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A B S T R A C T

Local authorities actively advocate for cycling as a pivotal mode to shift urban transportation towards greater
sustainability. Weather significantly influences bicycle traffic and may hinder the spread of bicycle adoption,
potentially limiting its impact to mitigate climate change. Likewise, rising temperatures and extreme weather
events are anticipated to influence mobility patterns. To better understand the complex effects of weather
on bicycle traffic, an explainable artificial intelligence analysis is carried out on four territories in France.
Employing a neural network, we model the effects of weather conditions and control variables (e.g., pollution)
on bicycle traffic. Subsequently, we examine the marginal effects of each variable using Accumulated Local
Effects plots. Based on this analysis, we formulate a nonlinear model with seasonal autoregressive with moving-
average errors. This analytical model encapsulates new equations describing the effects of weather conditions
on bicycle traffic. The methodology combines the ability of black-box model to capture complex nonlinear
relationships without prior assumptions, with the transparency and generalization capabilities of analytical
models. It also highlights the asymmetric sensitivity of bicycle traffic to humidity, with humid conditions
being more deterrent than dry conditions. Statistical analysis reveals that atmospheric pressure is significantly
correlated to bicycle traffic, whereas air quality does not demonstrate notable effects, contrary to observations
in other territories.
1. Introduction

The adoption and promotion of active travel modes as a viable
alternative to motorized vehicles emerge as a sustainable strategy to
shift urban transport systems towards greater sustainability. Cycling
provides substantial environmental benefits and helps mitigate climate
change. An increase in overall bicycle usage results in improved air
quality and a reduction in green-house gas (Huang et al., 2022; Keall
et al., 2018; McQueen et al., 2020). In addition to its environmental
footprint being one of the lowest of all transportation modes (Sinha
et al., 2019), its adoption also contributes to reducing car traffic conges-
tion (Bergström and Magnusson, 2003; Hamilton and Wichman, 2018).
Further benefits include better physical and mental health. Cycling is
associated with improved cardiovascular risk factor levels and post-
prandial blood sugar uptake and reduced chronic disease risk (Garrard
et al., 2012; Huy et al., 2008; Oja et al., 2011). It also contributes to
positive mood, life satisfaction and an amelioration of clinical symp-
toms of people suffering from schizophrenia (Kaplan et al., 2019; Ma
et al., 2021; Ryu et al., 2020). Taking all factors into consideration,
alongside its economic benefits (Blondiau et al., 2016), the popularity
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of cycling is witnessing a consistent growth (as shown in this article
from 2021 to 2022, see Section 3.1.1 Bicycle traffic data).

Adverse weather conditions, such as heavy rains, significantly affect
bicycle traffic and demand (Bean et al., 2021; Noland, 2021; Petrović
et al., 2020). This can result in the postponement, redirection, or even
cancellation of bicycle trips (Singhal et al., 2014), leading to decreased
travel activity. Consequently, weather conditions explain a large part
of the daily fluctuation in bicycle traffic.

The diversity of data available, including surveys, counters, GPS
tracks and bicycle-sharing systems’ statuses (Willberg et al., 2021),
is a rich basis for empowering local authorities with bicycle traffic
understanding. Traditional methodologies have assumed linear depen-
dencies in weather components (Chibwe et al., 2021; Kutela and Teng,
2019). These studies have shown the substantial effect of weather
on bicycle traffic. Yet, the hypothesis of linear dependencies is too
restrictive to fully capture the dynamics at stake (Wang et al., 2022).
For example, temperature has a positive effect on bicycle traffic up to
a certain temperature threshold, beyond which conditions become too
vailable online 23 May 2024
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warm for cycling to be comfortable and traffic decreases (Nosal and
Miranda-Moreno, 2014; Pazdan et al., 2021; Wessel, 2020).

Several studies have tried to define the nature of the nonlinear
effects of weather on bicycle traffic and demand (Nosal and Miranda-
Moreno, 2014; Wang et al., 2022; Thomas et al., 2013). Methodologies
consist in two types: either illuminating black-box models using ex-
plainable artificial intelligence techniques (Wang et al., 2022; Zhou
et al., 2023), or defining an analytical model based on functions within
a predefined constrained function space (Nosal and Miranda-Moreno,
2014; Thomas et al., 2013; Wessel, 2020). However, the former faces
overfitting issues and limited control over the model while the latter
suffers from the arbitrary choices made in the definition of the function
space. We argue that combining both methodologies allows to leverage
their respective strengths while mitigating their weaknesses. As such,
we define a novel analytical model whose relationships are derived
from a preliminary explainable artificial intelligence analysis.

The present study introduces a novel surrogate nonlinear model
with seasonal autoregressive moving-average errors to analyze the
influence of weather on bicycle traffic. In addition to the revised
equations, contributions include the identification of the asymmetric
impact of humidity on bicycle traffic, the establishment of the statistical
significance of pressure in relation to bicycle traffic, and the revelation
that air quality has no impact in France. Section 2 provides a literature
review of the temporal variability of bicycle traffic, focusing on weather
variables, calendar dynamics and methodological points. Section 3
outlines the sources of bicycle traffic, weather, calendar, and air quality
data, along with the presentation of the nonlinear model featuring
seasonal autoregressive and moving average components. Section 4
encompasses a detailed Accumulated Local Effects analysis and a formal
description of the resulting model. A comprehensive discussion of the
results is provided, followed by the conclusion in Section 5.

2. Literature review

Bicycle traffic varies both temporally (Hong et al., 2022; Pazdan
et al., 2021; Wang et al., 2022) and spatially (Brown et al., 2022;
Cervero and Duncan, 2003; Nelson et al., 2023). Spatial variations are
notably due to the heterogeneity in the built environment (e.g., dis-
tance to a leisure center or shopping mall) or bicycle infrastructures
(e.g., distance to a bicycle-sharing station). In this study, we will focus
solely on the temporal dependencies of bicycle traffic.

2.1. The impact of weather on bicycle traffic

Bicycle traffic is subject to many exogenous dependencies, making it
hard to follow on a daily time scale. Weather conditions are the most
well-established factors known to strongly influence cycling patterns,
may they be perceived or forecasted (Heinen et al., 2010; Wessel,
2020). Among them, temperature (referring to ambient temperature),
precipitation, wind speed and humidity significatively impact bicy-
cle traffic. Table 1 summarizes the variables that influence cycling
identified in the literature.

Temperature, often substituted by thermal comfort indices (Bean
et al., 2021; Phung and Rose, 2007; Sathishkumar and Cho, 2020),
exhibits a U-shaped relationship with cycling (Nosal and Miranda-
Moreno, 2014; Pazdan et al., 2021; Wessel, 2020). As temperatures rise
from low to moderate levels, traffic tends to increase, but beyond a
certain threshold (e.g., 25 ◦C in Cracow, Poland (Pazdan et al., 2021)),
xtreme heat actually decreases traffic volume. This relationship is
ften captured using a second-order polynomial function.

Similarly, precipitation play a crucial role in determining bicycle
raffic. Heavier rain tends to reduce traffic (Hong et al., 2022; Kim,
020; Noland, 2021), yet the impact varies nonlinearly (e.g., as de-
cribed by a power function). The effect diminishes as precipitation
2

ntensity increases (Thomas et al., 2009, 2013; Kim, 2020). l
Wind speed also influences cycling dynamics, with high winds re-
ucing manoeuvrability and traffic volume (Hong et al., 2022; Morton,
020; Wessel, 2020). The relationship between wind speed and bicycle
raffic is not linear either. Instead, it is often modeled using power
unctions (Thomas et al., 2009, 2013) or staircase function approxima-
ions (Phung and Rose, 2007) that capture the increasing strength of
ind’s impact on traffic as wind speed rises.

Furthermore, studies have identified a negative association between
umidity and bicycle traffic (Noland, 2021; Chibwe et al., 2021; Wes-
el, 2020), although recent findings from Zhou et al. (2023) suggest a
on-trivial relationship, with cycling potentially increasing at interme-
iate humidity levels before decreasing at higher levels. It is important
o note that this interpretation is based on a Gradient Boosting Decision
ree and as such might be biased due to overfitting issues (Cui et al.,
023).

