need to be validated in Large Eddy Simulations (LES).
Moreover, a LUT derived from a single steady-state model was used to create the training
imitation dataset. Instead, learning offline from several models could guide us towards more
robust policies, and such an approach could draw from the rich RL literature on learning from
expert demonstrations [33].
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