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A B S T R A C T

In this paper, we tackle the problem of solving the system of radiative heat transfer coupled with the diffusion
equation for material temperature with a full Monte-Carlo (MC) scheme in heterogeneous media, i.e. possibly
containing discontinuities of thermophysical material parameters. MC schemes based on Brownian paths for
the diffusion equation in layered media are known to present some issues: corrections at the interface between
media are usually mandatory or must be replaced with complex samplings. In this paper, based on the
observations that transport models are easily solved by MC methods in layered media, and that state-of-the-
art MC schemes capture the diffusion limit, we suggest to build a phonon like model and to solve it with an
MC scheme. For capturing the diffusion limit, physical constraints are explicited and enforced within the MC
resolution. These constraints can even help revisiting the Brownian paths for efficient corrections. Numerical
results are provided in different regimes in order to highlight the relevance of the strategies suggested in this
paper.
1. Introduction

Heat transfer in heterogeneous and porous media mixing conduction
and radiation has attracted much attention, due to many applications
in materials development. For instance, solar radiation receivers in con-
centrated solar power plants are being engineered considering radiative
and conductive heat transfer [1,2]. In space technology, the design
of thermal protection systems materials for atmospheric re-entry also
involves the evaluation of mixed radiative/conductive heat transfer [3–
5]. In industry, porous media made of carbon or ceramic foams and/or
fibers are used as high-temperature thermal insulation materials [6] or
as burners [7,8]. Currently, cellular ceramics attract a large attention as
heat exchange enhancers [9]. In all these applications, a crucial point
for the design of efficient parts relies on modeling radiative/conductive
coupled heat transfer.

Varieties of solvers have been proposed to address this problem [10–
14]; they can be decomposed in two main classes, the deterministic
ones (based on finite element, finite differences, finite volumes [15–
21]) and the stochastic ones, on which we focus in this paper:

– deterministic solvers are generally fast, generate smooth solutions
but are sensitive to the dimension of the problem in the sense

∗ Corresponding author at: CEA DAM CESTA, F-33114 Le Barp, France.
E-mail addresses: gael.poette@cea.fr (G. Poëtte), augustin.de-la-vauvre@univ-nantes.fr (A. De La Vauvre), vinhola@lcts.u-bordeaux.fr (G. Vignoles).

that going from spatial dimension 2 to 3 induces a non negligible
overcost. Complex geometries may also be quite hard to handle,
especially if thin layers of media are intertwined.

– On another hand, stochastic solvers are based on the central limit
theorem [22]: it typically means that they are less sensitive to the
regularity of the solution or to the curse of dimensionality. The
latter point makes them particularly interesting when uncertain-
ties have to be taken into account [23–25]. But the convergence
rate is slower (∝ 1

√

𝑁𝑀 𝐶 where 𝑁𝑀 𝐶 is the number of particles)
and the methods produce noisy solutions if the number of particle
is not high enough. These solvers are generally costly but they are
also less constraining in terms of closure hypothesis. Furthermore,
a posteriori error estimations are available.

Here, we are mostly interested by Monte-Carlo/Random Walks
schemes. This technique has long been one of the favorites for the
solution of the radiative part of heat transfer, especially in case of com-
plex geometries [26,27]; here, the random walk algorithm is directly
based on the physics of radiative heat transfer, simulating scattering,
absorption and emission with Poissonian processes. On the other hand,
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in the diffusive limit – that is, for very small free path lengths –, it has
een found handy to design algorithms based on the laws of Brownian
otion, sometimes called ‘‘walk-on-sphere’’ methods [28–30].

When heat conduction and radiation are mixed in opaque/
emitransparent heterogeneous media, it has been proposed to design
‘hybrid walks’’ whereby the walk rules are differing, depending on
hether the walker lies in the opaque or the transparent medium,
ith specific rules for the transitions between both types of media.
uccessful implementations with Poissonian behavior in the semi-
ransparent subdomains and Brownian behavior in the opaque ones
ere reported by Vignoles [31] and Tregan et al. [32]. Another type

of coupling has been proposed in the case of semi-transparent media in
hich both types of transport occur in the same regions of space [33–

35]. Despite these successes, as will be shown in this paper, there exist
ome uncertainties linked to the solution of Brownian motion problems
lose to an opaque/semitransparent interface.