Delving further, daylight hours have a positive effect on cycling
Phung and Rose, 2007; Thomas et al., 2009, 2013). Yet, these con-
lusions must be taken cautiously as daylight hours are substantially
orrelated to temperature. Other weather variables little studied in the
iterature are snow fall (Kutela and Teng, 2019; Sathishkumar and Cho,
020; Wessel, 2020), visibility (Kutela and Teng, 2019; Yang et al.,
016; Sathishkumar and Cho, 2020), thunder (Kutela and Teng, 2019),
nd dew point (Sathishkumar and Cho, 2020).

.2. Other variables influencing bicycle traffic

Factors related to calendar dynamics play an influencing role in
icycle traffic. Mobility patterns and a fortiori cycling patterns change
ased on the day of the week (Galich et al., 2021; Noland, 2021; Yang
t al., 2016) which is sometimes modeled by more general categories:
eekday and weekend (Bean et al., 2021; Chibwe et al., 2021; Pazdan
t al., 2021). Additionally, the presence of holidays is significant in
haping daily bicycle traffic (Galich et al., 2021; Noland, 2021; Pazdan
t al., 2021). For instance, Kutela and Teng (2019) have demonstrated a
.777 times reduction in daily bicycle-share trips within U.S. university
ampuses during public holidays.

Furthermore, a crucial aspect of daily bicycle traffic variance lies
n its lagging effect (Galich et al., 2021; Morton, 2020; Noland, 2021).
ycling patterns are not solely determined by current conditions but
lso by past traffic. In that respect, research conducted by Hong et al.
2022) have showed that bicycle traffic in Seoul is dependent on its
ast two days.

At the same time, short and long-term exposure to air pollution is
major issue causing serious health problems (Kampa and Castanas,

008). Yet, cyclists are more exposed to air pollution compared to mo-
orized vehicles drivers or public transport passengers (Apparicio et al.,
018; Borghi et al., 2021). To tackle the situation, public authorities
nd private actors have set tools to inform the general public. Several
tudies conducted mostly in Asia have showed that air pollution affects
ycling in cities suffering from high levels of pollution like Seoul or
eijing (Hong et al., 2022; Kim, 2020; Wang et al., 2022). Yet, research
emains scarce in Europe, with inconclusive results in London (Morton,
020).

.3. Modeling approaches and gap analysis

Historically, studies investigating bicycle traffic dynamics have pre-
ominantly relied on linear assumptions (Brandenburg et al., 2004;
im, 2020), often employing generalized linear models such as linear
egression, Poisson regression or negative binomial regression to ana-
yze the relationships with weather. Some studies have extended these
odels by introducing autoregression and moving-average components

o account for the lagging effects observed in bicycle traffic (Hong et al.,
022; Morton, 2020; Nosal and Miranda-Moreno, 2014).

However, as real-world travel patterns do not respect the linear
ypothesis, studies have defined nonlinear dependencies within ana-

ytical models (Nosal and Miranda-Moreno, 2014; Thomas et al., 2013;
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Table 1
Variables with a temporal impact on cycling.
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1999 Nankervis + + +
2004 Brandenburg et al. + +
2007 Phung and Rose + + + + + +
2009 Borgnat et al. + + + + +
2009 Thomas et al. + + + + +
2013 Thomas et al. + + + + + + +
2014 Corcoran et al. + + + + +
2014 Nosal and

Miranda-Moreno
+ + + + + +

2016 Yang et al. + + + + + + +
2018 Zhao et al. + + + + + + +
2019 Ashqar et al. + +
2019 Kutela and Teng + + + + + + +
2020 Kim + + + + + +
2020 Morton + + + + + + + +
2020 Sathishkumar and Cho + + + + + + + + + + + +
2020 Wessel + + + + + + + +
2021 Bean et al. + + +
2021 Bédécarrats + +
2021 Chibwe et al. + + + + + +
2021 Galich et al. + + + + + +
2021 Noland + + + + + + +
2021 Pazdan et al. + + + +
2022 Hong et al. + + + + + +
2022 Wang et al. + + + + +
2023 Zhou et al. + + +
Wessel, 2020). While these models offer valuable insights, they rely
on predefined assumptions about the nature of these relationships,
introducing potential biases.

In response, recent studies have turned to black-box models capable
of capturing complex, nonlinear interactions without imposing a priori
assumptions. These models can be interpreted using explainable artifi-
cial intelligence techniques. For instance, Wang et al. (2022) and Zhou
et al. (2023) have resorted to Partial Dependence Plots (Friedman,
2001) and Individual Conditional Expectation (Goldstein et al., 2015)
to visualize the marginal effects of weather components captured by
their respective models. Nonetheless, these approaches have sometimes
yielded inconsistent conclusions with existing literature (e.g., overall
negative effect of temperature on cycling in Wang et al. (2022)) or en-
countered overfitting issues which cannot be controlled, necessitating
cautious interpretation of results.

To address these challenges, we propose leveraging the strengths of
both approaches. To minimize reliance on strong a priori assumptions,
we will first conduct an explainable artificial analysis using Accumu-
lated Local Effects (ALE). ALE addresses the limitations of techniques
like Partial Dependence Plot as it is designed to be robust to slightly
correlated features. Additionally, to address issues concerning model
control and the risk of overfitting, we will construct a surrogate analyt-
ical model based on insights gained from the prior explainable artificial
intelligence analysis.

3. Method and data

3.1. Data description

We focus on four territories across four different regions in France:
the Paris metropolis (Île-de-France), the Lyon metropolis (Auvergne-
Rhône-Alpes), Nantes (Pays de la Loire) and Tours (Centre-Val de
Loire). With Nantes, Tours, and Lyon respectively ranked as the 5th,
3

6th and 7th most cycling-friendly big cities in France and Paris fol-
lowing in the 12th spot,1 all cities share a common ambition to put
cycling at the forefront. However, they differ in size. On the one
hand, with a population of 7 094 649 inhabitants and 1 416 545
inhabitants, the metropolitan areas of Paris and Lyon rank respectively
as the first and third most populated areas in France. On the other
hand, though important at French level, the populations of Nantes and
Tours are more modest, with respectively 320 732 inhabitants and
137 850 inhabitants. Characterized by an oceanic climate, all these
territories undergo frequent light rainfall over the year, fluctuating
weather conditions and a few extreme temperatures in summer and
winter.

In the following section, we introduce the data of interest. All the
variables investigated in this study are described in Table 3.

3.1.1. Bicycle traffic data
The present study uses bicycle counter data from Eco-Counter APIs

and the Open Data portals of the respective territories. Automatic
bicycle counters are devices settled to special locations that accu-
rately count the number of bicycle crossings while ignoring other
vehicles, whether motorized or not. Various types exist, including
the widespread inductive loops which are located on the ground and
differentiate bicycle from other transport modes based on their electro-
magnetic signals.

We focus on daily data from January 1, 2021, to December 31,
2022, following the initiation of COVID-19 vaccination in France.
Counters with missing or null data are excluded, leaving 116 counters
remaining in the Paris metropolis, 62 counters in the Lyon metropolis,
34 counters in Nantes and 10 counters in Tours, for a total of 222
counters. The distributions of the counters across each territory are
represented on Fig. 1. Note that counters may be located on the same
street and therefore not be distinguishable on the maps.

1 https://barometre.parlons-velo.fr/2021/

https://barometre.parlons-velo.fr/2021/
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Fig. 1. Map of the permanent counters selected for the study.
To put the representativeness of the data in perspective, the 57
counters within the borders of the city of Paris captured on average 144
420 crossings each day between 2021 and 2022. As a reference, Ile-
de-France Mobilités, OMNIL, DRIEAT (2020) estimated that 310 000
bicycle trips were made in Paris in 2018 on a typical day by people
older than 6-years-old. If well-placed and in sufficient number, ground
counters therefore reach a substantial part of daily trips made in an
urban context.

The increasing popularity of bicycles as a transportation mode (see
Fig. 2) implies non stationarity issues. Indeed, when comparing the
same day of each year between 2021 and 2022, there was a 32%
mean growth of bicycle traffic in the Paris metropolis, a 27% mean
growth in the Lyon metropolis, a 28% mean growth in Nantes and
31% mean growth in Tours (see Fig. 2). To account for this long-term
phenomenon, daily bicycle traffic is normalized by its trend, which is
assumed linear.

