Supporting Information for

Managing Expectations and Imbalanced Training Data in Reactive Force Field Development: an Application to Water Adsorption on Alumina

Loïc Dumortier,^{†,‡} Céline Chizallet,[¶] Benoit Creton,[†] Theodorus de Bruin,[†] and Toon Verstraelen^{*,‡}

†IFP Energies nouvelles, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison, France
 ‡Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46,
 B-9052, Zwijnaarde, Belgium

¶IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP3, 69360 Solaize, France

E-mail: toon.verstraelen@ugent.be

Contents

S1 Additional Display Items					
S2 Comparison of Non-Equilibrium ReaxFF and DFT energies	29				
References	32				

S1 Additional Display Items

Table S1: Structures in the training set and contributions to each category of data. Bonds are represented by pairs of chemical elements, angles by triplets. The symbol \cdots denotes a hydrogen bond. Internal coordinates with oxygen not bound to aluminum are discarded. For hydrated alumina surfaces and edges, and for boehmite surfaces, the internal coordinates without hydrogen are not considered.

Structure	Chem. Form.	O-H	$O \cdots H$	Al-O	Al-Al	O-Al-O	Al-O-Al	Al-O-H	$Al - O \cdots H$	$H - O \cdots H$	$H \cdots O \cdots H$
alpha_bulk	Al ₁₂ O ₁₈			72	84	180	108				
boehm_bulk	$Al_{32} O_{64} H_{32}$	32	32	192	128	480	224	64	64	32	
boehm_surf-001_00w	$Al_{48} O_{96} H_{48}$	48	32	272	160	640	288	96	64	32	
boehm_surf-001_08w	$Al_{48} O_{112} H_{80}$	80	40		160			160	80	40	
boehm_surf-010_00w	$Al_{72}O_{144}H_{72}$	72	48	432	288	1080	504	144	96	48	
boehm_surf-100_00w	$Al_{48} O_{96} H_{48}$	48	48	256	160	576	272	80	80	48	
boehm_surf-100_12w	$Al_{48} O_{120} H_{96}$	96	80		160			128	112	96	24
boehm_surf-100_16w	$Al_{48}O_{128}H_{112}$	112	89		160			144	137	98	24
boehm_surf-101_00w	$Al_{48} O_{96} H_{48}$	49	- 33	254	168	560	250	100	68	18	6
boehm_surf-101_12w	$Al_{48} O_{120} H_{96}$	96	66		156			156	102	72	18
gamma_bulk	$Al_{16}O_{24}$			88	88	204	120				
gamma_edge-100-110_00w	$Al_{96} O_{144}$			481	424	1003	598				
gamma_edge-100-110_01w	$Al_{96} O_{145} H_2$	2			425			3			
gamma_edge-100-110_02w	$Al_{96} O_{146} H_4$	4	1		426			6	2		
gamma_edge-100-110_03w	$Al_{96} O_{147} H_6$	6	2		422			10	4		
gamma_edge-100-110_04w	$Al_{96} O_{148} H_8$	8	3		426			13	6		1
gamma_edge-100-110_05w	$Al_{96} O_{149} H_{10}$	10	4		424			17	8		2
gamma_edge-100-110_07w	$Al_{96} O_{151} H_{14}$	14	7		424			23	13	2	2
gamma_surf-100_00w	$Al_{64}O_{96}$			320	280	656	384				
gamma_surf-100_01w	$Al_{64} O_{100} H_8$	8	4		284			16	4	4	
gamma_surf-100_02w	$Al_{64} O_{104} H_{16}$	16	8		282			24	8	8	4
gamma_surf-100_03w	$Al_{64} O_{108} H_{24}$	24	16		280			40	16	16	8
gamma_surf-100_04w	$Al_{64} O_{112} H_{32}$	32	20		280			52	28	20	8
gamma_surf-110_00w	$Al_{64}O_{96}$			304	240	600	368				
gamma_surf-110_01w	$Al_{64} O_{100} H_8$	8	4		232			16	8		
gamma_surf-110_02w	$Al_{64} O_{104} H_{16}$	16	8		240			24	16		
gamma_surf-110_03w	$Al_{64} O_{108} H_{24}$	24	12		240			44	16	8	4
gamma_surf-110_04w	$Al_{64} O_{112} H_{32}$	32	24		240			52	44	12	8
gamma_surf-110_05w	$Al_{64} O_{116} H_{40}$	40	28		240			60	52	12	12
gamma_surf-110_06w	$Al_{64} O_{120} H_{48}$	48	32		236			88	32	32	12
gamma_surf-111_00w	Al40 O60			212	190	480	286				
gamma_surf-111_04w	$Al_{32} O_{56} H_{16}$	16	8		144			30	14	6	
gamma_surf-111_05w	$Al_{32} O_{58} H_{20}$	20	10		146			36	14	10	2
gamma_surf-111_06w	$Al_{32} O_{60} H_{24}$	24	12		146			44	16	12	2
monomer	AlO_4H_5	5		4		6		5			
water	O H ₂										
total		990	671	2887	8383	6465	3402	1675	1104	626	137

Figure S1: Histograms of all interatomic distances in the training set up to 5 Å, grouped per pair of chemical elements. Cutoffs for OH and AlO pairs depicted as vertical red lines: 1.2 Å for O-H bonds, 2.1 Å for hydrogen bonds and 2.8 Å for Al-O bonds. See main text for a more detailed description.

Figure S2: Histograms of internal coordinates in the training set. In the labels on the horizontal axis, a dash represents a regular bond and a tilde represents a hydrogen bond.

Figure S3: Histograms of internal coordinates, using the notation of Figure S2, per material. Histograms for the training set: $\alpha = \alpha - Al_2O_3$ (blue), b = boehmite (orange), $\gamma = \gamma - Al_2O_3$ (green). Histograms for the validation set: $\gamma' = \gamma - Al_2O_3$ (green). The number of internal coordinates within each class is shown to the right of the corresponding histogram.

Table S2: Overview of all chemical equations in the training set. Reactants are given negative coefficients. For each reaction, three reaction energies are in $kcalmol^{-1}$: the reference DFT result (R), the prediction with the Joshi force field (J) and the prediction with the new force field in this work (B). Water adsorption energies are normalized to the number of water molecules. All other reaction energies are normalized on the number of Al atoms. The categories are defined in the main text.

Category	Coeff.	Structure	Chem. Form.	Reaction energy	
BSH	$-1/16 \times$	boehm_surf-001_00w	${\rm Al}_{48}{\rm O}_{96}{\rm H}_{48}$	R	-24.7
	$-1\times$	water	OH_2	J	28.0
	$1/16 \times$	boehm_surf-001_08w	$Al_{48}O_{112}H_{80}$	В	-21.9
BSH	$-1/24 \times$	boehm_surf-100_00w	${\rm Al}_{48}{\rm O}_{96}{\rm H}_{48}$	R	-46.0
	$-1\times$	water	OH_2	J	-1.7
	$1/24 \times$	$boehm_surf-100_12w$	$Al_{48}O_{120}H_{96}$	В	-38.0
\mathbf{BSH}	$-1/32\times$	boehm_surf-100_00w	${\rm Al}_{48}{\rm O}_{96}{\rm H}_{48}$	R	-38.0
	$-1\times$	water	OH_2	J	-4.2
	$1/32 \times$	boehm_surf-100_16w	$\rm Al_{48}O_{128}H_{112}$	В	-32.2
\mathbf{BSH}	$-1/8 \times$	boehm_surf-100_12w	$Al_{48}O_{120}H_{96}$	R	-14.0
	$-1\times$	water	OH_2	J	-11.9
	$1/8 \times$	boehm_surf-100_16w	$Al_{48} O_{128} H_{112}$	В	-15.1
\mathbf{BSH}	$-1/24\times$	$boehm_surf-101_00w$	${\rm Al}_{48}{\rm O}_{96}{\rm H}_{48}$	R	-41.0
	$-1\times$	water	OH_2	J	-4.3
	$1/24 \times$	boehm_surf-101_12w	${\rm Al}_{48}{\rm O}_{120}{\rm H}_{96}$	В	-39.3
GEH	$-1\times$	gamma_edge-100-110_00w	$Al_{96}O_{144}$	R	-104.1
	$-1\times$	water	OH_2	J	-101.6
	1×	gamma_edge-100-110_01w	$Al_{96} O_{145} H_2$	В	-103.0
GEH	$-1/2 \times$	gamma_edge-100-110_00w	$Al_{96}O_{144}$	R	-81.2
	$-1\times$	water	OH_2	J	-86.6
	$1/2 \times$	gamma_edge-100-110_02w	$Al_{96} O_{146} H_4$	В	-80.3
GEH	$-1\times$	gamma_edge-100-110_01w	$Al_{96} O_{145} H_2$	R	-58.3
	$-1\times$	water	OH_2	J	-71.5
	1×	gamma_edge-100-110_02w	$\mathrm{Al}_{96}\mathrm{O}_{146}\mathrm{H}_4$	В	-57.5
GEH	$-1/3\times$	gamma_edge-100-110_00w	$Al_{96}O_{144}$	R	-72.1
	$-1\times$	water	OH_2	J	-18.0
	$1/3 \times$	gamma_edge-100-110_03w	$Al_{96} O_{147} H_6$	В	-71.2
GEH	$-1/2 \times$	gamma_edge-100-110_01w	$Al_{96} O_{145} H_2$	R	-56.1
	$-1\times$	water	OH_2	J	23.8
	$1/2 \times$	gamma_edge-100-110_03w	$Al_{96} O_{147} H_6$	В	-55.3
GEH	$-1\times$	gamma_edge-100-110_02w	$Al_{96} O_{146} H_4$	R	-53.9
	$ $ $-1\times$	water	OH_2	J	119.1
	1×	gamma_edge-100-110_03w	$Al_{96} O_{147} H_6$	В	-53.0
GEH	$ -1/4 \times$	gamma_edge-100-110_00w	$Al_{96}O_{144}$	R	-67.5
	$ $ $-1\times$	water	OH_2	J	-71.0