Here our goal is to design a fully ‘‘kinetic’’ (Poissonian) scheme in
which the essence of the random walk algorithm is the same every-

here, but in which discontinuities of material thermophysical prop-
rties are handled properly, i.e. without introducing any bias in the
esults and recovering the correct diffusive limits when appropriate.
e will see that analyzing Poissonian paths will also help us have a

etter understanding of Brownian ones.
We are interested in the Monte-Carlo (MC) resolution of the time-

ependent, nonlinear, radiative transfer equations coupled to heat
iffusion in layered media. By layered media, we mean configurations
n which several layers of media with very different characteristics
conductivity, density, heat capacity etc.) are superimposed. The model
as general form (see [36,37]):
⎧

⎪

⎨

⎪

⎩

1
𝑐
𝜕𝑡𝐼 + 𝜔 ⋅ ∇𝐼 + 𝜎𝑡𝐼 = 𝜎𝑎𝐵(𝑇𝑚) + 𝜎𝑠 ∫4𝜋

𝐼 𝑑 𝜔
′

4𝜋
,

𝜕𝑡𝐸(𝑇𝑚) − ∇ ⋅
(

𝜅(𝑇𝑚)∇𝑇𝑚
)

= ∫4𝜋
𝑐 𝜎𝑎

( 𝐼
4𝜋

− 𝐵(𝑇𝑚)
)

𝑑 𝜔′.
(1)

In the above equations, 𝐼 = 𝐼(𝑡, 𝑥, 𝜔, 𝜈) and 𝑇𝑚(𝑡, 𝑥) are the unknowns
of the system and stand respectively for the density of radiation energy
(J m−3) and the material temperature (K). Variables 𝑡 ≥ 0, 𝑥 ∈ 𝛺 ⊂ R3,
𝜔 ∈ S2 and 𝜈 ∈ R+ are respectively the time (s), space (m), solid angle
(sr) and frequency (s−1) variables. The opacities (m−1) 𝜎𝑡 = 𝜎𝑡(𝑥, 𝑡, 𝜈),
𝜎𝑎 = 𝜎𝑎(𝑥, 𝑡, 𝜈) and 𝜎𝑠 = 𝜎𝑠(𝑥, 𝑡, 𝜈) are given functions standing for
the total, absorption and scattering opacities. In particular, we have
𝜎𝑡 = 𝜎𝑎 + 𝜎𝑠. The density of internal energy 𝐸 (J m−3) depends on
𝑇𝑚 via an equation of state (EoS) 𝑑 𝐸 = 𝜌𝑐𝑣(𝑇𝑚)𝑑 𝑇𝑚 with 𝜌 the mass
density (kg m−3) and 𝑐𝑣 the heat capacity (J K−1). It is constant for a
perfect gas. Quantity 𝐵(𝑥, 𝑡, 𝜈) is the Planckian distribution (J m−3 s−1)
and is such that 𝐵(𝑥, 𝑡) = 𝐵(𝑇𝑚(𝑥, 𝑡)) = ∫ 𝐵(𝑥, 𝑡, 𝜈) d𝜈 = 𝑎𝑇 4

𝑚(𝑥, 𝑡)∕4𝜋 is
the frequency-integrated Planck function (J m−3) with 𝑎 the radiative
constant (J m−3 K−4). Here, 𝑐 denotes the speed of light (m s−1). The
conductivity (J m−1 K−1) of the medium is denoted by 𝜅. In this paper,
emphasis is set onto the case of spatially discontinuous 𝜌𝑐𝑣 and/or
𝜅 in order to model layered media and the numerical difficulties it
triggers. In other words, we focus on some mathematical and numerical
problems and for this reason, almost all the test-cases of the paper are
dimensionless. Let (𝛺𝑖)𝑖∈{1,…,𝑀} denote 𝑀 different media (or ‘‘phases’’)
involved in our configuration of interest, i.e. such that ∪𝑀𝑖=1𝛺𝑖 = 𝛺, then
for 𝛼 ∈ {𝜌𝑐𝑣, 𝜅}, we have 𝛼(x) = ∑𝑀