3.1.2. Weather and calendar data
The World Meteorological Organization is a world reference in

terms of meteorological observation. It has a network of over 10 000
surface weather stations worldwide, including 62 in France. Measure-
ments of multiple variables are made every three hours: temperature,
precipitation, wind speed, humidity, snow fall, nebulosity, pressure,
dew point, visibility. For each territory, the data of the closest station is
scraped and aggregated. All variables are averaged daily except for pre-
cipitation and snow fall for which we take the maximum and visibility
for which we take the minimum. Precipitation, snow fall and degraded
visibility are indeed characterized by short-term events. By considering
the extrema (maximum or minimum), we avoid overlooking adverse
conditions that might occur for only a fraction of the day and would
be smoothed out by the mean. Daily daylight hours are added based on
sunset time and sunrise time inferred from a high-precision astronomy
4

computations package (PyEphem). It is worth mentioning that temper-
ature is considered rather than apparent temperature or other thermal
comfort index for simplicity and interpretability reasons.

Calendar events are induced from the official French holiday calen-
dar. Each holiday, event or day of the week is represented as a Boolean.
To be noted, Monday is not included in the exogenous variables to set
a reference to measure the effects of the other days of the week.

3.1.3. Air quality data
In France, the approved air quality monitoring associations

(AASQA) compute and publish each day an air quality index called the
ATMO index. Similar to the European Air Quality Index,2 it considers
5 pollutants separately (while neglecting their joint effects): ozone
(O3), nitrogen dioxide (NO2), sulfur dioxide (SO2) and particulates
matter (PM10 and PM2.5). Each pollutant is assigned a rating based
on threshold values. The worst rating defines the ATMO index.

Local data are provided by regional agencies with varying norms
of display. The estimated ATMO index is directly provided in Tours
and Nantes. Conversely, it must be computed in the Lyon and Paris
metropolitan areas given the hourly pollutants levels publicly available.
To be noted, due to the low concentrations observed in the Paris
metropolis, air quality for SO2 is not provided and is always consid-
ered ‘‘Good’’.3 Similarly, as the pollutant is also missing in the Lyon
metropolis, we generalize this hypothesis to this territory.

3.1.4. Feature selection
To avoid multicollinearity issues, weather variables are selected

based on a Normalized Mutual Information (NMI) criterion. Let 𝑋
and 𝑌 be two variables, MI the function of mutual information that

2 https://airindex.eea.europa.eu/Map/AQI/Viewer/
3 https://www.airparif.asso.fr/surveiller-la-pollution/la-prevision

https://airindex.eea.europa.eu/Map/AQI/Viewer/
https://www.airparif.asso.fr/surveiller-la-pollution/la-prevision
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Fig. 2. Time series of bicycle traffic daily median across counters.
Table 2
Normalized Mutual Information between non-Boolean exogenous variables.
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Temperature 1 0.009 0.003 0.048 0.002 𝟎.𝟎𝟗𝟏 0.027 0.022 𝟎.𝟏𝟑𝟕 0.009 0.020
Precipitation 1 0.013 0.040 0.000 0.010 0.045 0.027 0.014 0.017 0.009
Wind speed 1 0.002 0.000 0.008 0.005 0.011 0.004 0.001 0.009
Humidity 1 0.001 𝟎.𝟎𝟓𝟕 𝟎.𝟎𝟕𝟑 𝟎.𝟎𝟓𝟑 0.010 0.004 0.011
Snow fall 1 0.000 0.000 0.000 0.002 0.000 0.000
Daylight hours 1 0.030 0.029 𝟎.𝟎𝟓𝟓 0.015 0.012
Nebulosity 1 0.033 0.004 0.010 0.010
Visibility 1 0.004 0.015 0.020
Dew Point 1 0.012 0.010
Pressure 1 0.014
Air quality 1
quantifies the amount of information shared between 𝑋 and 𝑌 , and H
the entropy:

NMI(𝑋, 𝑌 ) =
2MI(𝑋, 𝑌 )

H(𝑋) + H(𝑌 )
. (1)

The strength of the Normalized Mutual Information compared to the
Pearson Correlation is that it is not bounded to linear associations. The
5

score is equal to zero if and only if two variables are independent. A
score of 1 means perfect correlation.

Table 2 shows the NMI values for the different continuous variables
across all territories. Exogenous features with NMI strictly higher than
0.050 are excluded. Daylight hours are correlated to temperature and

humidity, nebulosity to humidity and dew point to temperature. As
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Table 3
Descriptive statistics of the data.

Paris metropolis Lyon metropolis Nantes Tours Unit

𝑥 𝜎(𝑥) 𝑥 𝜎(𝑥) 𝑥 𝜎(𝑥) 𝑥 𝜎(𝑥)

Dependant variable
Daily bicycle traffic (𝑞) 850 313 1021 338 557 235 384 141 crossings/day
Independent variables
Temperature (𝑇 ) 12.76 6.72 13.40 7.69 13.25 6.25 12.86 6.69 ◦C
Precipitation (𝑅) 1.10 2.94 1.35 3.54 1.12 2.71 0.96 2.13 mm
Humidity (ℎ) 73.81 14.14 71.11 14.67 76.57 13.32 75.87 13.88 %
Wind speed (𝑊 ) 3.54 1.42 3.51 1.71 3.54 1.41 3.45 1.38 m/s
Snow fall (𝑆) 0.14 1.96 0.47 4.81 0.01 0.37 – – mm
Pressure (𝑃 ) 100 710 825 98 978 674 101 462 918 100 446 925 Pa

Ntrue Ntrue Ntrue Ntrue

Control variables
Degraded air quality 58 84 32 27 Boolean
Tuesday 104 104 104 104 Boolean
Wednesday 104 104 104 104 Boolean
Thursday 104 104 104 104 Boolean
Friday 105 105 105 105 Boolean
Saturday 105 105 105 105 Boolean
Sunday 104 104 104 104 Boolean
Public holidays 16 17 16 16 Boolean
All Saints’ holidays 32 32 32 32 Boolean
Christmas holidays 34 34 34 34 Boolean
Winter holidays 32 32 32 32 Boolean
Spring holidays 32 32 32 32 Boolean
Summer holidays 113 113 113 113 Boolean
a

𝑞

g
A
a
a
a
l
t
F
t

a
C
g

4

4

a
l
d
r

temperature and humidity are two of the most well-established vari-
ables in the literature, dew point, nebulosity, visibility, and daylight
hours are excluded.

To ensure substantial data coverage across all territories, we con-
vert the air quality variable (ATMO index) into one Boolean variable
that indicates whether it falls under degraded to extremely degraded
conditions. Table 3 illustrates that the metropolitan area of Lyon ex-
periences more frequent days with degraded air quality. Notably, the
table also demonstrates that all four territories share a similar climate,
as previously stated. However, Lyon stands out due to its notably lower
atmospheric pressure, which can be attributed to its higher altitude. It
is worth noting that Lyon also consistently records the highest average
number of daily detected cyclists.

3.2. Methodology and model description

First, we conduct an explainable artificial intelligence analysis. In
order not to overburden the task and avoid overfitting, the analysis
focuses on a territorial-level aggregation of bicycle traffic. The median
daily bicycle traffic across counters is chosen due to its robustness
against potential outliers (e.g., technical issues).

To capture the nature of the dependencies within each territory
effectively, we fit fully connected neural networks for each aggre-
gated bicycle traffic time series. These neural networks, known as
universal approximators, hold significant relevance as they can capture
complex nonlinear dependencies (Hornik, 1991; Hornik et al., 1989).
Hyperparameter tuning is conducted using grid search with hidden
layer sizes ranging from 16 to 128 neurons across up to 3 layers.
Activation is uniformly set to hyperbolic tangent, with a regularization
strength of 0.05 and the Adam solver. Subsequently, we examine the
insights gained from the models. Specifically, we illustrate how weather
variables influence the prediction of bicycle traffic using ALE plots.