	$1/4 \times$	gamma_edge-100-110_04w	${\rm Al}_{96}{\rm O}_{148}{\rm H}_8$	B	-67.0
GEH	$-1/3 \times$	gamma_edge-100-110_01w	$Al_{96} O_{145} H_2$	R	-55.3
	$-1 \times$	water	OH_2	J	-60.8
	$1/3 \times$	gamma_edge-100-110_04w	${\rm Al}_{96}{\rm O}_{148}{\rm H}_8$	В	-55.0
GEH	$-1/2 \times$	gamma_edge-100-110_02w	$\mathrm{Al}_{96}\mathrm{O}_{146}\mathrm{H}_4$	R	-53.9
	$-1 \times$	water	OH_2	J	-55.4
	$1/2 \times$	gamma_edge-100-110_04w	${\rm Al}_{96}{\rm O}_{148}{\rm H}_8$	B	-53.7
GEH	$-1 \times$	gamma_edge-100-110_03w	${\rm Al}_{96}{\rm O}_{147}{\rm H}_6$	R	-53.8
	$-1 \times$	water	OH_2	J	-230.0
	$1 \times$	gamma_edge-100-110_04w	${\rm Al}_{96}{\rm O}_{148}{\rm H}_8$	В	-54.5
GEH	$-1/5 \times$	gamma_edge-100-110_00w	$Al_{96}O_{144}$	R	-63.3
	$-1 \times$	water	OH_2	J	-22.9
	$1/5 \times$	gamma_edge-100-110_05w	$Al_{96}O_{149}H_{10}$	B	-63.8
GEH	$-1/4 \times$	gamma_edge-100-110_01w	$Al_{96} O_{145} H_2$	R	-53.1
	$-1 \times$	water	OH_2	J	-3.2
	$1/4 \times$	gamma_edge-100-110_05w	$Al_{96}O_{149}H_{10}$	В	-54.0
GEH	$-1/3 \times$	gamma_edge-100-110_02w	${\rm Al}_{96}{\rm O}_{146}{\rm H}_4$	R	-51.4
	$-1 \times$	water	OH_2	J	19.5
	$1/3 \times$	gamma_edge-100-110_05w	$Al_{96}O_{149}H_{10}$	В	-52.8
GEH	$-1/2 \times$	gamma_edge-100-110_03w	${\rm Al}_{96}{\rm O}_{147}{\rm H}_6$	R	-50.2
	$-1 \times$	water	OH_2	J	-30.3
	$1/2 \times$	gamma_edge-100-110_05w	$Al_{96} O_{149} H_{10}$	В	-52.7
\mathbf{GEH}	$-1 \times$	gamma_edge-100-110_04w	$Al_{96} O_{148} H_8$	R	-46.6
	$-1 \times$	water	OH_2	J	169.4
	1×	gamma_edge-100-110_05w	$Al_{96} O_{149} H_{10}$	В	-51.0
GEH	$-1/7 \times$	gamma_edge-100-110_00w	$Al_{96}O_{144}$	R	-55.8
	$-1\times$	water	OH_2	J	-12.6
	$1/7 \times$	gamma_edge-100-110_07w	$Al_{96} O_{151} H_{14}$	B	-57.1
GEH	$-1/6 \times$	gamma_edge-100-110_01w	$Al_{96} O_{145} H_2$	R	-47.8
	$-1\times$	water	OH_2	J	2.2
	$1/6 \times$	gamma_edge-100-110_07w	$Al_{96} O_{151} H_{14}$	B	-49.5
GEH	$-1/5 \times$	gamma_edge-100-110_02w	$Al_{96} O_{146} H_4$	R	-45.7
	$-1\times$	water	OH_2	J	16.9
	$1/5 \times$	gamma_edge-100-110_07w	$Al_{96}O_{151}H_{14}$	B	-47.9
GEH	$-1/4 \times$	gamma_edge-100-110_03w	$Al_{96} O_{147} H_6$	R	-43.6
	$-1\times$	water	OH_2	J	-8.6
	$1/4 \times$	gamma_edge-100-110_07w	$Al_{96}O_{151}H_{14}$	B	-46.6
GEH	$-1/3 \times$	gamma_edge-100-110_04w	$Al_{96} O_{148} H_8$	R	-40.2
	$-1\times$	water	OH_2	J	65.1
GEH	$1/3 \times$	gamma_edge-100-110_07w	$Al_{96}O_{151}H_{14}$	B	-43.9
GEH	$-1/2 \times$	gamma_edge-100-110_05w	$Al_{96} O_{149} H_{10}$	R	-37.0
	$-1\times$	water	OH_2	J	13.0
	$1/2 \times$	gamma_edge-100-110_07w	$Al_{96} O_{151} H_{14}$	B	-40.4
\mathbf{GSH}	$ -1/4 \times$	gamma_surf-100_00w	$Al_{64}O_{96}$	R	-24.0

	$ $ $-1\times$	water	OH_2	J	-2.0
	$1/4 \times$	gamma_surf-100_01w	$\mathrm{Al}_{64}\mathrm{O}_{100}\mathrm{H}_8$	В	-23.8
GSH	$-1/8 \times$	gamma_surf-100_00w	$Al_{64}O_{96}$	R	-25.0
	$-1\times$	water	OH_2	J	-10.7
	$1/8 \times$	gamma_surf-100_02w	${\rm Al}_{64}{\rm O}_{104}{\rm H}_{16}$	В	-26.0
GSH	$-1/4 \times$	gamma_surf-100_01w	${\rm Al}_{64}{\rm O}_{100}{\rm H}_8$	R	-26.0
	$-1 \times$	water	OH_2	J	-19.5
	$1/4 \times$	gamma_surf-100_02w	$\rm Al_{64}O_{104}H_{16}$	В	-28.2
GSH	$-1/12 \times$	gamma_surf-100_00w	$Al_{64}O_{96}$	R	-24.3
	$-1\times$	water	OH_2	J	-6.8
	$1/12 \times$	gamma_surf-100_03w	$Al_{64}O_{108}H_{24}$	В	-26.8
\mathbf{GSH}	$-1/8 \times$	gamma_surf-100_01w	${\rm Al}_{64}{\rm O}_{100}{\rm H}_8$	R	-24.4
	$ $ $-1\times$	water	OH_2	J	-9.2
	$1/8 \times$	gamma_surf-100_03w	$Al_{64} O_{108} H_{24}$	В	-28.3
GSH	$-1/4 \times$	gamma_surf-100_02w	${\rm Al}_{64}{\rm O}_{104}{\rm H}_{16}$	R	-22.8
	$-1\times$	water	OH_2	J	1.1
	$1/4 \times$	gamma_surf-100_03w	${\rm Al}_{64}{\rm O}_{108}{\rm H}_{24}$	В	-28.3
\mathbf{GSH}	$-1/16 \times$	gamma_surf-100_00w	$Al_{64}O_{96}$	R	-21.7
	$-1\times$	water	OH_2	J	-3.6
	$1/16 \times$	gamma_surf-100_04w	${\rm Al}_{64}{\rm O}_{112}{\rm H}_{32}$	В	-22.4
\mathbf{GSH}	$ -1/12 \times$	gamma_surf-100_01w	$Al_{64} O_{100} H_8$	R	-21.0
	$-1\times$	water	OH_2	J	-4.1
	$1/12 \times$	gamma_surf-100_04w	${\rm Al}_{64}{\rm O}_{112}{\rm H}_{32}$	В	-22.0
\mathbf{GSH}	$-1/8\times$	gamma_surf-100_02w	$Al_{64} O_{104} H_{16}$	R	-18.5
	$-1\times$	water	OH_2	J	3.5
	$1/8 \times$	gamma_surf-100_04w	$Al_{64} O_{112} H_{32}$	В	-18.8
\mathbf{GSH}	$ $ $-1/4\times$	gamma_surf-100_03w	$Al_{64} O_{108} H_{24}$	R	-14.1
	$-1\times$	water	OH_2	J	6.0
	$1/4 \times$	gamma_surf-100_04w	$Al_{64} O_{112} H_{32}$	В	-9.3
\mathbf{GSH}	$ $ $-1/4\times$	gamma_surf-110_00w	$Al_{64}O_{96}$	R	-92.4
	$-1\times$	water	OH_2	J	50.4
	$1/4 \times$	gamma_surf-110_01w	Al ₆₄ O ₁₀₀ H ₈	В	-108.6
\mathbf{GSH}	$-1/8\times$	gamma_surf-110_00w	$Al_{64}O_{96}$	R	-50.2
	$-1\times$	water	OH_2	J	7.3
	$1/8\times$	gamma_surf-110_02w	$Al_{64} O_{104} H_{16}$	B	-61.8
GSH	$-1/4\times$	gamma_surf-110_01w	$\operatorname{Al}_{64}\operatorname{O}_{100}\operatorname{H}_8$	R	-8.0
	$-1\times$	water	OH_2	J	-35.8
	$1/4\times$	gamma_surf-110_02w	$Al_{64} O_{104} H_{16}$	B	-15.0
GSH	$ -1/12\times$	gamma_surf-110_00w	$Al_{64}O_{96}$	R	-42.5
	$-1\times$	water	OH_2	J	42.3
0.011	$1/12\times$	gamma_surf-110_03w	$Al_{64}O_{108}H_{24}$	B	-50.1
GSH	$ $ $-1/8\times$	gamma_surf-110_01w	$AI_{64} O_{100} H_8$	R	-17.6
	$-1\times$	water	OH_2	J	38.2
	$ 1/8 \times$	gamma_surf-110_03w	$AI_{64} O_{108} H_{24}$	B	-20.8

GSH	$-1/4 \times$	gamma_surf-110_02w	${\rm Al}_{64}{\rm O}_{104}{\rm H}_{16}$	R	-27.2
	$-1 \times$	water	OH_2	J	112.3
	$1/4 \times$	gamma_surf-110_03w	${\rm Al}_{64}{\rm O}_{108}{\rm H}_{24}$	В	-26.7
GSH	$-1/16 \times$	gamma_surf-110_00w	$Al_{64}O_{96}$	R	-39.6
	$-1 \times$	water	OH_2	J	28.9
	$1/16 \times$	gamma_surf-110_04w	$\rm Al_{64}O_{112}H_{32}$	В	-44.9
GSH	$-1/12 \times$	gamma_surf-110_01w	${\rm Al}_{64}{\rm O}_{100}{\rm H}_8$	R	-22.1
	$-1 \times$	water	OH_2	J	21.7
	$1/12 \times$	gamma_surf-110_04w	$\rm Al_{64}O_{112}H_{32}$	В	-23.7
GSH	$-1/8 \times$	gamma_surf-110_02w	${\rm Al}_{64}{\rm O}_{104}{\rm H}_{16}$	R	-29.1
	$-1\times$	water	OH_2	J	50.5
	$1/8 \times$	gamma_surf-110_04w	$Al_{64}O_{112}H_{32}$	В	-28.1
\mathbf{GSH}	$-1/4 \times$	gamma_surf-110_03w	$\rm Al_{64}O_{108}H_{24}$	R	-31.0
	$-1\times$	water	OH_2	J	-11.3
	$1/4 \times$	gamma_surf-110_04w	${\rm Al}_{64}{\rm O}_{112}{\rm H}_{32}$	В	-29.5
\mathbf{GSH}	$-1/20 \times$	gamma_surf-110_00w	$Al_{64}O_{96}$	R	-35.2
	$-1\times$	water	OH_2	J	16.0
	$1/20 \times$	gamma_surf-110_05w	${\rm Al}_{64}{\rm O}_{116}{\rm H}_{40}$	B	-39.4
\mathbf{GSH}	$-1/16 \times$	gamma_surf-110_01w	$Al_{64} O_{100} H_8$	R	-20.9
	$-1\times$	water	OH_2	J	7.4
	$1/16 \times$	gamma_surf-110_05w	${\rm Al}_{64}{\rm O}_{116}{\rm H}_{40}$	В	-22.1
\mathbf{GSH}	$-1/12 \times$	gamma_surf-110_02w	${\rm Al}_{64}{\rm O}_{104}{\rm H}_{16}$	R	-25.1
	$-1\times$	water	OH_2	J	21.9
	$1/12 \times$	gamma_surf-110_05w	${\rm Al}_{64}{\rm O}_{116}{\rm H}_{40}$	B	-24.5
\mathbf{GSH}	$-1/8 \times$	gamma_surf-110_03w	$Al_{64} O_{108} H_{24}$	R	-24.1
	$-1\times$	water	OH_2	J	-23.4
	$1/8 \times$	gamma_surf-110_05w	$Al_{64} O_{116} H_{40}$	B	-23.4
\mathbf{GSH}	$ $ $-1/4\times$	gamma_surf-110_04w	$Al_{64} O_{112} H_{32}$	R	-17.3
	$-1\times$	water	OH_2	J	-35.4
	$1/4 \times$	gamma_surf-110_05w	$Al_{64} O_{116} H_{40}$	В	-17.2
\mathbf{GSH}	$ -1/24\times$	gamma_surf-110_00w	$Al_{64}O_{96}$	R	-33.5
	$-1\times$	water	OH_2	J	21.5
	$1/24 \times$	gamma_surf-110_06w	$Al_{64} O_{120} H_{48}$	B	-37.5
GSH	$ -1/20\times$	gamma_surf-110_01w	$Al_{64} O_{100} H_8$	R	-21.7
	$-1\times$	water	OH_2	J	15.8
	$1/20\times$	gamma_surf-110_06w	$Al_{64} O_{120} H_{48}$	B	-23.3
GSH	$ -1/16\times$	gamma_surf-110_02w	$Al_{64} O_{104} H_{16}$	R	-25.1
	$-1\times$	water	OH_2	J	28.7
	$1/16 \times$	gamma_surf-110_06w	$\frac{\operatorname{Al}_{64}\operatorname{O}_{120}\operatorname{H}_{48}}{\operatorname{Al}_{64}\operatorname{O}_{120}\operatorname{H}_{48}}$	B	-25.3
GSH	$ -1/12\times$	gamma_surf-110_03w	$AI_{64} O_{108} H_{24}$	R	-24.4
	$-1\times$	water	OH_2		0.8
COLL	$1/12 \times$	gamma_surf-110_06w	$\frac{\text{Al}_{64} \text{O}_{120} \text{H}_{48}}{\text{Al}_{120} \text{H}_{20} \text{H}_{20}}$	B	-24.9
GSH	$ -1/8 \times$	gamma_surf-110_04w	$AI_{64} O_{112} H_{32}$	R	-21.1
	$ $ $-1\times$	water	OH_2	J	6.8