𝑖=1 𝛼𝑖𝟏𝛺𝑖 (x) where 𝟏𝛺𝑖 (x) equals 1 if
x ∈ 𝛺𝑖, 0 otherwise. Note that the discontinuities may also come from
the temperature dependence of 𝜅: suppose there is only one material
but the discretisation is such that 𝑇𝑚 is piecewise constant in each of the
𝑁 cells, i.e. 𝑇𝑚(𝑥) =

∑𝑁
𝑖=1 𝑇

𝑖
𝑚𝟏𝛺𝑖 (𝑥): this naturally leads to a piecewise

constant conductivity given by 𝜅(𝑥) = ∑𝑁
𝑖=1 𝜅(𝑇

𝑖
𝑚)𝟏𝛺𝑖 (𝑥) =

∑𝑁
𝑖=1 𝜅

𝑖𝟏𝛺𝑖 (𝑥).
The two different cases shall be treated the same way in this paper,
without lack of generality. Initial and boundary conditions must be
supplemented to system (1):

𝐼(0, 𝑥, 𝜔) = 𝐼0(𝑥, 𝜔), 𝑇𝑚(0, 𝑥) = 𝑇 0
𝑚(𝑥), 𝑥 ∈ 𝛺 , 𝜔 ∈ S2, (2)
𝐼(𝑡, 𝑥, 𝜔) = 𝐼𝑏(𝑡, 𝜔), 𝑡 ≥ 0, 𝑥 ∈ 𝜕 𝛺 , 𝜔 ⋅ 𝑛𝑠 < 0, (3)

2 
where 𝑛𝑠 is the outward normal to 𝛺 at 𝑥. System (1) together with
initial and boundary conditions (2) + (3) define the well-posed [38]
mathematical problem we want to solve.

System (1) is nonlinear. Its resolution consequently needs some
linearisation hypothesis. System (1) is often solved by performing
ome operator splitting on a time step [39] before choosing numerical
chemes for the different splitting steps. The choice of the splitting is
ot unique but a classical and convenient one is the following:

– A radiative transfer phase
⎧

⎪

⎨

⎪

⎩

1
𝑐
𝜕𝑡𝐼 + 𝜔 ⋅ ∇𝐼 + 𝜎𝑡𝐼 = 𝜎𝑎𝐵(𝑇𝑚) + 𝜎𝑠 ∫4𝜋

𝐼 𝑑 𝜔
′

4𝜋
,

𝜕𝑡𝐸(𝑇𝑚) = ∫4𝜋
𝑐 𝜎𝑎

( 𝐼
4𝜋

− 𝐵(𝑇𝑚)
)

𝑑 𝜔′,
(4)

– followed by a heat conduction one
{

𝜕𝑡𝐼 = 0,
𝜕𝑡𝐸(𝑇𝑚) − ∇ ⋅

(

𝜅(𝑇𝑚)∇𝑇𝑚
)

= 0, (5)

during which 𝐼 remains constant.