Secondly, we design a surrogate analytical model based on the
insights derived from the ALE plots. The model adopts a nonlinear
structure with seasonal autoregressive with moving average (SARMA)
errors to account for the lagging effect phenomenon. We test a range
of potential relationship functions for each weather component, as
6

inferred from the ALE analysis. The bicycle traffic 𝑞𝑙,𝑡 at location 𝑙 and m
day 𝑡, from which we remove its linear trend 𝑞trend𝑙,𝑡 , is described by the
following equation:
𝑞𝑙,𝑡
𝑞trend𝑙,𝑡

=
∑

𝑖
f𝑋𝑖,𝑙

(𝑋𝑖,𝑙,𝑡) + 𝜀𝑙,𝑡 (2)

with 𝜀𝑙,𝑡 defined as a SARMA error:

𝜀𝑙,𝑡 = 𝛼AR,𝑙 𝜀𝑙,[[𝑡−𝑝,𝑡−1]]+𝛼SAR,𝑙 𝜀𝑙,𝑡−𝑆[[𝑃 ,1]]+𝛼MA 𝜁𝑙,[[𝑡−𝑞,𝑡−1]]+𝛼SMA,𝑙 𝜁𝑙,[𝑡−𝑆[𝑄,1]]

(3)

nd 𝑞trend𝑙,𝑡 as a linear trend :

trend
𝑙,𝑡 = 𝛼trend,𝑙 𝑡 + 𝛽trend,𝑙 . (4)

𝑋𝑙,𝑡 represents the matrix of exogenous dependencies, 𝑝 the autore-
ressive (AR) order, 𝑞 the moving average (MA) order, 𝑃 the seasonal
R order, 𝑄 the seasonal MA order. The period 𝑆 is set to 7 days to
ccount for the weekly seasonality. Each function f𝑋𝑖,𝑙

represent the sep-
rate effect of the exogenous variable 𝑋𝑖,𝑙 on 𝑞𝑙. The coefficient vectors
ssociated with the AR, seasonal AR, MA, and seasonal MA terms at
ocation 𝑙 are denoted as 𝛼AR,𝑙 , 𝛼SAR,𝑙 , 𝛼MA,𝑙 and 𝛼SMA,𝑙 respectively. The
ime series of the final error term at location 𝑙 is represented as (𝜁𝑙,𝑡)𝑡.
urthermore, 𝛼𝑡𝑟𝑒𝑛𝑑,𝑙 and 𝛽𝑡𝑟𝑒𝑛𝑑,𝑙 respectively denote the coefficient and
he intercept of the linear trend at location 𝑙.

All combinations of functions f𝑋𝑖,𝑙
defined during the ALE analysis

re tested. The best model is selected based on Bayesian Information
riterion (BIC), quantifying the trade-off between performance and
eneralization in a non-time-consuming way.

. Results and discussion

.1. Accumulated Local Effects analysis

Fig. 3 presents the results of the explainable artificial intelligence
nalysis. Out-of-sample performance is evaluated using Median Abso-
ute Percentage Error (MAPE) as it is robust to outliers that may occur
ue to technical issues. The fully connected neural networks show a
espective MAPE of 9.08% in the Paris metropolis, 9.99% in the Lyon
etropolis, 11.67% in Nantes, and 9.60% in Tours. The effects of the
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weather variables on bicycle traffic can be described as follows:

• As established in the literature, the ALE plots illustrate the U-
shaped effect of temperature on cycling. Extreme temperatures,
whether excessively high or exceedingly low, deter people from
cycling. Ideal temperature for riding, defined as the temperature
maximizing bicycle traffic, consistently falls within the range of
19 ◦C and 25 ◦C across all four territories.

• Precipitation are negatively correlated with cycling. The de-
crease of bicycle traffic with precipitation exhibits a breaking
point under 5 or 10 mm that segments it into two parts. Yet,
caution should be taken when interpreting these second parts as
they might be due to overfitting issues (precipitation stronger
than 10 mm being uncommon).

• As suggested by Zhou et al. (2023), humidity exhibits a U-
shaped relationship with bicycle traffic. This result contradicts
the statements of Noland (2021), Nosal and Miranda-Moreno
(2014) and Wessel (2020) that cycling decreases linearly with
humidity. Furthermore, we observe that the relationship is asym-
metric. Very humid or very dry conditions discourage people
from traveling by bicycle, with humid environments being the
most deterrent. Ideal humidity for riding ranges from 40 to 80%
depending on the territory.

• Wind speed contributes negatively to cycling. Its effect is modest
up to 4 to 5.5 m/s, beyond which it becomes significantly adverse.
This suggests that bicycle traffic is substantially influenced not by
gentle breezes but rather gusty winds.

• Like temperature, pressure has a bell-shaped effect on cycling.
Its effect reaches a plateau for low values rather than keeping
on decreasing. Atmospheric pressure is associated with weather
stability. The higher the pressure, the more stable the weather
conditions, the more bicycle traffic there is. However, its effect is
mitigated if its values get too high. This may be due to indirect
effects of high pressure not captured by the separate effects of the
other weather variables.

• Bicycle traffic decreases with snow fall. Nonetheless, the inten-
sity of its influence is weak. In the next steps, its significance will
be tested.

Despite consistent trends across the four territories, local differ-
nces remain apparent. This observation aligns with the conclusions
rawn by Bean et al. (2021), which conducted a comparative study
f forty cities across different climate zones. Their findings suggest
hat while the main conclusions regarding bicycle-share use generalize
eographically, sensitivity to external constraints may vary.

Temperature and precipitation emerge as the most influential
eather variables on cycling, contrasting with snow fall and pressure,
hich exhibit lesser impact. The results regarding temperature, wind

peed, and snowfall are consistent with existing literature. As men-
ioned, our analysis also reveals new insights regarding precipitation,
umidity, and pressure. These conclusions will undergo further scrutiny
uring the development of the analytical model in the next section.

.2. Formal definition of the model

In this section, we develop an analytical model based on obser-
ations from the ALE analysis. We explore various combinations of
onlinear functions to describe the effects of each weather variable on
icycle traffic. The best combination is selected based on BIC.

Appendix A provides the details of all functions examined for cap-
uring the relationships between weather components and cycling. As
emonstrated in the previous section, temperature, humidity and pres-
ure exhibit a U-shaped or bell-shaped relationship with bicycle traffic.
iven the asymmetry in humidity’s relationship with bicycle traffic, we

ncorporate functions in the test set to account for this potentiality.
7

onversely, the remaining weather variables, precipitation, wind speed
nd snow fall, are negatively correlated with bicycle traffic to different
xtent. Snow fall display a clear linear relationship with bicycle traffic.
owever, as the shape of the impact of precipitation and wind speed

s less trivial, their influence is modeled through a power function. To
ccount for the two-sided shape of precipitation’s effect on cycling, we
ntroduce a potential breaking point.

Optimal results are described by the following equations. Let humid-
ty ℎ be replaced by 𝐻 = ℎ

100 and 𝛼𝑋 , 𝑎𝑋 , 𝑏𝑋 , 𝑋0, 𝜎𝑋 be calibratable
parameters relative to variable 𝑋.

ftemperature(𝑇 ) =
2𝛼𝑇

𝑒
𝑇−𝑇0
𝜎𝑇 + 𝑒

− 𝑇−𝑇0
𝜎𝑇

,

fprecipitation(𝑅) = 𝛼𝑅𝑅
𝑎𝑅 ,

fwind speed(𝑊 ) = 𝛼𝑊 𝑊 𝑎𝑊 ,

fhumidity(𝐻) = 𝛼𝐻𝐻𝑎𝐻−1(1 −𝐻𝑎𝐻 )𝑏𝐻−1,

fsnow fall(𝑆) = 𝛼𝑆𝑆,

fpressure(𝑃 ) =
2𝛼𝑃

𝑒
𝑃−𝑃0
𝜎𝑃 + 𝑒

− 𝑃−𝑃0
𝜎𝑃

.

(5)

The results of the calibratable parameters are included in Tables B.5
and B.6. These equations offer the following insights :

• The relationship between temperature and bicycle traffic is most
accurately represented by a hyperbolic secant function. This re-
finement goes beyond the current state-of-the-art relationship,
which relies on a second-order polynomial function (Nosal and
Miranda-Moreno, 2014; Pazdan et al., 2021; Wessel, 2020). The
hyperbolic secant function offers improved fitting for extreme
temperature values, addressing the limitations of the polynomial
function. Unlike a polynomial function, the hyperbolic secant
does not predict an indefinite decrease in bicycle traffic with
temperature, as it tends towards 0 asymptotically. This aspect
is particularly crucial in the context of climate change, where
extreme temperature events are expected to occur increasingly
frequently.

• The series of test demonstrate that the relationship between pre-
cipitation and bicycle traffic exhibit no breaking point. This
underscores the importance of not solely relying on explainable
artificial intelligence and the potential risk of overfitting with
black-box models. In this context, employing posterior tests to
construct an analytical model helps rectify overfitting issues,
thereby improving the model’s generalizability.

• The impact of humidity is characterized by a Kumaraswamy
density distribution function, validating the visual hypothesis of
its asymmetry. Specifically, bicycle traffic demonstrates higher
sensitivity to humid conditions compared to dry conditions.

• Like temperature, pressure display a bell-shaped relationship
with bicycle traffic described by a hyperbolic secant.