	$1/8 \times$	gamma_surf-110_06w	$Al_{64}O_{120}H_{48}$	B	-22.6
GSH	$-1/4 \times$	gamma_surf-110_05w	$Al_{64} O_{116} H_{40}$	R	-24.9
	$-1\times$	water	OH_2	J	49.1
	$1/4 \times$	gamma_surf-110_06w	$Al_{64}O_{120}H_{48}$	B	-27.9
GSH	$-1/10 \times$	gamma_surf-111_00w	$Al_{40}O_{60}$	R	-42.1
	$-1\times$	water	OH_2	J	7.2
	$1/8 \times$	gamma_surf-111_04w	$Al_{32}O_{56}H_{16}$	B	-31.1
\mathbf{GSH}	$-2/25 \times$	gamma_surf-111_00w	$Al_{40}O_{60}$	R	-45.8
	$-1\times$	water	OH_2	J	5.6
	$1/10 \times$	gamma_surf-111_05w	${\rm Al}_{32}{\rm O}_{58}{\rm H}_{20}$	B	-32.8
\mathbf{GSH}	$-1/2 \times$	gamma_surf-111_04w	${\rm Al}_{32}{\rm O}_{56}{\rm H}_{16}$	R	-60.5
	$-1\times$	water	OH_2	J	-0.7
	$1/2 \times$	gamma_surf-111_05w	$Al_{32}O_{58}H_{20}$	B	-39.8
\mathbf{GSH}	$-1/15 \times$	gamma_surf-111_00w	$Al_{40}O_{60}$	R	-43.1
	$-1\times$	water	OH_2	J	13.5
	$1/12 \times$	gamma_surf-111_06w	$Al_{32}O_{60}H_{24}$	B	-32.5
\mathbf{GSH}	$-1/4 \times$	gamma_surf-111_04w	$Al_{32}O_{56}H_{16}$	R	-45.0
	$-1 \times$	water	OH_2	J	26.2
	$1/4 \times$	gamma_surf-111_06w	$Al_{32}O_{60}H_{24}$	B	-35.3
\mathbf{GSH}	$-1/2 \times$	gamma_surf-111_05w	$Al_{32}O_{58}H_{20}$	R	-29.4
	$-1\times$	water	OH_2	J	53.2
	$1/2 \times$	gamma_surf-111_06w	$Al_{32}O_{60}H_{24}$	B	-30.9
\mathbf{SUR}	$-1/32\times$	boehm_bulk	${\rm Al}_{32}{\rm O}_{64}{\rm H}_{32}$	R	11.2
	$1/48 \times$	$boehm_surf-001_00w$	$Al_{48}O_{96}H_{48}$	J	5.5
				В	9.0
\mathbf{SUR}	$-1/32 \times$	boehm_bulk	${\rm Al}_{32}{\rm O}_{64}{\rm H}_{32}$	R	2.9
	$1/72\times$	boehm_surf-010_00w	$Al_{72}O_{144}H_{72}$	J	2.1
				B	3.1
\mathbf{SUR}	$ -1/32 \times$	boehm_bulk	$Al_{32}O_{64}H_{32}$	R	23.0
	$1/48 \times$	boehm_surf-100_00w	$Al_{48} O_{96} H_{48}$	J	-0.4
				B	19.1
\mathbf{SUR}	$-1/32\times$	boehm_bulk	$Al_{32}O_{64}H_{32}$	R	18.6
	$1/48\times$	boehm_surf-101_00w	$AI_{48}O_{96}H_{48}$	J	7.5
	1/10			B	16.4
SUR	$-1/16 \times$	gamma_bulk	$AI_{16}O_{24}$	R	13.5
	$1/96\times$	gamma_edge-100-110_00w	$Al_{96}O_{144}$	J	7.0
				B	14.0
SUR	$-1/16 \times$	gamma_bulk	$Al_{16}O_{24}$	R	10.4
	$1/64 \times$	gamma_surf-100_00w	$AI_{64}O_{96}$	J	6.6
			41 0	B	13.0
SUR	$ -1/16\times$	gamma_bulk	$Al_{16}O_{24}$	R	21.2
	1/64×	gamma_surf-110_00w	$AI_{64}O_{96}$		7.4
			41 0	B	26.6
SUR	$ -1/16 \times$	gamma_bulk	$AI_{16}O_{24}$	R	13.5

	$1/40 \times$	gamma_surf-111_00w	$\operatorname{Al}_{40}\operatorname{O}_{60}$	J	5.6
	,	-		В	11.1
FOR	$-1 \times$	monomer	$\mathrm{Al}\mathrm{O}_4\mathrm{H}_5$	R	-27.8
	$1/12 \times$	alpha_bulk	$\operatorname{Al}_{12}\operatorname{O}_{18}$	J	-44.9
	$5/2 \times$	water	OH_2	В	-31.9
FOR	$-1 \times$	monomer	$\mathrm{Al}\mathrm{O}_4\mathrm{H}_5$	R	-38.8
	$1/32 \times$	boehm_bulk	${\rm Al}_{32}{\rm O}_{64}{\rm H}_{32}$	J	-38.6
	$2 \times$	water	OH_2	В	-36.5
FOR	$-1 \times$	monomer	$\mathrm{Al}\mathrm{O}_4\mathrm{H}_5$	R	-27.6
	$1/48 \times$	boehm_surf-001_00w	${\rm Al}_{48}{\rm O}_{96}{\rm H}_{48}$	J	-33.1
	$2 \times$	water	OH_2	В	-27.4
FOR	$-1 \times$	monomer	$\mathrm{Al}\mathrm{O}_4\mathrm{H}_5$	R	-35.9
	$1/72 \times$	boehm_surf-010_00w	$Al_{72} O_{144} H_{72}$	J	-36.5
	$2 \times$	water	OH_2	В	-33.4
FOR	$-1 \times$	monomer	$\mathrm{Al}\mathrm{O}_4\mathrm{H}_5$	R	-15.8
	$1/48 \times$	boehm_surf-100_00w	${\rm Al}_{48}{\rm O}_{96}{\rm H}_{48}$	J	-39.0
	$2 \times$	water	OH_2	В	-17.4
FOR	$-1 \times$	monomer	$\mathrm{Al}\mathrm{O}_4\mathrm{H}_5$	R	-20.2
	$1/48 \times$	boehm_surf-101_00w	${\rm Al}_{48}{\rm O}_{96}{\rm H}_{48}$	J	-31.1
	$2 \times$	water	OH_2	В	-20.1
FOR	$-1 \times$	monomer	$\mathrm{Al}\mathrm{O}_4\mathrm{H}_5$	R	-25.3
	$1/16 \times$	gamma_bulk	$Al_{16}O_{24}$	J	-48.6
	$5/2 \times$	water	OH_2	В	-26.4
FOR	$-1 \times$	monomer	$\mathrm{Al}\mathrm{O}_4\mathrm{H}_5$	R	-11.7
	$1/96 \times$	gamma_edge-100-110_00w	$Al_{96}O_{144}$	J	-41.6
	$5/2 \times$	water	OH_2	В	-12.4
FOR	$-1 \times$	monomer	$\mathrm{Al}\mathrm{O}_4\mathrm{H}_5$	R	-14.8
	$1/64 \times$	gamma_surf-100_00w	$Al_{64}O_{96}$	J	-42.0
	$5/2 \times$	water	OH_2	В	-13.4
FOR	$-1 \times$	monomer	$\mathrm{Al}\mathrm{O}_4\mathrm{H}_5$	R	-4.1
	$1/64 \times$	gamma_surf-110_00w	$Al_{64}O_{96}$	J	-41.2
	$5/2 \times$	water	OH_2	В	0.2
FOR	$-1 \times$	monomer	$\mathrm{Al}\mathrm{O}_4\mathrm{H}_5$	R	-11.7
	$1/40 \times$	gamma_surf-111_00w	$\operatorname{Al}_{40}\operatorname{O}_{60}$	J	-43.0
	$5/2 \times$	water	OH_2	В	-15.3

Figure S4: Histograms of reaction energies in the training set.