This splitting is especially convenient when one only needs to focus on
radiative transfer for example (i.e. when 𝛺 = ∪𝑀𝑖=1𝛺𝑖 has many non
onducting phases for which 𝜅𝑖 ≪ 1):

Once a splitting chosen, it remains to choose the resolution scheme
for both steps

– due to the high dimensionality of the problem (with (𝑥, 𝑡, 𝜔, 𝜈) ∈
R7 in (1) and (𝑥, 𝑡, 𝜔, 𝜈 , 𝑣) ∈ R8 later on for the photon-phonon
model (12)) we aim at tackling, we focus on MC based numerical
solvers for the radiative transfer phase. MC schemes are known to
be costly but insensitive to the dimension of the problem and to
the regularity of the solution [22]. In order to solve (4), we rely on
the ISMC (Implicit Semi-analog Monte-Carlo) scheme described
in [40] based on both the seminal works of [41,42]: the MC
scheme is implicit and teleportation error free. For the spectral
dependance, we rely on the material of [43] (even if in this
paper, without lack of generality with respect to the numerical
difficulties we aim at tackling, the grey approximation is enough).
The ISMC scheme discretises both 𝐼 and 𝐸 with MC particles
which are transported (at velocity 𝑐 for photons 𝐼) or not (for
matter at rest 𝐸). The nature of the MC particles eventually
changes at a collision at which a photon can become sensible
heat or a phonon and sensible heat becomes photons, see [40,43].
At the end of the time step, 𝐼 and 𝐸 are approximated in each
cell by tallying the contributions of, respectively, the photon MC
particles and the sensible heat MC particles. The temperature 𝑇𝑚
is deduced from 𝐸 by inversion of the EoS.

– The second step (5) of the splitting, in lower dimension (with
𝑇𝑚 only depending on (𝑥, 𝑡) ∈ R3 × R+), is usually solved thanks
to deterministic solvers. From the temperature computed during
the previous phase and the application of a diffusion scheme, the
energy and the temperature are updated.

This solution strategy works in practice but one must realise that in
order to end the time iteration, the weights of all the sensible heat

C particles must be updated in accordance with the new values
f 𝐸 determined by the diffusion step, before starting the radiative
ransfer phase of the next time step. This step is sequential (i.e. hard
o parallelise [44]) and can lead to unbalanced weights. On the other
and, Eq. (5) can also be solved with an MC scheme: in practice, this is

based on the application of Ito’s lemma [37,45–53]. In a homogeneous
edia, the application is quite simple as it only consists in solving

{

𝜕𝑡𝑇 −𝐷 ▵ 𝑇 = 0,
𝑇 (𝑡 = 0, 𝑥) = 𝑇0(𝑥),

(6)
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on the time step where we defined 𝐷 = 𝜅
𝜌𝑐𝑣

(for a homogeneous
sotropic material). Ito’s lemma then states that in order to solve (6),

the position of the MC particles 𝑋𝑡 must be updated by solving the
stochastic ordinary equation
{

d𝑋𝑡 =
√

2𝐷 d𝑊𝑡,
𝑋0 = 𝑥,

(7)

where 𝑊𝑡 denotes a Brownian motion (or a Wiener process). Then
𝑇 (𝑥, 𝑡) = E[𝑇0(𝑋𝑡)] is solution of (6). In practice, (7) is often solved
thanks to an explicit Euler scheme.

Let us now consider a simple test-case for (6) and illustrate the
difficulty we aim at tackling in this paper: it is a one dimensional
est-case 𝑥 ∈ 𝛺 = [0, 1] ⊂ R, with initial condition

𝑇0(𝑥) = 2 × 𝟏[0.45,0.55](𝑥), (8)

where 𝟏[𝑎,𝑏] is the Heaviside function for interval [𝑎, 𝑏]. The initial
condition in terms of temperature is displayed in the left plots of Fig. 1.
Quantities 𝑥 → 𝜅(𝑥) and 𝑥 → 𝜌(𝑥)𝑐𝑣(𝑥) are also displayed (left vertical
axis) together with the reference solution of the test-case. The boundary
conditions are Neumann ones but the final time 𝑡 = 10−2 is such that
the solution does not have enough time to significantly interact with
the edges of the domain. Now, the domain is composed of two layers
of material in 𝛺1 = [0, 12 ] and 𝛺2 = [ 12 , 1] such that 𝛺1 ∪ 𝛺2 = 𝛺
nd with diffusivities 𝐷1 and 𝐷2. If1 𝐷1 = 𝐷2, then the previously

described MC resolution strategy is efficient: on picture top right of
Fig. 1, the reference solution obtained with a deterministic code and the