• Wind speed and snow fall contribute negatively to cycling, con-
sistently with what has been observed in the existing literature.

Furthermore, optimal lagging parameters from Eq. (3) are found
for :
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝 = 1

𝑞 = 0

𝑃 = 1

𝑄 = 1.

(6)

This means that bicycle traffic is dependent of the traffic of the
previous day and week. In other words, people tend to plan their means
of transportation based on the traffic of the previous day and of the
same day of the past week. This is confirmed as we fail to reject the
null hypothesis of the Ljung–Box test in all cases. Therefore, there is no
evidence autocorrelation in the residuals which supports the relevance
of the parameters.



Journal of Cycling and Micromobility Research 2 (2024) 100031A. Lanvin et al.

c
p
i
n
h
t
a
T
P
l
6

Fig. 3. Accumulated Local Effects plots.
Table 4
Parameter estimation.

Paris metropolis Lyon metropolis Nantes Tours

R2 MAPE R2 MAPE R2 MAPE R2 MAPE

Linear regression 77.96% 12.18% 72.88% 13.21% 76.67% 15.80% 76.79% 12.23%
Negative binomial regression 78.62% 10.87% 72.72% 11.04% 79.95% 13.20% 74.38% 11.10%
Linear regression with SARMA errors 85.66% 9.25% 81.39% 10.74% 87.14% 10.83% 81.54% 8.44%
Surrogate nonlinear model with SARMA errors 87.42% 8.63% 83.54% 9.53% 87.96% 8.98% 84.93% 8.00%
Considering the revised equations, the analytical model outperforms
lassical linear models in terms of goodness of fit and out-of-sample
erformance across the four studied territories (Table 4). By delving
nto optimal combinations, we can determine the most relevant set of
onlinear relationships between cycling and weather variables. Table 4
ighlights the importance of considering nonlinear relationships rather
han linear relationships. To be noted, Table 4 demonstrates that linear
pproximation offers a satisfactory balance in terms of performance.
his is intuitive, as, for example, more than 80% of days in the
aris metropolitan area have mean temperatures below 20 ◦C, while
ikewise, more than 80% of days have mean humidity levels above
8

0%. This implies that in the majority of cases, we are primarily
concerned with the monotonic part of the relationships. Nonetheless,
nonlinear relationships lead to performance enhancements. Depending
on the specific use case, achieving a good fit for adverse conditions
may be crucial (e.g., in scenarios related to climate change projections
or anomaly detection).

4.3. Discussion

Tables B.5 and B.6 list the parameters of the models based on
territorial-level aggregations of the bicycle traffic on the one hand

and on those of each counter on the other hand. The significance
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r
of each parameter is evaluated using Bootstrap confidence intervals.
All weather parameters prove to be significant apart from snow fall.
This underscores the validity and relevance of our revised equations,
especially as statistical significance is observed consistently across all
four territories rather than restricted to one. Specifically, atmospheric
pressure is shown to be linked with bicycle traffic. Concerning snow
fall, given its rarity (e.g., there were only 5 days of snow fall during
the period of study in the Paris metropolis) and the sampling inherent
to the design of Bootstrap Confidence Intervals, we lack sufficient
information to draw definitive conclusions on its relevance.

Air quality does not show a significant effect on bicycle traffic. This
is confirmed as the median value of 𝛼degraded air quality across counter
is close to 0 for each territory. Empirical research has previously
shown that the health benefits of cycling outweigh the risks due to air
pollution in most urban environments (Tainio et al., 2016). It therefore
appears that air quality neither deters nor encourages people to cycle
in France. Although Hong et al. (2022), Kim (2020) and Wang et al.
(2022) have showed that it is statistically significant in Seoul and
Beijing, our results testify that the effects of degraded air quality on
cycling are linked to the area of observation.

Results also highlight the importance of controlling calendar dy-
namics. Bicycle traffic fluctuates meaningfully depending on the day
of the week or holiday periods. This variation could be attributed to
the more frequent participation in leisure activities during weekends
and holidays, as well as fluctuations in teleworking rates throughout
the week, which impact individuals’ activity chains and therefore com-
muting patterns. As a result, we estimate a 56% reduction of traffic on
Sundays compared to Mondays in Nantes (see Table B.6). In addition,
cycling exhibits a notable lagging effect, where traffic intensity from
preceding days influences the current day’s traffic status, as previously
discussed. These calendar effects are not second-order but rather play
a pivotal role in bicycle traffic dynamics. For that reason, it cannot be
neglected.

Overall, Tables B.5 and B.6 show that parameter estimation differs
based on the counting location while maintaining global consistency.
For most parameters, the Gini index, which quantifies the level of
dispersion on a scale from 0 to 1, indeed falls below 0.40, suggest-
ing a reasonably homogeneous spatial distribution of the parameters
despite variations. This reflects the intertwining between local and
global dynamics. Mobility strategies are defined across different tiers,
from national and regional levels to the municipal level down to the
final implementation at local street level. Different neighborhoods,
characterized by their transportation infrastructures or cultural life,
have their own local realities while still being driven by more global
decisions. Brown et al. (2022) and Nelson et al. (2023) have showed
that bicycle traffic varies spatially. So does its dynamics. Despite this
variability, the coherence of the results thus suggests shared principles
that transcend local boundaries.

5. Conclusion

To move towards greater sustainability, local authorities are orga-
nizing the transition of urban mobility to healthier modes of transport.
By making cycling a central element of their urban mobility strate-
gies, local authorities can simultaneously address health, carbon, and
security objectives, making their cities more sustainable and livable
for residents and visitors. This strategy pushes cities to install bicycle
counters within their territories, which is crucial for measuring bicycle
traffic, understanding the share of bicycle transport and promoting
cycling.

However, weather conditions significantly influence bicycle traffic,
9

causing daily variations from one day to another. In this study, we
examined the nonlinear relationships between bicycle traffic and weathe
conditions while controlling for the effects of the day of the week,
holidays, lagging effects, and air quality in four territories: the Paris
metropolis, the Lyon metropolis, Nantes, and Tours.

We proceeded with the following methodology. First, we processed
and aggregated data from bicycle counters. Second, exogenous fea-
tures were carefully chosen to avoid multicollinearity issues. Third, we
trained, for each territory, a fully connected neural network, known to
be a universal approximator. Fourth, we observed what the model had
learned using Accumulated Local Effects plots. Fifth, given the visual
inspection of the ALE plots, we defined a set of reasonable relationship
shapes and tested all combinations. Sixth, using the best combination,
we formulated a nonlinear model with seasonal autoregressive with
moving-average errors.

The model encapsulates revised equations describing the effects of
weather conditions and control variables on bicycle traffic, enhancing
accuracy while maintaining the transparency of analytical models.
The analysis reveals the asymmetric sensitivity of bicycle traffic to
humidity with humid conditions proving more uncomfortable than dry
conditions. Statistical analysis also highlights the correlation between
atmospheric pressure and bicycle traffic, while air quality does not
demonstrate significant effects. This shows that, despite evidence in
Asia, particularly Seoul or Beijing, the effects of degraded air quality
on cycling are linked to the area of observation.

Given the substantial fluctuations of bicycle traffic, this work en-
ables mobility stakeholders to focus on significant variations by ‘‘nor-
malizing’’ the time series. As such, the more accurate the model,
the more relevant the normalization. Moreover, a more precise and
generalizable traffic model holds substantial importance for prospective
scenario studies on the impact of climate change on bicycle traffic.
The presence of technical issues at counting stations and potential
data biases further underscores the model’s value for post-treatment
purposes, such as data cleaning.

To draw a global picture of mobility, future research may generalize
the approach to other transportation systems and account for their
co-dependence. The approach should also involve incorporating new
regions from around the world, thus offering valuable insights into
the dynamics of modal shifts and assisting local authorities in their
efforts to transition polluting transportation modes to more sustain-
able options. Additionally, while this study primarily investigates daily
fluctuations in bicycle traffic, forthcoming work could explore the
underlying factors behind long-term variations, i.e. trends, which were
modeled using linear approximation in this study without delving into
explanatory factors.
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Appendix A. Formulas of the functions tested to build the analyt-
ical model

This section introduces all the functions tested to model the rela-
tionships of weather components with bicycle traffic. Let 𝛼𝑋 , 𝛽𝑋 , 𝑎𝑋 ,
𝑏𝑋 , 𝑋0, 𝜎𝑋 be calibratable parameters relative to variable 𝑋.