Name	Unit	Atoms	Block	Joshi 2014	Lower bound	Upper bound	This work
p_val3	1	Al	ATM	1.5000	1.2000	3.0000	2.9993
p_val5	1	Al	ATM	2.5791	2.0633	3.0949	2.4980
D_e^sigma	$kcal mol^{-1}$	Al-H	BND	92.8579	0.8579	122.7844	77.1779
p_be1	1	Al-H	BND	-0.6528	-0.7834	1.0000	-0.7823
p_ovun1	1	Al-H	BND	0.1551	0.0100	0.5000	0.3089
p_be2	1	Al-H	BND	10.0663	0.2281	13.0000	2.0985
p_bo1	1	Al-H	BND	-0.0842	-0.3320	-0.0674	-0.1398
p_bo2	1	Al-H	BND	7.1758	5.0015	15.0000	11.7930
D_e^sigma	$kcal mol^{-1}$	Al-O	BND	182.0654	118.9203	232.7313	166.4329
p_be1	1	Al-O	BND	-0.0920	-1.0000	-0.0736	-0.0963
p_ovun1	1	Al-O	BND	0.1688	0.0100	0.4562	0.1457
p_be2	1	Al-O	BND	0.0010	0.0008	1.5477	0.7025
p_bo1	1	Al-O	BND	-0.1959	-0.2351	-0.0740	-0.2053
p_bo2	1	Al-O	BND	6.0894	4.6533	7.3073	7.1635
D_e^sigma	$kcal mol^{-1}$	Al-Al	BND	34.0777	27.2622	65.7742	31.9434
r_0^sigma	Å	Al-H	OFD	1.7276	1.3821	2.0731	1.4893
r_0^sigma	Å	Al-O	OFD	1.5646	1.2517	1.8775	1.6172
p_val1	1	Al-H-O	ANG	4.2750	3.4200	20.0000	19.7283
p_val2	1	Al-H-O	ANG	1.0250	0.8200	4.8339	3.9208
p_val4	1	Al-H-O	ANG	1.4750	1.0100	1.7700	1.0931
Theta_0,0	\deg	Al-O-H	ANG	88.6163	64.6197	106.3396	66.0975
p_val1	1	Al-O-H	ANG	10.1310	4.2037	19.7491	16.7556
p_val2	1	Al-O-H	ANG	1.6896	1.3517	10.0000	2.4332
p_val4	1	Al-O-H	ANG	1.0000	0.8000	3.0000	1.4778
Theta_0,0	deg	Al-O-Al	ANG	13.8580	5.2474	64.5513	64.5486
p_val1	1	Al-O-Al	ANG	12.3669	9.8935	40.0000	12.8201
p_val2	1	Al-O-Al	ANG	4.4355	0.5527	9.9945	7.0734
p_val4	1	Al-O-Al	ANG	1.1908	0.9526	3.0000	2.9786
Theta_0,0	deg	H-Al-O	ANG	41.8108	0.0000	64.8437	9.7233
p_val1	1	H-Al-O	ANG	17.3800	5.4547	30.9495	23.4162
p_val2	1	H-Al-O	ANG	2.6618	0.9702	3.1942	3.0390
p_val4	1	H-Al-O	ANG	1.0100	0.8080	3.0000	1.0218
Theta_0,0	deg	0-A1-0	ANG	55.4358	43.7395	84.7469	61.5592
p_val1	1	0-A1-0	ANG	22.1089	7.3926	40.0000	24.2337
p_val2	1	0-A1-0	ANG	3.7402	1.2450	4.4882	1.2622
p_val4	1	0-A1-0	ANG	2.2064	1.0123	3.0000	2.9975

Table S3: List of activated parameters and their corresponding block, initial values from 1 and bounds.

Table S4: Structures in the validation set and contributions to each category of data. Bonds are represented by pairs of chemical elements, angles by triplets. The symbol \cdots denotes a hydrogen bond. Internal coordinates with oxygen not bound to aluminum are discarded. For hydrated alumina surfaces, the internal coordinates without hydrogen are not considered.

Structure	Chem. Form.	O-H	$O \cdots H$	Al-O	Al-Al	O-Al-O	Al-O-Al	Al-O-H	$Al - O \cdots H$	$\mathrm{H}\!-\!\mathrm{O}\!\cdots\mathrm{H}$	$H \cdots O \cdots H$
gamma_bulk	$Al_{32}O_{48}$			176	176	408	240				
gamma_surf-001_00w	$Al_{64}O_{96}$			336	316	736	432				
gamma_surf-001_01w	$\mathrm{Al}_{64}\mathrm{O}_{98}\mathrm{H}_4$	4	2		316			8	2	2	
gamma_surf-001_02w	$Al_{64} O_{100} H_8$	8	4		318			12	4	4	2
gamma_surf-001_03w	$Al_{64} O_{102} H_{12}$	12	8		316			20	8	8	4
gamma_surf-001_04w	$Al_{64} O_{104} H_{16}$	16	10		316			26	14	10	4
gamma_surf-110b_from_boehm_00w	Al ₈₀ O ₁₂₀			414	416	902	532				
gamma_surf-110b_from_boehm_02w	$Al_{80} O_{124} H_8$	8			436			16			
gamma_surf-110b_from_boehm_03w	Al ₈₀ O ₁₂₆ H ₁₂	12			436			22			
gamma_surf-110b_from_boehm_04w	Al ₈₀ O ₁₂₈ H ₁₆	16	8		436			24	8	8	
gamma_surf-110b_from_bulk_00w	$Al_{64}O_{96}$			336	324	744	440				
gamma_surf-110b_from_bulk_02w	$\mathrm{Al}_{64}\mathrm{O}_{98}\mathrm{H}_4$	4	2		324			6	4		
gamma_surf-110b_from_bulk_04w	$Al_{64} O_{100} H_8$	8	4		324			12	4	4	
gamma_surf-110b_from_bulk_06w	$Al_{64} O_{102} H_{12}$	12	6		324			16	10	4	
gamma_surf-110b_from_bulk_08w	$Al_{64} O_{104} H_{16}$	16	10		324			20	18	6	2
gamma_surf-1101_A1_00w	$Al_{48}O_{72}$			250	238	552	324				
gamma_surf-1101_A1_01w	$\mathrm{Al}_{48}\mathrm{O}_{74}\mathrm{H}_4$	4	2		234			8	4		
gamma_surf-1101_A1_02w	$\mathrm{Al}_{48}\mathrm{O}_{76}\mathrm{H}_{8}$	8	4		240			14	6	2	
gamma_surf-1101_A1_03w	$Al_{48}O_{78}H_{12}$	12	4		240			22	6	4	
gamma_surf-1101_A1_04w	$Al_{48} O_{80} H_{16}$	16	12		236			26	22	6	4
gamma_surf-1101_A1_05w	$Al_{48} O_{82} H_{20}$	20	14		236			30	26	8	4
gamma_surf-1101_A1_06w	$Al_{48} O_{84} H_{24}$	24	17		236			30	37	4	9
gamma_surf-1101_A2_00w	$Al_{56}O_{84}$			296	276	660	392				
gamma_surf-1101_A2_01w	$ m Al_{56} O_{86} H_4$	4	2		274			8	4		
gamma_surf-1101_A2_02w	$ m Al_{56} O_{88} H_8$	8	4		282			14	8		2
gamma_surf-1101_A2_03w	$Al_{56} O_{90} H_{12}$	12	7		284			20	11	5	1
gamma_surf-1101_A2_04w	$Al_{56} O_{92} H_{16}$	16	10		284			24	18	8	
gamma_surf-1101_A2_05w	$Al_{56} O_{94} H_{20}$	20	14		282			26	30	4	6
gamma_surf-1101_A2_06w	$Al_{56} O_{96} H_{24}$	24	18		282			30	38	6	8
gamma_surf-1101_L1_04w	$Al_{48} O_{80} H_{16}$	16	6		240			32	12	4	
gamma_surf-1101_L2_00w	$Al_{56}O_{84}$			294	286	654	384				
gamma_surf-1101_L2_01w	$Al_{56} O_{86} H_4$	4	2		276			8	4		
gamma_surf-1101_L2_02w	$Al_{56} O_{88} H_8$	8	4		282			14	8		2
gamma_surf-1101_L2_03w	$Al_{56} O_{90} H_{12}$	12	4		282			22	10	2	
gamma_surf-1101_L2_04w	$Al_{56} O_{92} H_{16}$	16	6		282			32	16	2	
gamma_surf-111_D1_03w	$Al_{32}O_{54}H_{12}$	12	5		144			22	6	4	2
$gamma_surf-111_D1_04w$	$Al_{32}O_{56}H_{16}$	16	5		146			30	6	5	2
gamma_surf-111_D1_05w	$Al_{32}O_{58}H_{20}$	20	10		146			36	14	10	2
gamma_surf-111_D1_06w	$Al_{32}O_{60}H_{24}$	24	14		146			44	17	14	5
gamma_surf-111_D2_03w	$Al_{32}O_{54}H_{12}$	12	8		144			22	12	4	2
gamma_surf-111_D2_04w	$Al_{32}O_{56}H_{16}$	16	9		146			30	14	7	2

total		704	351	2102	13588	4656	2744	1217	554	254	88
water	OH2										
gamma_surf-111_P2_2_06w	$Al_{40} O_{72} H_{24}$	24	15		192			35	15	15	2
gamma_surf-111_P2_2_05w	$Al_{40} O_{70} H_{20}$	20	14		190			32	18	12	3
gamma_surf-111_P2_2_04w	$Al_{40} O_{68} H_{16}$	16	10		194			26	16	6	
gamma_surf-111_P2_1_06w	$Al_{40} O_{72} H_{24}$	24	16		200			38	16	16	4
gamma_surf-111_P2_1_05w	$Al_{40} O_{70} H_{20}$	20	14		196			27	15	13	4
gamma_surf-111_P1_2_06w	$Al_{40} O_{72} H_{24}$	24	2		182			54	4	2	
gamma_surf-111_P1_2_05w	$Al_{40} O_{70} H_{20}$	20	5		178			44	10	5	
gamma_surf-111_P1_2_04w	$Al_{40} O_{68} H_{16}$	16	4		178			34	8	4	
gamma_surf-111_P1_2_03w	$Al_{40} O_{66} H_{12}$	12	2		178			24	4	2	
gamma_surf-111_P1_1_06w	$Al_{40} O_{72} H_{24}$	24	4		178			54	8	4	
gamma_surf-111_P1_1_05w	$Al_{40} O_{70} H_{20}$	20	3		184			43	6	3	
gamma_surf-111_D2_06w	$Al_{32}O_{60}H_{24}$	24	15		146			44	18	15	6
gamma_surf-111_D2_05w	Al ₃₂ O ₅₈ H ₂₀	20	12		146			36	15	12	6

Figure S5: Histograms of all interatomic distances in the validation set up to 5 Å, grouped per pair of chemical elements. Cutoffs for OH and AlO pairs depicted as vertical red lines: 1.2 Å for O-H bonds, 2.1 Å for hydrogen bonds and 2.8 Å for Al-O bonds. See main text for a more detailed description.

Figure S6: Histograms of internal coordinates in the validation set. In the labels on the horizontal axis, a dash represents a regular bond and a tilde represents a hydrogen bond.

Table S5: Overview of all chemical equations in the validation set. Reactants are given negative coefficients. For each reaction, three reaction energies are in $kcal mol^{-1}$: the reference DFT result (R), the prediction with the Joshi force field (J) and the prediction with the new force field in this work (B). Water adsorption energies are normalized to the number of water molecules. All other reaction energies are normalized on the number of Al atoms. The categories are defined in the main text.