C ones are in very good agreement (the number of cells is 𝑁𝑥 = 100),
specially as 𝛥𝑡 ≤ 10−6. On the other hand if2 𝐷1 ≠ 𝐷2 (𝐷1 = 10 and
𝐷2 = 1.0 in the bottom picture of Fig. 1), the MC results (Brownian
aths) do not converge toward the same temperature profile as the one
btained by the deterministic solver (reference). It is well-known that
uch an MC resolution scheme is not efficient for layered media and
hat the physical solution for this problem is the one obtained with
he deterministic solver [45,46]. In this case, increasing the number
f particles, the number of cells or decreasing the time step does not

ensure obtaining more physical results [45,46,49]. In this paper, we
want to suggest a new way to deal with this phenomenon, i.e. jumps
n 𝑥→ 𝜌(𝑥)𝑐𝑣(𝑥) and/or 𝑥→ 𝜅(𝑥).

2. An overview of the strategies of the literature

As explained in the introduction, the flaw illustrated in Fig. 1 for the
Brownian path in layered media is well-known, see [54] for example.
Many authors have suggested ways to circumvent it. The suggested
solutions can be decomposed in two different families of methods:

– the ones working on adapting the time steps,
– the ones having a fixed time step but with interface corrections.

In order to improve the results for some non homogeneous diffusivity
coefficients 𝑥 → 𝐷(𝑥), some authors relied on linearisations of 𝑥 →

𝐷(𝑥) = 𝐷(𝑥) + 𝛥𝑥∇𝑥𝐷(𝑥) + (𝛥𝑥2). In [48], the authors empirically
demonstrate the improvements made by correcting the time step of the
resolution when 𝑥→ 𝐷(𝑥) is not constant and ∇𝑥𝐷(𝑥) is available. The
numerical scheme does improve the results on the benchmarks of the
paper but 𝑥 → 𝐷(𝑥) is quite smooth (2), which is clearly not the case
in layered media.

In [46], the idea is to accept the lack of regularity of 𝑥→ 𝐷(𝑥) and
onsider discontinuous diffusivities. The stochastic process that governs
he positions of the particles is fully characterised. Two algorithms are
uggested. They rely on fixed time steps and the construction of an

1 𝑥 → 𝜅(𝑥) = 1 and 𝑥 → 𝜌(𝑥)𝑐𝑣(𝑥) = 1 are displayed on the right vertical
axis.

2 𝑥 → 𝜅(𝑥) = 10−1𝟏[0, 1
2
](𝑥) + 𝟏[ 1

2
,1](𝑥) and 𝑥 → 𝜌(𝑥)𝑐𝑣(𝑥) = 1 are displayed on

the right vertical axis.
3 
interface layer, a numerical vicinity of the interface, within which skew
Brownian motions (SBM) are simulated. Several schemes are proposed
in the literature in order to treat the samplings within this layer,
see [46,55,56]. The SBM one [55–57] seems to outperform the others.
But the scheme is quite complex to implement and its efficiency on
multi-layered media is not obvious nor, to our knowledge, has been
numerically demonstrated [53]. The question of what happens to the
numerical interface layer when the mesh is refined remains: remember
we aim at solving (1) and the additional equation may require finer
meshes for accuracy.

In [51], the samplings needed at the interface between two media
re studied: it is explained that introducing reflections at the boundary
ims at maintaining some no-flux boundary conditions for the random
alk. Some treatments fail to solve the specified problem while it is
xplained that the methods of [58,59] succeed. One can show that
hese methods relate to an analytical solution to the problem of one-

dimensional diffusion at an interface. But the use of the analytical
olution for the samplings at the interface [52,59,60] is quite complex,

does not guarantee convergence properties as the number of layers
grows and often needs the introduction of some artificial interface
ayers [58,59]: in other words, it introduces some additional (in plus of
𝛥𝑡) numerical parameter which must be tuned (and for which, to our
knowledge, convergence is not guaranteed).