Temperature, humidity, and pressure have a U-shaped or bell-
shaped influence on bicycle traffic. To account for these nonlinear
effects, we model them using the functions based on the following :
second order polynomial function, gaussian function, hyperbolic secant,
witch of Agnesi, raised cosine density distribution function and bump
function. The four latter functions are transformed to account for
varying mean and standard deviation in the following manner 𝑥 ↦

𝛼 ⋅ f ( 𝑥−𝜇𝜎 ). The functions are presented in their derived form and might
iffer from their canonical expression.

Second order polynomial function :

↦ 𝛼𝑋𝑥
2 + 𝛽𝑋𝑥 (A.1)

Gaussian-derived function :

↦ 𝛼𝑋𝑒
− (𝑥−𝑋0)

2

2𝜎2𝑋 (A.2)

Hyperbolic secant-based function:

↦
2𝛼𝑋

𝑒
𝑥−𝑋0
𝜎𝑋 + 𝑒

− 𝑥−𝑋0
𝜎𝑋

(A.3)

Witch of Agnesi-based function:

↦
𝛼𝑋 (A.4)
10

𝑥2 + 𝛽𝑋
Bump function :

𝑥 ↦

⎧

⎪

⎨

⎪

⎩

𝛼𝑋exp(
𝛽2𝑋

(𝑥−𝑋0)2−𝛽2𝑋
) if |𝑥 −𝑋0| ⩽ 𝛽𝑋

0 otherwise.
(A.5)

Raised cosine density distribution-based function:

↦

{

𝛼𝑋 (1 + cos( 𝑥−𝑋0
𝜎𝑋

𝜋)) if |𝑥 −𝑋0| ⩽ 𝜎𝑋
0 otherwise.

(A.6)

To account for the potential asymmetry in the effect of humidity
n bicycle traffic, we resort to Beta density distribution function and
umaraswamy density distribution function. To be noted, for the latter,
umidity was replaced using its value divided by 100.

Beta density distribution-based function :

↦ 𝛼𝑋𝑥
𝑎𝑋 (100 − 𝑥)𝑏𝑋 (A.7)

Kumaraswamy density distribution-based function :

↦ 𝛼𝑋𝑥
𝑎𝑋−1(1 − 𝑥𝑎𝑋 )𝑏𝑋−1 (A.8)

The influence of precipitation and wind speed is modeled through
power function. To account for the two-sided shape of precipitation’s

ffect on cycling, we introduce a potential breaking point.
Power function :

↦ 𝛼𝑋𝑥
𝑎𝑋 (A.9)

Power function with breaking point :

↦

{

𝛼𝑋𝑥𝑎𝑋 if 𝑥 ⩽ 𝑋0
𝛽𝑋 (𝑥 −𝑋0) + 𝛼𝑋𝑋

𝑎𝑋
0 otherwise. (A.10)

Appendix B. Parameter estimation
See Tables B.5 and B.6.
Table B.5
Parameter estimation in the metropolitan areas of Paris and Lyon.

Paris metropolis Lyon metropolis

Territorial-level estimation Counter-level estimation Territorial-level estimation Counter-level estimation

Estimation 95% Bootstrap Confidence Interval Mean estimation Gini index Estimation 95% Bootstrap Confidence Interval Mean estimation Gini index

𝛼𝑇 0.68 [0.59,1.00] 0.65 0.07 0.41 [0.34,0.58] 0.55 0.21
𝑇0 21.36 [19.78,23.12] 21.36 0.04 19.61 [18.10,21.09] 20.55 0.08
𝜎𝑇 11.97 [9.91,16.48] 11.55 0.11 10.20 [7.91,13.92] 10.32 0.11
𝛼𝑅 −0.10 [−0.14,−0.07] −0.10 0.14 −0.10 [−0.14,−0.07] −0.12 0.15
𝑎𝑅 0.40 [0.31,0.50] 0.39 0.09 0.42 [0.28,0.56] 0.42 0.11
𝛼𝑊 × 103 −2.22 [−8.28, −0.28] −2.82 0.14 −0.06 [−1.93,−0.01] −1.23 0.08
𝑎𝑊 2.05 [1.53,3.10] 1.98 0.12 3.63 [2.00,4.45] 2.36 0.18
𝛼𝐻 0.70 [0.26,1.00] 0.53 0.10 0.71 [0.35,0.99] 0.67 0.15
𝑎𝐻 3.15 [1.64,4.29] 2.96 0.21 2.02 [1.01,2.79] 2.40 0.21
𝑏𝐻 3.51 [1.86,4.81] 2.80 0.22 2.39 [1.45,3.38] 2.04 0.14
𝛼𝑆 × 103 −10.01 [−48.35,−0.62] −10.31 0.12 −2.68 [−3.33,1.62] −1.89 0.14
𝛼𝑃 0.11 [0.07,0.18] 0.13 0.10 0.08 [0.02,0.14] 0.11 0.19
𝑃0 101 588 [101118,102200] 101 399 0.00 99 614 [99240,99940] 99 856 0.00
𝜎𝑃 554 [80,1306] 481 0.27 562 [60,937] 394 0.32
𝛼degraded air quality −0.01 [−0.05,0.03] −0.01 0.11 0.03 [−0.01,0.08] 0.02 0.14
𝛼tuesday 0.07 [0.03,0.12] 0.07 0.04 0.09 [0.06,0.14] 0.10 0.16
𝛼wednesday 0.03 [−0.02,0.07] 0.05 0.12 0.05 [0.00,0.10] 0.08 0.18
𝛼thursday 0.04 [−0.01,0.09] 0.06 0.11 0.09 [0.05,0.14] 0.09 0.22
𝛼f riday −0.08 [−0.12,−0.03] −0.04 0.08 −0.04 [−0.06,0.02] 0.00 0.23
𝛼saturday −0.37 [−0.42,−0.33] −0.25 0.33 −0.31 [−0.35,−0.27] −0.24 0.30
𝛼sunday −0.44 [−0.48,−0.39] −0.28 0.23 −0.29 [−0.34,−0.24] −0.23 0.38
𝛼public holidays −0.40 [−0.50,−0.26] −0.35 0.33 −0.31 [−0.41,−0.19] −0.23 0.47
𝛼All Saints’ holidays −0.20 [−0.28,−0.13] −0.16 0.14 −0.13 [−0.18,−0.07] −0.10 0.24
𝛼Christmas holidays −0.42 [−0.49,−0.33] −0.40 0.19 −0.45 [−0.51,−0.38] −0.39 0.23
𝛼Winter holidays −0.20 [−0.26,−0.12] −0.19 0.13 −0.19 [−0.24,−0.13] −0.16 0.28
𝛼Springholidays −0.12 [−0.19,−0.04] −0.10 0.20 0.00 [−0.12,0.04] −0.01 0.49
𝛼Summer holidays −0.42 [−0.47,−0.38] −0.40 0.19 −0.34 [−0.39,−0.29] −0.31 0.29
𝛼AR,1 0.48 [0.41,0.50] 0.46 0.12 0.41 [0.38,0.45] 0.42 0.18
𝛼AR,7 0.65 [0.60,0.89] 0.70 0.15 0.71 [0.63,0.96] 0.64 0.18
𝛼MA,7 −0.45 [−0.85,−0.38] −0.53 0.34 −0.52 [−0.89,−0.41] −0.47 0.29
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Table B.6
Parameter estimation in Nantes and Tours.