Category	Coeff.	Structure	Chem. Form.	Reac	action energy	
GSH	$-1/2 \times$	gamma_surf-001_00w	$Al_{64}O_{96}$	R	-22.5	
	$-1 \times$	water	OH_2	J	-14.3	
	$1/2 \times$	gamma_surf-001_01w	$\mathrm{Al}_{64}\mathrm{O}_{98}\mathrm{H}_4$	В	-31.6	
GSH	$-1/4 \times$	gamma_surf-001_00w	$Al_{64}O_{96}$	R	-24.4	
	$-1 \times$	water	OH_2	J	-5.0	
	$1/4 \times$	gamma_surf-001_02w	${\rm Al}_{64}{\rm O}_{100}{\rm H}_8$	В	-27.5	
\mathbf{GSH}	$-1/2 \times$	gamma_surf-001_01w	$\mathrm{Al}_{64}\mathrm{O}_{98}\mathrm{H}_4$	R	-26.3	
	$-1 \times$	water	OH_2	J	4.2	
	$1/2 \times$	gamma_surf-001_02w	$Al_{64} O_{100} H_8$	В	-23.4	
GSH	$-1/6 \times$	gamma_surf-001_00w	$\mathrm{Al}_{64}\mathrm{O}_{96}$	R	-23.5	
	$-1 \times$	water	OH_2	J	0.2	
	$1/6 \times$	gamma_surf-001_03w	$Al_{64} O_{102} H_{12}$	В	-28.4	
\mathbf{GSH}	$-1/4 \times$	gamma_surf-001_01w	$\mathrm{Al}_{64}\mathrm{O}_{98}\mathrm{H}_4$	R	-24.0	
	$-1 \times$	water	OH_2	J	7.4	
	$1/4 \times$	gamma_surf-001_03w	$Al_{64} O_{102} H_{12}$	В	-26.8	
\mathbf{GSH}	$-1/2 \times$	gamma_surf-001_02w	${\rm Al}_{64}{\rm O}_{100}{\rm H}_8$	R	-21.6	
	$-1 \times$	water	OH_2	J	10.6	
	$1/2 \times$	gamma_surf-001_03w	$Al_{64} O_{102} H_{12}$	В	-30.1	
\mathbf{GSH}	$-1/8 \times$	gamma_surf-001_00w	$Al_{64}O_{96}$	R	-20.8	
	$-1 \times$	water	OH_2	J	-12.3	
	$1/8 \times$	gamma_surf-001_04w	$Al_{64} O_{104} H_{16}$	В	-24.1	
\mathbf{GSH}	$-1/6 \times$	gamma_surf-001_01w	$\mathrm{Al}_{64}\mathrm{O}_{98}\mathrm{H}_4$	R	-20.2	
	$-1\times$	water	OH_2	J	-11.6	
	$1/6 \times$	gamma_surf-001_04w	$Al_{64} O_{104} H_{16}$	В	-21.6	
\mathbf{GSH}	$-1/4 \times$	gamma_surf-001_02w	$Al_{64} O_{100} H_8$	R	-17.1	
	$-1\times$	water	OH_2	J	-19.5	
	$1/4 \times$	gamma_surf-001_04w	$Al_{64} O_{104} H_{16}$	В	-20.7	
\mathbf{GSH}	$-1/2 \times$	gamma_surf-001_03w	$Al_{64} O_{102} H_{12}$	R	-12.6	
	$-1\times$	water	OH_2	J	-49.7	
	$1/2 \times$	gamma_surf-001_04w	$Al_{64} O_{104} H_{16}$	В	-11.3	
\mathbf{GSH}	$-1/4 \times$	gamma_surf-110b_from_boehm_00w	$Al_{80} O_{120}$	R	-60.7	
	$-1 \times$	water	OH_2	J	5.5	
	$1/4 \times$	gamma_surf-110b_from_boehm_02w	$Al_{80}O_{124}H_8$	B	-50.1	
GSH	$-1/6 \times$	gamma_surf-110b_from_boehm_00w	$Al_{80} O_{120}$	R	-58.9	
	$-1 \times$	water	OH_2	J	10.3	

	$1/6 \times$	gamma_surf-110b_from_boehm_03w	$Al_{80}O_{126}H_{12}$	В	-56.7
GSH	$-1/2 \times$	gamma_surf-110b_from_boehm_02w	${\rm Al}_{80}{\rm O}_{124}{\rm H}_8$	R	-55.1
	$-1 \times$	water	OH_2	J	19.7
	$1/2 \times$	gamma_surf-110b_from_boehm_03w	$Al_{80}O_{126}H_{12}$	В	-70.0
GSH	$-1/8 \times$	gamma_surf-110b_from_boehm_00w	$Al_{80}O_{120}$	R	-58.2
	$-1 \times$	water	OH_2	J	-7.7
	$1/8 \times$	gamma_surf-110b_from_boehm_04w	$Al_{80}O_{128}H_{16}$	В	-53.6
GSH	$-1/4 \times$	gamma_surf-110b_from_boehm_02w	${\rm Al}_{80}{\rm O}_{124}{\rm H}_8$	R	-55.7
	$-1 \times$	water	OH_2	J	-21.0
	$1/4 \times$	gamma_surf-110b_from_boehm_04w	$Al_{80}O_{128}H_{16}$	В	-57.2
GSH	$-1/2 \times$	gamma_surf-110b_from_boehm_03w	$Al_{80}O_{126}H_{12}$	R	-56.3
	$-1 \times$	water	OH_2	J	-61.7
	$1/2 \times$	gamma_surf-110b_from_boehm_04w	$Al_{80}O_{128}H_{16}$	В	-44.4
GSH	$-1/2 \times$	gamma_surf-110b_from_bulk_00w	$Al_{64}O_{96}$	R	-43.6
	$-1 \times$	water	OH_2	J	-26.1
	$1/2 \times$	gamma_surf-110b_from_bulk_02w	$\mathrm{Al}_{64}\mathrm{O}_{98}\mathrm{H}_4$	В	-49.6
GSH	$-1/4 \times$	gamma_surf-110b_from_bulk_00w	$Al_{64}O_{96}$	R	-45.8
	$-1 \times$	water	OH_2	J	-43.6
	$1/4 \times$	gamma_surf-110b_from_bulk_04w	${\rm Al}_{64}{\rm O}_{100}{\rm H}_8$	В	-50.9
\mathbf{GSH}	$-1/2 \times$	gamma_surf-110b_from_bulk_02w	$\mathrm{Al}_{64}\mathrm{O}_{98}\mathrm{H}_4$	R	-48.0
	$-1 \times$	water	OH_2	J	-61.0
	$1/2 \times$	gamma_surf-110b_from_bulk_04w	$Al_{64} O_{100} H_8$	В	-52.1
\mathbf{GSH}	$-1/6 \times$	gamma_surf-110b_from_bulk_00w	$Al_{64}O_{96}$	R	-39.1
	$-1\times$	water	OH_2	J	-32.6
	$1/6 \times$	gamma_surf-110b_from_bulk_06w	$Al_{64} O_{102} H_{12}$	В	-41.3
\mathbf{GSH}	$-1/4 \times$	gamma_surf-110b_from_bulk_02w	$Al_{64}O_{98}H_4$	R	-36.8
	$-1\times$	water	OH ₂	J	-35.9
	$1/4 \times$	gamma_surf-110b_from_bulk_06w	$Al_{64} O_{102} H_{12}$	В	-37.2
GSH	$-1/2 \times$	gamma_surf-110b_from_bulk_04w	$Al_{64} O_{100} H_8$	R	-25.6
	$-1\times$	water	OH_2	J	-10.7
	$1/2 \times$	gamma_surf-110b_from_bulk_06w	$Al_{64}O_{102}H_{12}$	B	-22.2
GSH	$-1/8\times$	gamma_surf-110b_from_bulk_00w	$Al_{64}O_{96}$	R	-36.4
	$-1\times$	water	OH_2	J	-26.9
COLL	$1/8\times$	gamma_surf-110b_from_bulk_08w	$Al_{64}O_{104}H_{16}$	B	-38.1
GSH	$-1/6\times$	gamma_surf-110b_from_bulk_02w	$\operatorname{Al}_{64}\operatorname{O}_{98}\operatorname{H}_4$	R	-34.0
	$-1\times$	water	OH_2	J	-27.1
COLL	$1/6\times$	gamma_suri-110b_from_bulk_08w	$Al_{64}O_{104}H_{16}$	B	-34.3
GSH	$-1/4\times$	gamma_suri-110b_irom_bulk_04w	$AI_{64} O_{100} H_8$	K	-26.9
	$-1\times$	water	OH_2	J	-10.2
COLL	$1/4\times$	gamma_suri-110b_from_bulk_08w	$Al_{64}O_{104}H_{16}$	B	$\frac{-25.4}{20.2}$
GSH	$-1/2 \times$	gamma_suri-110b_irom_bulk_06w	$AI_{64} \cup_{102} H_{12}$	K T	-28.2
	$-1\times$	water		J	-9.1
OCH	1/2×	gamma_suri-110b_from_bulk_08w	$AI_{64} \cup_{104} H_{16}$	В	-28.0
	□ <u> </u>	gamma surt - 11() A1()()w	A 48 ()79	$\square \mathbf{R}$	-86.5

	$-1 \times$	water	OH_2	J	61.0
	$1/2 \times$	gamma_surf-1101_A1_01w	$\mathrm{Al}_{48}\mathrm{O}_{74}\mathrm{H}_4$	В	-83.3
GSH	$-1/4 \times$	gamma_surf-1101_A1_00w	$\operatorname{Al}_{48}\operatorname{O}_{72}$	R	-58.5
	$-1 \times$	water	OH_2	J	4.1
	$1/4 \times$	gamma_surf-1101_A1_02w	$\mathrm{Al}_{48}\mathrm{O}_{76}\mathrm{H}_{8}$	В	-65.9
GSH	$-1/2 \times$	gamma_surf-1101_A1_01w	$\mathrm{Al}_{48}\mathrm{O}_{74}\mathrm{H}_4$	R	-30.5
	$-1 \times$	water	OH_2	J	-52.8
	$1/2 \times$	gamma_surf-1101_A1_02w	$\mathrm{Al}_{48}\mathrm{O}_{76}\mathrm{H}_{8}$	В	-48.5
GSH	$-1/6 \times$	gamma_surf-1101_A1_00w	$\mathrm{Al}_{48}\mathrm{O}_{72}$	R	-65.3
	$-1 \times$	water	OH_2	J	21.2
	$1/6 \times$	gamma_surf-1101_A1_03w	${ m Al}_{48}{ m O}_{78}{ m H}_{12}$	В	-67.2
\mathbf{GSH}	$-1/4 \times$	gamma_surf-1101_A1_01w	$\mathrm{Al}_{48}\mathrm{O}_{74}\mathrm{H}_4$	R	-54.6
	$-1 \times$	water	OH_2	J	1.4
	$1/4 \times$	gamma_surf-1101_A1_03w	${ m Al}_{48}{ m O}_{78}{ m H}_{12}$	В	-59.2
\mathbf{GSH}	$-1/2 \times$	gamma_surf-1101_A1_02w	$\mathrm{Al}_{48}\mathrm{O}_{76}\mathrm{H}_{8}$	R	-78.8
	$-1\times$	water	OH_2	J	55.5
	$1/2 \times$	gamma_surf-1101_A1_03w	${ m Al}_{48}{ m O}_{78}{ m H}_{12}$	В	-69.8
\mathbf{GSH}	$-1/8 \times$	gamma_surf-1101_A1_00w	$\mathrm{Al}_{48}\mathrm{O}_{72}$	R	-57.0
	$-1\times$	water	OH_2	J	15.1
	$1/8 \times$	gamma_surf-1101_A1_04w	${ m Al}_{48}{ m O}_{80}{ m H}_{16}$	В	-55.8
\mathbf{GSH}	$-1/6 \times$	gamma_surf-1101_A1_01w	$\mathrm{Al}_{48}\mathrm{O}_{74}\mathrm{H}_4$	R	-47.1
	$-1\times$	water	OH_2	J	-0.2
	$1/6 \times$	gamma_surf-1101_A1_04w	$Al_{48}O_{80}H_{16}$	В	-46.6
\mathbf{GSH}	$-1/4 \times$	gamma_surf-1101_A1_02w	$\operatorname{Al}_{48}\operatorname{O}_{76}\operatorname{H}_{8}$	R	-55.4
	$-1\times$	water	OH_2	J	26.1
	$1/4 \times$	gamma_surf-1101_A1_04w	Al ₄₈ O ₈₀ H ₁₆	B	-45.6
GSH	$-1/2 \times$	gamma_surf-1101_A1_03w	$\operatorname{Al}_{48}\operatorname{O}_{78}\operatorname{H}_{12}$	R	-32.0
	$-1\times$	water	OH_2	J	-3.4
	$1/2\times$	gamma_surf-1101_A1_04w	Al ₄₈ O ₈₀ H ₁₆	B	-21.4
GSH	$-1/10\times$	gamma_surf-1101_A1_00w	$Al_{48}O_{72}$	R	-49.8
	$-I\times$	water	OH_2	J	5.5
COLL	1/10×	gamma_surf-1101_A1_05w	$\frac{\text{Al}_{48} \text{O}_{82} \text{H}_{20}}{\text{Al}_{20} \text{H}_{20}}$	В	$\frac{-48.5}{40.7}$
GSH	$-1/8\times$	gamma_surf-1101_A1_01w	$\operatorname{Al}_{48}\operatorname{O}_{74}\operatorname{H}_4$	K	-40.7
	-IX	water	OH_2	J	-8.4
CCII	$\frac{1/8\times}{1/6\times}$	gamma_surf-1101_A1_05W	$\frac{\text{Al}_{48} \text{O}_{82} \text{H}_{20}}{\text{Al}_{100} \text{H}_{200}}$	D	$\frac{-39.8}{44.1}$
GSH	$-1/0 \times$	gamma_sur1-1101_A1_02W	$AI_{48} \cup_{76} \Pi_8$	n T	-44.1
	$-1 \times$	water		J D	0.4
CSH	$1/0 \times$	gamma_surf_1101_A1_03w	$\frac{\text{Al}_{48} \text{O}_{82} \text{H}_{20}}{\text{Al}_{10} \text{H}}$	D	$\frac{-30.9}{26.7}$
GSH	$-1/4 \times$	gamma_sull=ll01_A1_03w	$AI_{48} O_{78} \Pi_{12}$	n I	-20.7
	$1/4 \checkmark$	wavel $(110) \land 1 0 F$	$O \Pi_2$ Al. O H	R R	-10.1 -20.4
CSH	$1/4 \times$ $-1/9 \vee$	gamma_surf 1101 A1 04.	$\frac{\Lambda_{148} \cup_{82} \Pi_{20}}{\Lambda_{148} \cup_{82} \Pi_{20}}$	R	$\frac{-20.4}{-21}$
GoII	$-1/2 \times$ $-1 \vee$	gamma_bull=llVL_AL_V4W	$\cap H_{2}$		-21.4 _32.8
	$1/2^{-1}$	waver $g_{1} = 1101 11 05\pi$	ΔI_{12}	R	_10 /
	1/2×	gamma_puri-IIOT_AI_ODW	A148 U82 1120	Ъ	-19.4