In [37,47,61], the authors suggest introducing some kind of albedo
t the interface between the two domains: the particles have a certain
robability of bouncing back into the domain they come from instead
f crossing it.

Note that some authors, in combination to the use of rebound prob-
abilities, introduce the need for having negative weights for their parti-
cles [61]. This strategy can be efficient in practice [61] or even [62,63]
for some applications of negative weights for neutronics applications
but they need to be combined with fine algorithm for population
control (or the number of negative weight particles and the variance

ay increase [61,62]).
To sum up, many numerical methods aiming at dealing with dis-

continuous material properties for the diffusion equation with random
walkers are suggested in the literature. But they either

– rely on smoothness assumptions which do not hold for our appli-
cations,

– or seem to be efficient but complex to implement,
– or rely on numerical parameters which may need to be tuned

without convergence guarantees.

For all these reason, we suggest a new numerical strategy to tackle
the same kind of problems. It is based on what we consider simple
modifications of the model (1) we aim at solving.

3. The photon-phonon coupled system for conducto-radiative
transfer

From the previous simple example (see Fig. 1 and the comments),
we can see that the resolution of the diffusion equation with Brownian
paths is very efficient in almost homogeneous media but remains
complex to treat layered ones. The main idea of this paper comes from
two observations:

– the MC resolution of the transport equation (Poissonian paths
rather than Brownian ones) does not suffer from the previous
problem: layered media can easily and reliably be simulated.

– The diffusion equation is the limit of the transport one for
both fast particles and opaque media and the SMC (Semi-analog
Monte-Carlo) and ISMC (Implicit Semi-analog Monte-Carlo)
schemes capture this limit [40]. By the way, the material of this
paper can easily be applied with other (teleportation error free)
MC solvers such as the ones in [64–66].
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Fig. 1. Left: initial conditions. Right: numerical solutions. For the top pictures, the diffusivities are the same (𝐷1 = 𝐷2) in domains 𝛺1 and 𝛺2 (the background colors are the same
on each side of the domain). The plot presents the simulated temperatures at time 𝑡 = 10−2 obtained with a reference deterministic code and an MC one (Brownian path) with
105 particles and time steps 𝛥𝑡𝑟𝑒𝑓 ∈ {10−5 , 10−6 , 10−7}. Bottom: the calculations are carried out in the same conditions except the diffusivities are different (𝐷1 = 10.0 ≠ 𝐷2 = 1.0) in
domains 𝛺1 and 𝛺2. This is highlighted by the different background colors. The plot presents the simulated temperatures at time 𝑡 = 10−2 obtained with a reference deterministic
code and an MC one (Brownian path) with 105 particles and time steps 𝛥𝑡𝑟𝑒𝑓 ∈ {10−5 , 10−6 , 10−7}.
Hence the idea to solve a transport model, the one for phonons de-
scribed in [67], in the equilibrium diffusion limit in order to simulate
heat conduction. For this, we suggest solving
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕𝑡𝐼 + 𝑐 𝜔 ⋅ ∇𝐼 + 𝑐 𝜎𝑡𝐼 = 𝑐 𝜎𝑎𝐵(𝑇𝑚) + 𝑐 𝜎𝑠 ∫4𝜋
𝐼
4𝜋
𝑑 𝜔′,

𝜕𝑡𝑒 + 𝑐𝑚𝜔 ⋅ ∇𝑒 + 𝑐𝑚𝜎𝑚𝑒 = 𝑐𝑚𝜎𝑚 ∫ ∫4𝜋
𝑃𝑚𝑒

𝑑 𝜔′

4𝜋
𝑑 𝑐′𝑚

+ ∫4𝜋
𝑐 𝜎𝑎

( 𝐼
4𝜋

− 𝐵(𝑇𝑚)
)

𝑑 𝜔′,

with 𝐸(𝑇𝑚(𝑥, 𝑡)) = ∬ 𝑒(𝑥, 𝑡, 𝜔, 𝑐𝑚)𝑑 𝜔𝑑 𝑐𝑚.