Nantes Tours

Territorial-level estimation Counter-level estimation Territorial-level estimation Counter-level estimation

Estimation 95% Bootstrap Confidence Interval Mean estimation Gini index Estimation 95% Bootstrap Confidence Interval Mean estimation Gini index

𝛼𝑇 0.50 [0.37,0.68] 0.44 0.15 0.55 [0.46,0.77] 0.63 0.13
𝑇0 20.88 [19.06,23.83] 23.86 0.18 19.91 [19.03,21.15] 20.80 0.02
𝜎𝑇 8.54 [5.36,12.42] 8.67 0.19 6.95 [5.57,11.60] 8.84 0.10
𝛼𝑅 −0.08 [−0.11,−0.03] −0.09 0.16 −0.08 [−0.14,−0.05] −0.10 0.25
𝑎𝑅 0.36 [0.18,0.66] 0.36 0.27 0.44 [0.23,0.62] 0.34 0.06
𝛼𝑊 × 103 −3.32 [−7.00, −0.19] −0.05 0.20 −2.70 [−9.87,−0.48] −0.06 0.22
𝑎𝑊 1.99 [1.63,3.44] 1.85 0.12 2.17 [1.56,2.94] 1.87 0.06
𝛼𝐻 0.92 [0.70,1.46] 0.98 0.19 1.02 [0.61,1.27] 0.91 0.20
𝑎𝐻 2.33 [1.51,3.83] 2.47 0.18 1.75 [0.83,2.18] 1.99 0.11
𝑏𝐻 2.03 [1.45,3.29] 2.12 0.13 2.41 [1.32,2.86] 2.13 0.06
𝛼𝑆 × 103 −9.32 [−27.32,0.00] −11.90 0.13 – – – –
𝛼𝑃 0.11 [0.07,0.22] 0.16 0.11 0.11 [0.05,0.18] 0.09 0.22
𝑃0 102 475 [102136,102824] 102 495 0.00 101 374 [100976,101805] 101 402 0.00
𝜎𝑃 583 [112,1486] 768 0.37 672 [96,1388] 638 0.19
𝛼degraded air quality −0.03 [−0.10,0.02] −0.03 0.13 0.01 [−0.11,0.04] −0.01 0.21
𝛼tuesday 0.14 [0.09,0.21] 0.18 0.24 0.13 [0.09,0.18] 0.11 0.14
𝛼wednesday 0.09 [0.03,0.14] 0.10 0.27 0.09 [0.05,0.14] 0.09 0.13
𝛼thursday 0.12 [0.07,0.18] 0.14 0.20 0.10 [0.05,0.14] 0.09 0.15
𝛼f riday −0.01 [−0.07,0.05] 0.01 0.23 −0.01 [−0.06,0.04] 0.01 0.29
𝛼saturday −0.45 [−0.50,−0.41] −0.42 0.24 −0.29 [−0.35,−0.25] −0.25 0.36
𝛼sunday −0.56 [−0.61,−0.50] −0.52 0.28 −0.25 [−0.32,−0.20] −0.22 0.48
𝛼public holidays −0.46 [−0.62,−0.31] −0.45 0.23 −0.21 [−0.30,−0.09] −0.14 0.51
𝛼All Saints’ holidays −0.24 [−0.34,−0.15] −0.22 0.14 −0.14 [−0.20,−0.06] −0.14 0.31
𝛼Christmas holidays −0.39 [−0.48,−0.33] −0.38 0.22 −0.30 [−0.37,−0.23] −0.30 0.37
𝛼Winter holidays −0.21 [−0.27,−0.17] −0.22 0.12 −0.13 [−0.20,−0.08] −0.11 0.45
𝛼Spring holidays −0.17 [−0.26,−0.08] −0.14 0.18 0.01 [−0.12,0.09] −0.05 0.50
𝛼Summer holidays −0.37 [−0.43,−0.33] −0.31 0.30 −0.21 [−0.22,−0.12] −0.12 0.68
𝛼AR,1 0.51 [0.47,0.53] 0.51 0.17 0.32 [0.31,0.36] 0.35 0.18
𝛼AR,7 0.49 [0.46,0.56] 0.53 0.19 0.88 [0.77,0.93] 0.59 0.19
𝛼MA,7 −0.15 [−0.23,−0.14] −0.31 0.18 −0.75 [−0.82,−0.59] −0.45 0.38
References

Apparicio, P., Gelb, J., Carrier, M., Mathieu, M.-È., Kingham, S., 2018. Exposure to
noise and air pollution by mode of transportation during rush hours in Montreal.
J. Transp. Geogr. 70, 182–192.

Ashqar, H.I., Elhenawy, M., Rakha, H.A., 2019. Modeling bike counts in a bike-sharing
system considering the effect of weather conditions. Case Stud. Transp. Policy 7
(2), 261–268.

Bean, R., Pojani, D., Corcoran, J., 2021. How does weather affect bikeshare use? A
comparative analysis of forty cities across climate zones. J. Transp. Geogr. 95,
103155.

Bédécarrats, F., 2021. Fiabilité des données de comptage et tendance d’évolution du
vélo à Nantes (2014–2019).

Bergström, A., Magnusson, R., 2003. Potential of transferring car trips to bicycle during
winter. Transp. Res. A 37 (8), 649–666.

Blondiau, T., Van Zeebroeck, B., Haubold, H., 2016. Economic benefits of increased
cycling. Transp. Res. Procedia 14, 2306–2313.

Borghi, F., Spinazzè, A., Mandaglio, S., Fanti, G., Campagnolo, D., Rovelli, S., Keller, M.,
Cattaneo, A., Cavallo, D.M., 2021. Estimation of the inhaled dose of pollutants in
different micro-environments: A systematic review of the literature. Toxics 9 (6),
140.

Borgnat, P., Abry, P., Flandrin, P., Rouquier, J.-B., 2009. Studying Lyon’s Vélo’v: A
statistical cyclic model. In: ECCS’09. Complex System Society.

Brandenburg, C., Matzarakis, A., Arnberger, A., 2004. The effects of weather on
frequencies of use by commuting and recreation bicyclists. Adv. Tour. Climatol.
12, 189–197.

Brown, M.J., Scott, D.M., Páez, A., 2022. A spatial modeling approach to estimating
bike share traffic volume from GPS data. Sustainable Cities Soc. 76, 103401.

Cervero, R., Duncan, M., 2003. Walking, bicycling, and urban landscapes: Evidence
from the San Francisco Bay Area. Am. J. Public Health 93 (9), 1478–1483.

Chibwe, J., Heydari, S., Imani, A.F., Scurtu, A., 2021. An exploratory analysis of the
trend in the demand for the London bike-sharing system: From London Olympics
to COVID-19 pandemic. Sustainable Cities Soc. 69, 102871.

Corcoran, J., Li, T., Rohde, D., Charles-Edwards, E., Mateo-Babiano, D., 2014. Spatio-
temporal patterns of a Public Bicycle Sharing Program: the effect of weather and
calendar events. J. Transp. Geogr. 41, 292–305.

Cui, S., Sudjianto, A., Zhang, A., Li, R., 2023. Enhancing robustness of gradient-
boosted decision trees through one-hot encoding and regularization. arXiv preprint
arXiv:2304.13761.

Friedman, J.H., 2001. Greedy function approximation: A gradient boosting machine.
Ann. Stat. 1189–1232.

Galich, A., Nieland, S., Lenz, B., Blechschmidt, J., 2021. How would we cycle today if
we had the weather of tomorrow? An analysis of the impact of climate change on
bicycle traffic. Sustainability 13 (18), 10254.
11
Garrard, J., Rissel, C., Bauman, A., 2012. Health benefits of cycling. City Cycling 31,
31–56.

Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E., 2015. Peeking inside the black box:
Visualizing statistical learning with plots of individual conditional expectation. J.
Comput. Graph. Stat. 24 (1), 44–65.

Hamilton, T.L., Wichman, C.J., 2018. Bicycle infrastructure and traffic congestion:
Evidence from DC’s Capital Bikeshare. J. Environ. Econ. Manag. 87, 72–93.

Heinen, E., Van Wee, B., Maat, K., 2010. Commuting by bicycle: An overview of the
literature. Transp. Rev. 30 (1), 59–96.

Hong, J., McArthur, D.P., Sim, J., Kim, C.H., 2022. Did air pollution continue to affect
bike share usage in Seoul during the COVID-19 pandemic? J. Transp. Health 24,
101342.

Hornik, K., 1991. Approximation capabilities of multilayer feedforward networks.
Neural Netw. 4 (2), 251–257.

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are
universal approximators. Neural Netw. 2 (5), 359–366.

Huang, G., Zhang, W., Xu, D., 2022. How do technology-enabled bike-sharing services
improve urban air pollution? Empirical evidence from China. J. Clean. Prod. 379,
134771.

Huy, C., Becker, S., Gomolinsky, U., Klein, T., Thiel, A., 2008. Health, medical risk
factors, and bicycle use in everyday life in the over-50 population. J. Aging Phys.
Activity 16 (4), 454–464.

Ile-de-France Mobilités, OMNIL, DRIEAT, 2020. EGT H2020.
Kampa, M., Castanas, E., 2008. Human health effects of air pollution. Environ. Pollut.

151 (2), 362–367.
Kaplan, S., Wrzesinska, D.K., Prato, C.G., 2019. Psychosocial benefits and positive mood

related to habitual bicycle use. Transp. Res. F 64, 342–352.
Keall, M.D., Shaw, C., Chapman, R., Howden-Chapman, P., 2018. Reductions in carbon

dioxide emissions from an intervention to promote cycling and walking: A case
study from New Zealand. Transp. Res. D 65, 687–696.