GSH	$-1/12 \times$	gamma_surf-1101_A1_00w	$\mathrm{Al}_{48}\mathrm{O}_{72}$	R	-43.6
	$-1 \times$	water	OH_2	J	-1.2
	$1/12 \times$	gamma_surf-1101_A1_06w	${\rm Al}_{48}{ m O}_{84}{ m H}_{24}$	В	-42.5
GSH	$-1/10 \times$	gamma_surf-1101_A1_01w	$\mathrm{Al}_{48}\mathrm{O}_{74}\mathrm{H}_4$	R	-35.0
	-1×	water	OH_2	J	-13.6
	$1/10 \times$	gamma_surf-1101_A1_06w	${\rm Al}_{48}{\rm O}_{84}{\rm H}_{24}$	В	-34.4
GSH	$-1/8 \times$	gamma_surf-1101_A1_02w	$\mathrm{Al}_{48}\mathrm{O}_{76}\mathrm{H}_{8}$	R	-36.2
	$-1 \times$	water	OH_2	J	-3.8
	$1/8 \times$	gamma_surf-1101_A1_06w	${\rm Al}_{48}{\rm O}_{84}{\rm H}_{24}$	В	-30.8
GSH	$-1/6 \times$	gamma_surf-1101_A1_03w	${\rm Al}_{48}{ m O}_{78}{ m H}_{12}$	R	-22.0
	$-1 \times$	water	OH_2	J	-23.6
	$1/6 \times$	gamma_surf-1101_A1_06w	$Al_{48}O_{84}H_{24}$	В	-17.8
GSH	$-1/4 \times$	gamma_surf-1101_A1_04w	${ m Al}_{48}{ m O}_{80}{ m H}_{16}$	R	-17.0
	$-1 \times$	water	OH_2	J	-33.7
	$1/4 \times$	gamma_surf-1101_A1_06w	${\rm Al}_{48}{\rm O}_{84}{\rm H}_{24}$	В	-16.0
GSH	$-1/2 \times$	gamma_surf-1101_A1_05w	${\rm Al}_{48}{ m O}_{82}{ m H}_{20}$	R	-12.5
	$-1 \times$	water	OH_2	J	-34.6
	$1/2 \times$	gamma_surf-1101_A1_06w	$\rm Al_{48}O_{84}H_{24}$	В	-12.7
GSH	$-1/2 \times$	gamma_surf-1101_A2_00w	$\mathrm{Al}_{56}\mathrm{O}_{84}$	R	-82.6
	$-1 \times$	water	OH_2	J	-40.3
	$1/2 \times$	gamma_surf-1101_A2_01w	$\mathrm{Al}_{56}\mathrm{O}_{86}\mathrm{H}_4$	В	-89.7
GSH	$-1/4 \times$	gamma_surf-1101_A2_00w	$\mathrm{Al}_{56}\mathrm{O}_{84}$	R	-66.4
	$-1 \times$	water	OH_2	J	-41.8
	$1/4 \times$	gamma_surf-1101_A2_02w	$\mathrm{Al}_{56}\mathrm{O}_{88}\mathrm{H}_{8}$	В	-75.6
GSH	$-1/2 \times$	gamma_surf-1101_A2_01w	$\mathrm{Al}_{56}\mathrm{O}_{86}\mathrm{H}_4$	R	-50.2
	$-1 \times$	water	OH_2	J	-43.2
	$1/2 \times$	gamma_surf-1101_A2_02w	$\mathrm{Al}_{56}\mathrm{O}_{88}\mathrm{H}_{8}$	В	-61.5
\mathbf{GSH}	$-1/6 \times$	gamma_surf-1101_A2_00w	$\mathrm{Al}_{56}\mathrm{O}_{84}$	R	-60.3
	$-1 \times$	water	OH_2	J	-35.4
	$1/6 \times$	gamma_surf-1101_A2_03w	$Al_{56} O_{90} H_{12}$	В	-65.2
\mathbf{GSH}	$-1/4 \times$	gamma_surf-1101_A2_01w	$\mathrm{Al}_{56}\mathrm{O}_{86}\mathrm{H}_4$	R	-49.1
	$-1\times$	water	OH_2	J	-32.9
	$1/4 \times$	gamma_surf-1101_A2_03w	$Al_{56} O_{90} H_{12}$	В	-52.9
\mathbf{GSH}	$-1/2 \times$	gamma_surf-1101_A2_02w	$\operatorname{Al}_{56}\operatorname{O}_{88}\operatorname{H}_8$	R	-48.1
	$-1\times$	water	OH_2	J	-22.5
	$1/2 \times$	gamma_surf-1101_A2_03w	$Al_{56} O_{90} H_{12}$	В	-44.3
\mathbf{GSH}	$-1/8 \times$	gamma_surf-1101_A2_00w	$Al_{56}O_{84}$	R	-52.7
	$-1\times$	water	OH_2	J	-10.4
	$1/8 \times$	gamma_surf-1101_A2_04w	$Al_{56} O_{92} H_{16}$	В	-56.2
\mathbf{GSH}	$-1/6 \times$	gamma_surf-1101_A2_01w	$\mathrm{Al}_{56}\mathrm{O}_{86}\mathrm{H}_4$	R	-42.7
	$-1\times$	water	OH_2	J	-0.4
	$1/6 \times$	gamma_surf-1101_A2_04w	$Al_{56}O_{92}H_{16}$	B	-45.1
\mathbf{GSH}	$-1/4 \times$	gamma_surf-1101_A2_02w	$\operatorname{Al}_{56}\operatorname{O}_{88}\operatorname{H}_8$	R	-38.9
	$-1\times$	water	OH_2	J	21.0

	$1/4 \times$	gamma_surf-1101_A2_04w	${\rm Al}_{56}{\rm O}_{92}{\rm H}_{16}$	В	-36.8
GSH	$-1/2 \times$	gamma_surf-1101_A2_03w	${\rm Al}_{56}{\rm O}_{90}{\rm H}_{12}$	R	-29.8
	$-1 \times$	water	OH_2	J	64.5
	$1/2 \times$	gamma_surf-1101_A2_04w	${\rm Al}_{56}{\rm O}_{92}{\rm H}_{16}$	В	-29.3
GSH	$-1/10 \times$	gamma_surf-1101_A2_00w	$\mathrm{Al}_{56}\mathrm{O}_{84}$	R	-46.1
	$-1 \times$	water	OH_2	J	-5.3
	$1/10 \times$	gamma_surf-1101_A2_05w	${\rm Al}_{56}{\rm O}_{94}{\rm H}_{20}$	В	-50.1
GSH	$-1/8 \times$	gamma_surf-1101_A2_01w	$\mathrm{Al}_{56}\mathrm{O}_{86}\mathrm{H}_4$	R	-37.0
	$-1 \times$	water	OH_2	J	3.5
	$1/8 \times$	gamma_surf-1101_A2_05w	${\rm Al}_{56}{\rm O}_{94}{\rm H}_{20}$	В	-40.2
GSH	$-1/6 \times$	gamma_surf-1101_A2_02w	$\mathrm{Al}_{56}\mathrm{O}_{88}\mathrm{H}_{8}$	R	-32.6
	$-1 \times$	water	OH_2	J	19.0
	$1/6 \times$	gamma_surf-1101_A2_05w	${\rm Al}_{56}{\rm O}_{94}{\rm H}_{20}$	В	-33.0
GSH	$-1/4 \times$	gamma_surf-1101_A2_03w	${\rm Al}_{56}{\rm O}_{90}{\rm H}_{12}$	R	-24.9
	$-1 \times$	water	OH_2	J	39.8
	$1/4 \times$	gamma_surf-1101_A2_05w	${\rm Al}_{56}{\rm O}_{94}{\rm H}_{20}$	В	-27.4
GSH	$-1/2 \times$	gamma_surf-1101_A2_04w	${\rm Al}_{56}{\rm O}_{92}{\rm H}_{16}$	R	-20.0
	$-1 \times$	water	OH_2	J	15.2
	$1/2 \times$	gamma_surf-1101_A2_05w	${\rm Al}_{56}{\rm O}_{94}{\rm H}_{20}$	В	-25.5
\mathbf{GSH}	$-1/12\times$	gamma_surf-1101_A2_00w	$\mathrm{Al}_{56}\mathrm{O}_{84}$	R	-42.0
	$-1 \times$	water	OH_2	J	-17.4
	$1/12 \times$	gamma_surf-1101_A2_06w	${ m Al}_{56}{ m O}_{96}{ m H}_{24}$	В	-47.1
\mathbf{GSH}	$-1/10 \times$	gamma_surf-1101_A2_01w	$\mathrm{Al}_{56}\mathrm{O}_{86}\mathrm{H}_4$	R	-33.9
	$-1\times$	water	OH_2	J	-12.8
	$1/10 \times$	gamma_surf-1101_A2_06w	$Al_{56}O_{96}H_{24}$	В	-38.5
\mathbf{GSH}	$-1/8 \times$	gamma_surf-1101_A2_02w	$\mathrm{Al}_{56}\mathrm{O}_{88}\mathrm{H}_{8}$	R	-29.8
	$-1\times$	water	OH_2	J	-5.1
	$1/8 \times$	gamma_surf-1101_A2_06w	$Al_{56} O_{96} H_{24}$	В	-32.8
GSH	$-1/6 \times$	gamma_surf-1101_A2_03w	$Al_{56}O_{90}H_{12}$	R	-23.7
	$-1\times$	water	OH_2	J	0.6
	$1/6\times$	gamma_surf-1101_A2_06w	$\frac{\text{Al}_{56} \text{O}_{96} \text{H}_{24}}{\text{Al}_{56} \text{O}_{96} \text{H}_{24}}$	B	-29.0
GSH	$-1/4\times$	gamma_surf-1101_A2_04w	$AI_{56}O_{92}H_{16}$	R	-20.7
	$-1\times$	water	OH_2	J	-31.3
	$1/4\times$	gamma_surf-1101_A2_06w	$\frac{\text{Al}_{56} \text{O}_{96} \text{H}_{24}}{\text{Al}_{56} \text{O}_{96} \text{H}_{24}}$	B	-28.8
GSH	$-1/2 \times$	gamma_surf-1101_A2_05w	$AI_{56}O_{94}H_{20}$	R	-21.4
	$-1\times$	water	OH_2	J	-((.))
COLL	$1/2 \times$	gamma_surf-1101_A2_06w	$\frac{\text{Al}_{56} \text{O}_{96} \text{H}_{24}}{\text{Al}_{56} \text{O}_{96} \text{H}_{24}}$	B	$\frac{-32.1}{}$
GSH	$-1/2 \times$	gamma_surf-1101_L2_00w	$AI_{56}O_{84}$	K	-60.8
	$-1\times$	water	OH_2	J	-15.8
COLL	$1/2 \times$	gamma_suri-1101_L2_01w	$\frac{\text{Al}_{56} \text{O}_{86} \text{H}_4}{\text{Al}_{56} \text{O}_{86} \text{H}_4}$	B	$\frac{-58.3}{44.6}$
GSH	$-1/4 \times$	gamma_suri-1101_L2_00w	$AI_{56} O_{84}$	К т	
	$-1\times$	water	OH_2	J	10.5 51.0
COL	$1/4\times$	gamma_suri-1101_L2_02W	$\frac{\text{Al}_{56} \text{U}_{88} \text{H}_8}{\text{Al}_{100} \text{H}_{100} \text{H}_{100}}$	D	-01.9
GSH	$ $ $-1/2\times$	gamma_surt-1101_L2_01w	$AI_{56} O_{86} H_4$	К	-28.4