(9)

In the above system, 𝑐𝑚 may be understood as a kind of speed of sound
in sensible heat and 𝜎𝑚(𝑥, 𝑡) = 𝜎𝑚(𝑥, 𝑇𝑚(𝑥, 𝑡)) is a kind of opacity for
phonons of density 𝑒(𝑥, 𝑡, 𝜔, 𝑐𝑚). But the truth is their relevance will
only be numerical (and not physical) in the following sections. We
could better call them ‘‘Poissonian sensible heat energy carriers’’ than
‘‘phonons’’. The quantity 𝑃𝑚 describes how the phonons’ velocities and
angles are scattered at a collision, i.e. it is a scattering kernel. For the
moment, the only property we suppose it satisfies is

∫ 𝑃𝑚(𝑥 ∈ 𝛺𝑖, 𝑐′𝑚, 𝑣) d𝑐′𝑚 = 𝛿𝑐𝑚,𝑖 (𝑣),∀𝑥 ∈ 𝛺 ,∀𝑣 ∈ R3. (10)

In the above expression, 𝛿𝑐 (𝑣) is the Dirac delta function such that
∫ 𝑓 (𝑣)𝛿𝑐 (𝑣) d𝑣 = 𝑓 (𝑐) for all continuous compactly supported function
𝑓 . Of course, in order to solve a heat conduction equation for sensible
heat, 𝑐𝑚, 𝜎𝑚 and 𝑃𝑚 must be astutely spatially chosen. Their tuning will
be the purpose of Section 4. In this section, we focus on model (9), on
its properties and on the resolution strategy we suggest in this paper.
4 
First, system (9) is still conservative: indeed, integrating both
Eqs. (9) with respect to 𝜔 and summing them up leads to
𝜕𝑡

(

∫ 𝐼 + 𝐸(𝑇𝑚)
)

+ ∫ 𝑐 𝜔 ⋅ ∇𝐼 + ∫ 𝑐𝑚𝜔 ⋅ ∇𝑒 = 0, (11)

so that in a closed system (i.e. such that the fluxes cancel), the sum
of the photons and phonons’ energies are constant ∫ 𝐼 + 𝐸(𝑇𝑚) =
∫ 𝐼0 + 𝐸(𝑇 0

𝑚).
Now, system (9) is nonlinear and must be linearised in order

to be solved with an MC scheme. Indeed, an MC method looks for
𝑁𝑀 𝐶 particle 𝑝 ∈ {1,… , 𝑁𝑀 𝐶} solutions of the form 𝑢𝑝(𝑥, 𝑡, 𝜈 , 𝜔) =
𝑤𝑝(𝑡)𝛿𝑥(𝑥𝑝(𝑡))𝛿𝜈(𝜈𝑝(𝑡))𝛿𝜔(𝜔𝑝(𝑡)) and uses the linearity of the equation so
that ∑𝑁𝑀 𝐶

𝑝=1 𝑢𝑝(𝑥, 𝑡, 𝜈 , 𝜔) ≈ 𝑢(𝑥, 𝑡, 𝜈 , 𝜔) is also an approximation of 𝑢, the
solution of the linear equation we need to solve. For this linearisation
choice, we rely either on the SMC discretisation [42] or the ISMC
one [40] (in the stiff case or when stationary computations are needed)
which we need to modify in order to take the streaming (𝑐𝑚) and
the collision (𝜎𝑚) terms of the phonons into account. Of course, other
linearisation choices could have been used [41,68]. Let us rewrite (9)
as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝐼 + 𝑐 𝜔 ⋅ ∇𝐼 = −𝑐 𝜎𝑡𝐼 + 𝑐 𝜎𝑎𝜂(𝐸)∫4𝜋
𝑒
4𝜋
𝑑 𝜔′ + 𝑐 𝜎𝑠 ∫4𝜋

