Corrosion Protection Characteristics of Doped Magnetite Layers on Carbon Steel Surfaces in Aqueous CO₂ Environments

Joshua Owen^a, Francois Ropital^{b,c}, Gaurav R. Joshi^b, Jean Kittel^b, and Richard Barker^a

^a Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom

^b IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France c Univ. Lyon, INSA-Lyon, MATEIS UMR CNRS, Bât Blaise Pascal, 7 Avenue Jean Capelle, F-69621 Villeurbanne Cedex, France

SUPPLEMENARTY MATERIAL

Figure S1 shows cyclic voltammetry measurements on a gold electrode in a 2 M NaOH, 1 M TEA solution at 80 °C containing mixed metal sulphates.

Figure S2 shows potentiodynamic polarisation measurements on bare carbon steel and layered carbon steel surfaces performed in a 50 °C, pH 5, 1 wt.% NaCl solution.

Figure S3 shows Bode plots measured on bare carbon steel and layered carbon steel surfaces performed in a 50 °C, pH 5, 1 wt.% NaCl solution.

Table S1 shows electrical equivalent circuit behaviour measured on bare carbon steel in a 50 °C, pH 5, 1 wt.% NaCl solution over 24 h.

Table S2 shows electrical equivalent circuit behaviour measured on carbon steel with an Fe_3O_4 layer in a 50 °C, pH 5, 1 wt.% NaCl solution over 24 h.

Table S3 shows electrical equivalent circuit behaviour measured on carbon steel with a Mg-doped Fe_3O_4 layer in a 50 °C, pH 5, 1 wt.% NaCl solution over 24 h.

Table S4 shows electrical equivalent circuit behaviour measured on carbon steel with a Mn-doped Fe_3O_4 layer in a 50 °C, pH 5, 1 wt.% NaCl solution over 24 h.

Table S5 shows electrical equivalent circuit behaviour measured on carbon steel with a Zn-doped Fe_3O_4 layer in a 50 °C, pH 5, 1 wt.% NaCl solution over 24 h.

Figure S1: Cyclic voltammograms on a 0.02 cm² Au electrode measured at a scan rate of 50 mV/s in an unstirred 2 M NaOH, 1 M TEA solution at 80 °C containing 0.032 M Fe₂(SO₄)₃ and (a) 0.011 M MgSO₄, (b) 0.011 M ZnSO₄ (c) 0.011 M MnSO₄ and compared with a solution containing 0.043 M Fe₂(SO₄)₃ without the addition of other metal sulphates (black lines)

Figure S2: Potentiodynamic polarisation resistance plots measured after (a) 4 h and (b) 24 h of exposure to a 50 °C, pH 5, 1 wt.% NaCl solution for bare X65 carbon steel, Fe₃O₄-layered X65, Mg-doped Fe₃O₄-layered X65, Mn-doped Fe₃O₄-layered X65 and Zn-doped Fe₃O₄-layered X65 coupons.

Figure S3: Bode magnitude plots from EIS measurements performed in a 50 °C, pH 5, 1 wt.% NaCl solution on (a) bare X65 carbon steel, (b) Fe₃O₄-layered X65, (c) Mg-doped Fe₃O₄-layered X65, (d) Mn-doped Fe₃O₄-layered X65 and (e) Zn-doped Fe₃O₄-layered X65 coupons

Time (h)	R _e (Ω.cm²)	R _{ct} (Ω.cm²)	R _{ct} Error (Ω.cm²)	Q _{dl} (μF/cm²) ^α	Q _{dl} Error (μF/cm²) ^α	α	C _{dl} (µF/cm²)	$R_{ct}.C_{dl}$
0	18.6	114	1.1	564	16	0.77	138	0.016
2	18.0	100	1.1	689	23	0.78	191	0.019
4	17.7	84	0.7	612	21	0.82	213	0.018
6	17.6	82	0.6	575	16	0.83	220	0.018
8	17.4	82	0.6	541	16	0.85	227	0.019
10	17.5	83	0.6	578	11	0.84	235	0.020
12	17.5	80	0.6	535	16	0.87	257	0.021
14	17.5	79	0.6	548	17	0.87	274	0.022
16	17.5	80	0.5	597	14	0.87	291	0.023
18	17.5	79	0.5	577	16	0.89	312	0.025
20	17.3	82	0.6	605	18	0.89	333	0.027
22	17.7	81	0.6	631	18	0.89	358	0.029

Table S1: Fitting parameters obtained using a simplified Randle's circuit for the data obtained andcalculated for X65 carbon steel

Table S2: Fitting parameters obtained using a simplified Randle's circuit for the data obtained and
calculated for X65 carbon steel with an Fe $_3O_4$ layer