	$-1 \times$	water	OH_2	J	36.8
	$1/2 \times$	gamma_surf-1101_L2_02w	$\mathrm{Al}_{56}\mathrm{O}_{88}\mathrm{H}_{8}$	В	-45.5
GSH	$-1/6 \times$	gamma_surf-1101_L2_00w	$\operatorname{Al}_{56}\operatorname{O}_{84}$	R	-50.5
	$-1 \times$	water	OH_2	J	25.8
	$1/6 \times$	gamma_surf-1101_L2_03w	${\rm Al}_{56}{\rm O}_{90}{\rm H}_{12}$	В	-53.2
GSH	$-1/4 \times$	gamma_surf-1101_L2_01w	$\mathrm{Al}_{56}\mathrm{O}_{86}\mathrm{H}_4$	R	-45.3
	$-1 \times$	water	OH_2	J	46.6
	$1/4 \times$	gamma_surf-1101_L2_03w	${\rm Al}_{56}{\rm O}_{90}{\rm H}_{12}$	В	-50.6
\mathbf{GSH}	$-1/2 \times$	gamma_surf-1101_L2_02w	$\mathrm{Al}_{56}\mathrm{O}_{88}\mathrm{H}_{8}$	R	-62.3
	$-1 \times$	water	OH_2	J	56.5
	$1/2 \times$	gamma_surf-1101_L2_03w	${\rm Al}_{56}{\rm O}_{90}{\rm H}_{12}$	В	-55.7
\mathbf{GSH}	$-1/8 \times$	gamma_surf-1101_L2_00w	$\mathrm{Al}_{56}\mathrm{O}_{84}$	R	-53.0
	$-1 \times$	water	OH_2	J	24.9
	$1/8 \times$	gamma_surf-1101_L2_04w	${\rm Al}_{56}{\rm O}_{92}{\rm H}_{16}$	В	-49.3
\mathbf{GSH}	$-1/6 \times$	gamma_surf-1101_L2_01w	$\mathrm{Al}_{56}\mathrm{O}_{86}\mathrm{H}_4$	R	-50.4
	$-1 \times$	water	OH_2	J	38.5
	$1/6 \times$	gamma_surf-1101_L2_04w	${\rm Al}_{56}{\rm O}_{92}{\rm H}_{16}$	В	-46.2
\mathbf{GSH}	$-1/4 \times$	gamma_surf-1101_L2_02w	$\mathrm{Al}_{56}\mathrm{O}_{88}\mathrm{H}_{8}$	R	-61.5
	$-1\times$	water	OH_2	J	39.3
	$1/4 \times$	gamma_surf-1101_L2_04w	$Al_{56} O_{92} H_{16}$	В	-46.6
\mathbf{GSH}	$-1/2 \times$	gamma_surf-1101_L2_03w	$Al_{56} O_{90} H_{12}$	R	-60.7
	$-1\times$	water	OH_2	J	22.1
	$1/2 \times$	gamma_surf-1101_L2_04w	$\operatorname{Al}_{56}\operatorname{O}_{92}\operatorname{H}_{16}$	В	-37.5
\mathbf{GSH}	$-1/2 \times$	gamma_surf-111_D1_03w	$Al_{32}O_{54}H_{12}$	R	-60.7
	$-1\times$	water	OH_2	J	-5.4
	$1/2 \times$	gamma_surf-111_D1_04w	$Al_{32}O_{56}H_{16}$	В	-49.0
GSH	$-1/4 \times$	gamma_surf-111_D1_03w	$AI_{32}O_{54}H_{12}$	R	-49.5
	$-1\times$	water	OH_2	J	1.5
aatt	$1/4 \times$	gamma_surf-111_D1_05w	$\frac{\text{Al}_{32} \text{O}_{58} \text{H}_{20}}{\text{Al}_{32} \text{O}_{58} \text{H}_{20}}$	В	-38.6
GSH	$-1/2 \times$	gamma_surf-111_D1_04w	$AI_{32}O_{56}H_{16}$	R	-38.4
	$-1\times$	water	OH_2	J	8.5
COLL	$1/2 \times$	gamma_surf-111_D1_05w	$\frac{\text{Al}_{32} \text{O}_{58} \text{H}_{20}}{\text{Al}_{50} \text{H}_{20}}$	В	$\frac{-28.3}{42.0}$
GSH	$-1/6\times$	gamma_suri-111_D1_03w	$AI_{32}O_{54}H_{12}$	K	-42.9
	$-1\times$	water	OH_2	J	15.4
CCII	$1/0 \times$	gamma_suri-III_DI_06W	$\frac{\text{Al}_{32}\text{O}_{60}\text{H}_{24}}{\text{Al}_{100}\text{H}_{24}}$	B	$\frac{-34.8}{24.0}$
GSH	$-1/4 \times$	gamma_suri-111_D1_04W	AI $_{32}$ O $_{56}$ H $_{16}$	к т	-34.0
	-1X	water	$O \Pi_2$	J	20.8
CSH	$1/4 \times$ $1/9 \times$	gamma_surf_111_D1_CF	$\frac{\text{A1}_{32} \text{U}_{60} \Pi_{24}}{\text{A1} \text{O} \Pi}$	D D	$\frac{-21.1}{20.6}$
GSH	$-1/2 \times$	gamma_Suri-III_DI_05w	$AI_{32} O_{58} II_{20}$	n I	-29.0
	$-1 \times$ $1/9 \times$	Wabel		B	40.2 _97 1
CSH	$\frac{1/2\times}{-1/2\times}$	gamma_surf 111_D2_02.	$\frac{1}{\Delta l_{22} O_{60} \Pi_{24}}$	р D	$\frac{-21.1}{-50.3}$
GOIL	$-1/2 \times$ $-1 \vee$	gamma_sull=lll_DZ_USW	$\Lambda_{132} \cup_{54} \Pi_{12}$ $\cap H_2$		-30.3 76 1
	$1/2 \vee$	matter	Δ_{12}	R	_97 A
	1/4×	gamma_buti-tit_DZ_04W	$A_{132} \cup 56 \Pi_{16}$	Ъ	-21.4