Kim, H., 2020. Seasonal impacts of particulate matter levels on bike sharing in Seoul,
South Korea. Int. J. Environ. Res. Public Health 17 (11), 3999.

Kutela, B., Teng, H., 2019. The influence of campus characteristics, temporal factors,
and weather events on campuses-related daily bike-share trips. J. Transp. Geogr.
78, 160–169.

Ma, L., Ye, R., Wang, H., 2021. Exploring the causal effects of bicycling for
transportation on mental health. Transp. Res. D 93, 102773.

McQueen, M., MacArthur, J., Cherry, C., 2020. The e-bike potential: Estimating regional
e-bike impacts on greenhouse gas emissions. Transp. Res. D 87, 102482.

Morton, C., 2020. The demand for cycle sharing: Examining the links between weather
conditions, air quality levels, and cycling demand for regular and casual users. J.
Transp. Geogr. 88, 102854.

Nankervis, M., 1999. The effect of weather and climate on bicycle commuting. Transp.
Res. A 33 (6), 417–431.

http://refhub.elsevier.com/S2950-1059(24)00022-6/sb1
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb1
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb1
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb1
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb1
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb2
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb2
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb2
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb2
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb2
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb3
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb3
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb3
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb3
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb3
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb4
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb4
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb4
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb5
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb5
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb5
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb6
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb6
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb6
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb7
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb7
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb7
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb7
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb7
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb7
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb7
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb8
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb8
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb8
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb9
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb9
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb9
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb9
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb9
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb10
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb10
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb10
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb11
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb11
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb11
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb12
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb12
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb12
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb12
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb12
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb13
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb13
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb13
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb13
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb13
http://arxiv.org/abs/2304.13761
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb15
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb15
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb15
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb16
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb16
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb16
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb16
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb16
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb17
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb17
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb17
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb18
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb18
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb18
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb18
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb18
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb19
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb19
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb19
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb20
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb20
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb20
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb21
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb21
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb21
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb21
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb21
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb22
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb22
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb22
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb23
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb23
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb23
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb24
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb24
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb24
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb24
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb24
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb25
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb25
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb25
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb25
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb25
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb26
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb27
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb27
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb27
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb28
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb28
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb28
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb29
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb29
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb29
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb29
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb29
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb30
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb30
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb30
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb31
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb31
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb31
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb31
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb31
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb32
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb32
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb32
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb33
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb33
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb33
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb34
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb34
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb34
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb34
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb34
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb35
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb35
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb35


Journal of Cycling and Micromobility Research 2 (2024) 100031A. Lanvin et al.
Nelson, T.A., Ferster, C., Roy, A., Winters, M., 2023. Bicycle streetscapes: A data driven
approach to mapping streets based on bicycle usage. Int. J. Sustain. Transp. 17 (8),
931–941.

Noland, R.B., 2021. Scootin’in the rain: Does weather affect micromobility? Transp.
Res. A 149, 114–123.

Nosal, T., Miranda-Moreno, L.F., 2014. The effect of weather on the use of North
American bicycle facilities: A multi-city analysis using automatic counts. Transp.
Res. A 66, 213–225.

Oja, P., Titze, S., Bauman, A., De Geus, B., Krenn, P., Reger-Nash, B., Kohlberger, T.,
2011. Health benefits of cycling: A systematic review. Scand. J. Med. Sci. Sports
21 (4), 496–509.

Pazdan, S., Kiec, M., D’Agostino, C., 2021. Impact of environment on bicycle travel
demand—Assessment using bikeshare system data. Sustainable Cities Soc. 67,
102724.

Petrović, D., Ivanović, I., Ðorić, V., Jović, J., 2020. Impact of weather conditions
on travel demand–the most common research methods and applied models.
Promet-Traffic&Transport. 32 (5), 711–725.

Phung, J., Rose, G., 2007. Temporal variations in usage of Melbourne’s bike paths. In:
Proceedings of 30th Australasian Transport Research Forum, Melbourne.

Ryu, J., Jung, J.H., Kim, J., Kim, C.-H., Lee, H.-B., Kim, D.-H., Lee, S.-K., Shin, J.-
H., Roh, D., 2020. Outdoor cycling improves clinical symptoms, cognition and
objectively measured physical activity in patients with schizophrenia: A randomized
controlled trial. J. Psychiatric Res. 120, 144–153.

Sathishkumar, V., Cho, Y., 2020. A rule-based model for Seoul bike sharing demand
prediction using weather data. Eur. J. Remote Sens. 53 (sup1), 166–183.

Singhal, A., Kamga, C., Yazici, A., 2014. Impact of weather on urban transit ridership.
Transp. Res. A 69, 379–391.

Sinha, R., Olsson, L.E., Frostell, B., 2019. Sustainable personal transport modes in a
life cycle perspective—public or private? Sustainability 11 (24), 7092.
12
Tainio, M., de Nazelle, A.J., Götschi, T., Kahlmeier, S., Rojas-Rueda, D., Nieuwenhui-
jsen, M.J., de Sá, T.H., Kelly, P., Woodcock, J., 2016. Can air pollution negate the
health benefits of cycling and walking? Prevent. Med. 87, 233–236.

Thomas, T., Jaarsma, C., Tutert, S., 2009. Temporal variations of bicycle demand in
the Netherlands: The influence of weather on cycling.

Thomas, T., Jaarsma, R., Tutert, B., 2013. Exploring temporal fluctuations of daily
cycling demand on Dutch cycle paths: The influence of weather on cycling.
Transportation 40, 1–22.

Wang, Y., Zhan, Z., Mi, Y., Sobhani, A., Zhou, H., 2022. Nonlinear effects of factors on
dockless bike-sharing usage considering grid-based spatiotemporal heterogeneity.
Transp. Res. D 104, 103194.

Wessel, J., 2020. Using weather forecasts to forecast whether bikes are used. Transp.
Res. A 138, 537–559.

Willberg, E., Tenkanen, H., Poom, A., Salonen, M., Toivonen, T., 2021. 14. Comparing
spatial data sources for cycling studies: A review. Transp. Hum. Scale Cities 169.

Yang, Z., Hu, J., Shu, Y., Cheng, P., Chen, J., Moscibroda, T., 2016. Mobility
modeling and prediction in bike-sharing systems. In: Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and Services.
pp. 165–178.

Zhao, J., Wang, J., Xing, Z., Luan, X., Jiang, Y., 2018. Weather and cycling: Mining big
data to have an in-depth understanding of the association of weather variability
with cycling on an off-road trail and an on-road bike lane. Transp. Res. A 111,
119–135.

Zhou, T., Feng, T., Kemperman, A., 2023. Assessing the effects of the built environment
and microclimate on cycling volume. Transp. Res. D 124, 103936.

http://refhub.elsevier.com/S2950-1059(24)00022-6/sb36
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb36
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb36
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb36
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb36
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb37
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb37
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb37
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb38
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb38
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb38
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb38
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb38
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb39
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb39
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb39
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb39
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb39
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb40
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb40
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb40
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb40
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb40
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb41
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb41
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb41
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb41
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb41
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb42
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb42
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb42
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb43
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb43
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb43
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb43
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb43
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb43
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb43
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb44
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb44
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb44
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb45
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb45
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb45
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb46
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb46
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb46
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb47
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb47
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb47
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb47
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb47
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb48
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb48
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb48
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb49
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb49
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb49
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb49
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb49
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb50
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb50
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb50
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb50
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb50
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb51
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb51
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb51
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb52
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb52
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb52
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb53
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb53
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb53
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb53
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb53
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb53
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb53
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb54
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb54
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb54
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb54
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb54
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb54
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb54
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb55
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb55
http://refhub.elsevier.com/S2950-1059(24)00022-6/sb55

	Weathering heights: An updated analytical model of the nonlinear effects of weather on bicycle traffic
	Introduction
	Literature review
	The impact of weather on bicycle traffic
	Other variables influencing bicycle traffic
	Modeling approaches and gap analysis

	Method and data
	Data description
	Bicycle traffic data
	Weather and calendar data
	Air quality data
	Feature selection

	Methodology and model description

	Results and discussion
	Accumulated Local Effects analysis
	Formal definition of the model
	Discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Formulas of the functions tested to build the analytical model
	Appendix B. Parameter estimation
	References