Time (h)	R _e (Ω.cm²)	R _{ct} (Ω.cm²)	R _{ct} Error (Ω.cm²)	Q _{dl} (μF/cm²)α	Q _{dl} Error (μF/cm²) ^α	α	C _{dl} (µF/cm²)	$R_{ct}.C_{dl}$
0	22.2	370	3.3	1943	24	0.65	337	0.125
2	17.0	251	2.2	2733	35	0.73	845	0.212
4	17.0	155	1.6	3687	62	0.86	2266	0.351
6	16.8	120	1.2	4433	62	0.89	3202	0.383
8	17.1	107	1.6	3891	81	0.90	2808	0.300
10	16.9	106	2.4	3020	111	0.74	1005	0.107
12	16.6	97	0.9	878	20	0.82	330	0.032
14	16.7	91	0.8	684	15	0.84	287	0.026
16	16.9	91	0.8	640	17	0.86	289	0.026
18	15.7	87	0.8	652	15	0.86	297	0.026
20	16.4	86	0.7	637	18	0.87	315	0.027
22	16.3	77	0.5	739	13	0.85	333	0.026

Time (h)	R_e (O cm ²)	R_{ct}	R _{ct} Error (O cm²)	Q _{dl} (μΕ/cm²) ^α	Q _{dl} Error (μE/cm²) ^α	α	C _{dl} (uF/cm²)	Rat Call
0	16.2	222	0.8	<u>(μ</u> , , cm , 947	<u>(μι/ciii /</u> 2	0.79	<u>(μι / cin /</u> 311	0.069
2	16.5	167	0.0 1 <i>4</i>	1501	27	0.75	786	0.005
2	16.5	111	1.4	1677	27	0.84	207	0.131
4	10.0	111	1.0	1077	29	0.80	037	0.099
6	16.6	98	0.8	855	19	0.80	279	0.027
8	16.7	97	0.6	787	15	0.79	236	0.023
10	16.6	83	0.4	693	10	0.82	242	0.020
12	17.0	85	0.5	674	13	0.83	257	0.022
14	17.0	75	0.5	681	15	0.85	292	0.022
16	17.0	75	0.4	683	15	0.85	292	0.022
18	16.8	70	0.4	699	17	0.85	314	0.022
20	16.6	70	0.4	757	16	0.85	335	0.023
22	16.6	68	0.3	813	14	0.85	359	0.024

Table S3: Fitting parameters obtained using a simplified Randle's circuit for the data obtained andcalculated for X65 carbon steel with a Mg-doped Fe₃O₄ layer

Table S4: Fitting parameters obtained using a simplified Randle's circuit for the data obtained andcalculated for X65 carbon steel with a Mn-doped Fe₃O₄ layer

Time (h)	R _e (Ω.cm²)	R _{ct} (Ω.cm²)	R _{ct} Error (Ω.cm²)	Q _{dl} (μF/cm²) ^α	Q _{dl} Error (μF/cm²) ^α	α	C _{dl} (µF/cm²)	$R_{ct}.C_{dl}$
0	18.2	120	1.5	1169	33	0.79	416	0.050
2	17.7	96	0.7	738	16	0.78	215	0.021
4	17.7	85	0.6	718	18	0.80	230	0.020
6	17.4	81	0.6	678	17	0.81	232	0.019
8	17.3	82	0.5	642	14	0.83	238	0.019
10	17.2	77	0.4	634	13	0.83	246	0.019
12	17.5	76	0.5	634	14	0.84	266	0.020
14	17.4	76	0.5	618	20	0.86	282	0.021
16	16.7	75	0.4	772	13	0.83	301	0.023
18	17.1	69	0.3	745	12	0.85	326	0.023
20	16.7	68	0.4	799	12	0.85	351	0.024
22	16.8	65	0.3	855	15	0.85	381	0.025

Time	R _e	R _{ct}	R _{ct} Error	Q _{dl}	Q _{dl} Error		C _{dl}	
(h)	(Ω.cm²)	(Ω.cm²)	(Ω.cm²)	(μF/cm²) ^α	(μF/cm²) ^α	α	(µF/cm²)	$R_{ct}.C_{dl}$
0	17.3	416	3.5	696	9	0.80	224	0.093
2	17.0	179	1.4	2182	28	0.86	1244	0.223
4	17.2	148	1.9	1213	30	0.81	489	0.072
6	17.1	105	0.9	698	18	0.81	239	0.025
8	17.2	98	0.7	690	17	0.82	248	0.024
10	17.1	93	0.7	623	17	0.84	250	0.023
12	17.2	93	0.8	589	16	0.85	254	0.024
14	17.1	89	0.7	595	16	0.85	262	0.023
16	17.2	88	0.6	587	14	0.86	274	0.024
18	17.2	92	0.7	597	15	0.87	288	0.026
20	17.4	88	0.6	598	14	0.87	302	0.026
22	17.3	83	0.6	631	14	0.88	323	0.027

Table S5: Fitting parameters obtained using a simplified Randle's circuit for the data obtained and calculated for X65 carbon steel with a Zn-doped Fe₃O₄ layer