GSH	$-1/4 \times$	gamma_surf-111_D2_03w	${ m Al}_{32}{ m O}_{54}{ m H}_{12}$	R	-44.4
	$-1 \times$	water	OH_2	J	39.7
	$1/4 \times$	gamma_surf-111_D2_05w	${\rm Al}_{32}{\rm O}_{58}{\rm H}_{20}$	В	-34.8
GSH	$-1/2 \times$	gamma_surf-111_D2_04w	${ m Al}_{32}{ m O}_{56}{ m H}_{16}$	R	-38.5
	$-1 \times$	water	OH_2	J	33.3
	$1/2 \times$	gamma_surf-111_D2_05w	${\rm Al}_{32}{\rm O}_{58}{\rm H}_{20}$	В	-42.1
GSH	$-1/6 \times$	gamma_surf-111_D2_03w	${\rm Al}_{32}{\rm O}_{54}{\rm H}_{12}$	R	-39.4
	$-1 \times$	water	OH_2	J	24.6
	$1/6 \times$	gamma_surf-111_D2_06w	$Al_{32}O_{60}H_{24}$	В	-34.0
GSH	$-1/4 \times$	gamma_surf-111_D2_04w	${\rm Al}_{32}{\rm O}_{56}{\rm H}_{16}$	R	-33.9
	$-1 \times$	water	OH_2	J	13.8
	$1/4 \times$	gamma_surf-111_D2_06w	${\rm Al}_{32}{\rm O}_{60}{\rm H}_{24}$	В	-37.3
GSH	$-1/2 \times$	gamma_surf-111_D2_05w	${\rm Al}_{32}{\rm O}_{58}{\rm H}_{20}$	R	-29.4
	$-1 \times$	water	OH_2	J	-5.6
	$1/2 \times$	gamma_surf-111_D2_06w	${\rm Al}_{32}{\rm O}_{60}{\rm H}_{24}$	В	-32.4
\mathbf{GSH}	$-1/2 \times$	gamma_surf-111_P1_1_05w	${\rm Al}_{40}{\rm O}_{70}{\rm H}_{20}$	R	-21.2
	$-1 \times$	water	OH_2	J	1.7
	$1/2 \times$	gamma_surf-111_P1_1_06w	$Al_{40}O_{72}H_{24}$	В	-22.9
\mathbf{GSH}	$-1/2 \times$	gamma_surf-111_P1_2_03w	${ m Al}_{40}{ m O}_{66}{ m H}_{12}$	R	-51.2
	$-1 \times$	water	OH_2	J	47.5
	$1/2 \times$	gamma_surf-111_P1_2_04w	${\rm Al}_{40}{ m O}_{68}{ m H}_{16}$	В	-36.4
\mathbf{GSH}	$-1/4 \times$	gamma_surf-111_P1_2_03w	$Al_{40} O_{66} H_{12}$	R	-41.3
	$-1 \times$	water	$O H_2$	J	34.9
	$1/4 \times$	gamma_surf-111_P1_2_05w	$Al_{40} O_{70} H_{20}$	В	-35.9
\mathbf{GSH}	$-1/2 \times$	gamma_surf-111_P1_2_04w	$Al_{40} O_{68} H_{16}$	R	-31.4
	$-1\times$	water	OH_2	J	22.3
	$1/2 \times$	gamma_surf-111_P1_2_05w	$Al_{40} O_{70} H_{20}$	В	-35.4
\mathbf{GSH}	$-1/6 \times$	gamma_surf-111_P1_2_03w	$Al_{40} O_{66} H_{12}$	R	-35.0
	$-1\times$	water	OH_2	J	24.3
	$1/6 \times$	gamma_surf-111_P1_2_06w	$Al_{40}O_{72}H_{24}$	В	-33.6
GSH	$-1/4 \times$	gamma_surf-111_P1_2_04w	$AI_{40}O_{68}H_{16}$	R	-26.9
	$-1\times$	water	OH_2	J	12.7
	$1/4 \times$	gamma_surf-111_P1_2_06w	$Al_{40}O_{72}H_{24}$	В	-32.2
GSH	$-1/2 \times$	gamma_surf-111_P1_2_05w	$AI_{40}O_{70}H_{20}$	R	-22.3
	$-1\times$	water	OH_2	J	3.1
COLL	$1/2 \times$	gamma_surf-111_P1_2_06w	$\frac{\operatorname{Al}_{40}\operatorname{O}_{72}\operatorname{H}_{24}}{\operatorname{Al}_{20}\operatorname{O}_{12}\operatorname{H}_{24}}$	В	-29.1
GSH	$-1/2 \times$	gamma_surf-111_P2_1_05w	$AI_{40} O_{70} H_{20}$	R	-23.0
	$-1\times$	water	OH_2	J	60.2
COLL	$1/2 \times$	gamma_surf-111_P2_1_06w	$\frac{\operatorname{Al}_{40}\operatorname{O}_{72}\operatorname{H}_{24}}{\operatorname{Al}_{20}\operatorname{O}_{12}\operatorname{H}_{24}}$	B	$\frac{-15.2}{46.0}$
GSH	$-1/2\times$	gamma_suri-111_P2_2_04w	$AI_{40} O_{68} H_{16}$	K	-46.0
	$-1\times$	water	OH_2	J	29.6
COLL	$1/2\times$	gamma_surt-111_P2_2_05w	$\frac{\operatorname{Al}_{40}\operatorname{O}_{70}\operatorname{H}_{20}}{\operatorname{Al}_{100}\operatorname{H}_{200}}$	B	-20.8
GSH	$-1/4\times$	gamma_suri-111_P2_2_04w	$AI_{40} O_{68} H_{16}$	K	-17.4
	$\times 1 - 1$	water	OH_2	J	3.1

	$1/4 \times$	gamma_surf-111_P2_2_06w	$\rm Al_{40}O_{72}H_{24}$	B	-21.7
GSH	$-1/2 \times$	gamma_surf-111_P2_2_05w	$Al_{40} O_{70} H_{20}$	R	11.2
	$-1 \times$	water	OH_2	J	-23.5
	$1/2 \times$	gamma_surf-111_P2_2_06w	$Al_{40}O_{72}H_{24}$	В	-22.6
SUR	$-1/32 \times$	gamma_bulk	$\operatorname{Al}_{32}\operatorname{O}_{48}$	R	5.1
	$1/64 \times$	gamma_surf-001_00w	$Al_{64}O_{96}$	J	2.5
				В	4.9
SUR	$-1/32 \times$	gamma_bulk	$\operatorname{Al}_{32}\operatorname{O}_{48}$	R	5.7
	$1/80 \times$	gamma_surf-110b_from_boehm_00w	$Al_{80}O_{120}$	J	2.0
				В	3.6
SUR	$-1/32\times$	gamma_bulk	$\operatorname{Al}_{32}\operatorname{O}_{48}$	R	7.7
	$1/64 \times$	gamma_surf-110b_from_bulk_00w	$Al_{64}O_{96}$	J	5.7
				В	7.3
SUR	$-1/32 \times$	gamma_bulk	$\operatorname{Al}_{32}\operatorname{O}_{48}$	R	9.3
	$1/48 \times$	gamma_surf-1101_A1_00w	$Al_{48}O_{72}$	J	1.4
				В	7.9
SUR	$-1/32 \times$	gamma_bulk	$\operatorname{Al}_{32}\operatorname{O}_{48}$	R	7.4
	$1/56 \times$	gamma_surf-1101_A2_00w	$\mathrm{Al}_{56}\mathrm{O}_{84}$	J	4.3
				В	6.6
SUR	$-1/32\times$	gamma_bulk	$\operatorname{Al}_{32}\operatorname{O}_{48}$	R	7.2
	$1/56 \times$	gamma_surf-1101_L2_00w	$\mathrm{Al}_{56}\mathrm{O}_{84}$	J	1.1
				В	5.2

Figure S7: Histograms of reaction energies in the validation set.

Figure S8: Parity plot comparing the value of the Balanced Loss function, for the training and validation sets, for the best solution from all 40 CMA runs (LSE form, optimization stage 2, see main text for details). Despite that the 40 optimized parameter vectors different significantly, their performance for the training and validation sets is similar.

Table S6: Comparison of root-mean-square-errors (RMSEs) of the initial force
field by Joshi $et \ al.^1$ and the force field optimized in this work (BL). The RMSEs
are computed for categories of training data and structures for which there is
no counterpart in the validation set, i.e. not related to γ -Al ₂ O ₃ surfaces. For
reference, the standard deviation (SD) on the reference data is included.

Category	Unit	Ref.	Joshi	BL	
		SD	RMSE	RMSE	#
Al-O	Å	0.08	0.35	0.07	1482
Al-Al	Å	0.37	0.33	0.07	1624
O-H	Å	0.03	0.26	0.04	638
$\mathrm{O}{\cdots}\mathrm{H}$	Å	0.15	0.42	0.12	468
Al-O-Al	\deg	22.0	9.3	3.3	1646
Al-O-H	\deg	7.6	14.2	5.1	1077
O-Al-O	\deg	32.2	11.0	3.2	3522
$\mathrm{Al}{-}\mathrm{O}{\cdots}\mathrm{H}$	\deg	8.6	12.8	4.9	803
$\mathrm{H}\!-\!\mathrm{O}\!\cdots\mathrm{H}$	\deg	15.8	18.2	8.1	484
$H{\cdots}O{\cdots}H$	\deg	21.5	15.1	7.1	72
\mathbf{BSH}	$\rm kcalmol^{-1}$	11.8	38.1	4.7	5
GEH	$\rm kcalmol^{-1}$	14.6	84.5	1.9	21
FOR	$\rm kcalmol^{-1}$	10.3	22.4	2.4	11

Figure S9: Adsorption energies, as defined in Eq. (3) in the main text, on boehmite surfaces as a function of the OH coverage, computed with different models: DFT (gray circle), Joshi (orange plus), this work (blue cross). All structures are derived from the training set.

S2 Comparison of Non-Equilibrium ReaxFF and DFT energies

A hydrated alumina slab (structure gamma_surf-1101_A1_06w from the validation set) was used as a starting point for a constant-temperature molecular dynamics (MD) run with VASP using the same level of theory as the training set. A Nosé-Hoover thermostat with a temperature of 1000 K and a relaxation time of 40 fs was used to stimulate the desorption of water from the surface. The simulation ran for 500 steps of 1 fs, and snapshots were taken every 10 steps for further analysis. Two desorption events occurs during the first 200 fs, after which no additional water molecules desorb.

The total single-point energies, E_{total} , of the selected snapshots are compared in Fig. S10(a). The DFT energies are shown in black and ReaxFF results with the new parameters in blue. ReaxFF energies obtained with the parameters of Joshi *et al.*¹ are depicted in red. The average is subtracted from both time series because these energies are only comparable up to a constant. While the fluctuations in DFT and ReaxFF energy are correlated, they also show significant deviations. This is expected, since the majority of the atoms are in the slab, not the water, and our training set emphasizes hydration reactions, not the vibrations in the alumina slab. To show that our ReaxFF parameters can reproduce the relevant contribution to the DFT reference energy, additional single-point energies were calculated on the same snapshots from which some atoms were removed:

- E_{slab} is the energy of the slab and the water molecules that remain adsorbed, but without the atoms of the two water molecules that desorb during the simulation.
- E_{2H_2O} is the energy computed for only the atoms of the two desorbing water molecules.

The energies of these two complementary subsystems are shown in Fig. S10(b) and Fig. S10(c), respectively. (Since these are also absolute energies, the average is again subtracted in both plots.) Finally, using these data, also the energy difference $(E_{\text{total}} - E_{\text{slab}} - E_{2H_2O})/2$ was computed and is shown in Fig. S10(d). In this case, no average was subtracted because the difference in energy has a chemically meaningful reference.

Fig. S10(b) shows deviations between ReaxFF and DFT energies that are very similar to those in Fig. S10(a), confirming that these deviations are due to the internal energy of the alumina slab. The results in Fig. S10(c) and Fig. S10(d) show a fair agreement between the DFT and ReaxFF energies obtained with our new parameters. Mainly Fig. S10(d) is of interest, because it is closely related to the hydration energies in the training set: This energy difference is calculated similarly to energy training data (Eq. (3) in the main text) but is now evaluated using non-equilibrium snapshots instead of optimized geometries. Because of this similarity, it is reasonable to expect a correspondence of the energies in Fig. S10(d). The average of the relative error over the first 200 fs is 25 % for the Balanced Loss parameters, which is comparable to relative errors on adsorption energies in the training set. For Fig. S10(a) and Fig. S10(b), however, a similar agreement would have been coincidental, since no related data were used for training. Also note that the new ReaxFF parameters show a clear improvement in Fig. S10(d) with respect to the parameters of Joshi *et al.*,¹ for which the relative error is 79%. In Fig. S10(c) both ReaxFF parameterizations yield the same results because the parameters for water were not refitted.

Figure S10: Comparison of DFT and ReaxFF energies for snapshots taken from a 1000 K DFT molecular dynamics simulation. (black: DFT, blue: ReaxFF with Balanced Loss parameters, red: ReaxFF with Joshi *et al.* parameters¹). Panel (a) contains the total energy of the system, panel (b) the energy of the slab and the water molecules that remain adsorbed, and panel (c) the energy of only the desorbing water molecules. Panel (d) depicts the instantaneous hydration energy as computed with Eq. (3) in the main text.

References

 Joshi, K. L.; Psofogiannakis, G.; Duin, A. C. T. v.; Raman, S. Reactive molecular simulations of protonation of water clusters and depletion of acidity in H-ZSM-5 zeolite. *Phys. Chem. Chem. Phys.* **2014**, *16*, 18433–18441.