𝐼
4𝜋
𝑑 𝜔′,

𝜕𝑡𝑒 + 𝑐𝑚𝜔 ⋅ ∇𝑒 = −𝑐𝑚𝜎𝑚𝑒 − 𝑐 𝜎𝑎𝜂(𝐸)𝑒 + ∫4𝜋
𝑐 𝜎𝑎 𝐼4𝜋 𝑑 𝜔

′

+𝑐𝑚𝜎𝑚 ∫ ∫4𝜋
𝑃𝑚

𝑒
4𝜋
𝑑 𝜔′𝑑 𝑐′𝑚,

(12)

in which we introduced 𝐵(𝐸) = 𝜂(𝐸)𝐸. This system is still nonlinear
(due to the dependence of 𝜂 with respect to 𝐸). From now on, let us
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assume that 𝜂(𝐸(𝑥, 𝑡)) = 𝜂(𝑥, 𝑡) for 𝑡 ∈ [𝑡𝑛, 𝑡𝑛 + 𝛥𝑡]. With the previous
hypothesis, (12) becomes
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝐼 + 𝑐 𝜔 ⋅ ∇𝐼 = −𝑐 𝜎𝑡𝐼 + 𝑐 𝜎𝑎𝜂 ∫4𝜋
𝑒
4𝜋
𝑑 𝜔′ + 𝑐 𝜎𝑠 ∫4𝜋

𝐼
4𝜋
𝑑 𝜔′,

𝜕𝑡𝑒 + 𝑐𝑚𝜔 ⋅ ∇𝑒 = −𝑐𝑚𝜎𝑚𝑒 − 𝑐 𝜎𝑎𝜂 𝑒 + ∫4𝜋
𝑐 𝜎𝑎 𝐼4𝜋 𝑑 𝜔

′

+𝑐𝑚𝜎𝑚 ∫ ∫4𝜋
𝑃𝑚

𝑒
4𝜋
𝑑 𝜔′𝑑 𝑐′𝑚.

(13)

Independently of the choice of 𝜂, system (13) is linear (𝜂 is a function
of 𝑥, 𝑡 but not anymore of 𝐸). An MC scheme can then be applied to
olve it on time step [𝑡𝑛, 𝑡𝑛+𝛥𝑡]. Of course, in practice, a choice must be

made for 𝜂 (explicit as in [42], implicit as in [40]): let us postpone this
choice and rather go through a few properties of the above linearisation
(which remains independent of the choice of 𝜂).

Remark 1. At this stage of the discussion it is important noting that if
one has already access to an MC solver in order to solve the radiative
transfer Eq. (4), a simple modification of the solver can be made in
order to solve system (13). This is what we are going to tackle in the
next lines.

As explained before, system (13) is now linear and can be solved
with an MC scheme. We here insist on the fact that it has the same struc-
ure as a multigroup transport equation (for neutronics for example,
ee [69,70]): in this context, a 𝑃 -truncated basis (𝜙0(𝑣),… , 𝜙𝑃 (𝑣))𝑡 is

introduced and the solution 𝑢 is decomposed on this basis 𝜓(𝑥, 𝑡, 𝜔, 𝑣) ≈
∑𝑃
𝑘=0 𝑢𝑘(𝑥, 𝑡, 𝜔)𝜙𝑘(𝑣). But in our case, there are 𝑀+ 1 groups with 𝑀 the

number of different materials within the layers and the basis functions
are analytical, given by 𝜙0(𝑣) = 𝛿𝑐 (𝑣) and (𝜙𝑖(𝑣) = 𝛿𝑐𝑚,𝑖 (𝑣))𝑖∈{1,…,𝑀}.
To clarify this point, let us put forward the expression of the total
and scattering opacities of linear system (13). It consists in recov-
ring the equation whose solution is 𝜓(𝑥, 𝑡, 𝜔, 𝑣) = 𝐼(𝑥, 𝑡, 𝜔)𝛿𝑐 (𝑣) +
𝑀
𝑖=1 𝑒(𝑥, 𝑡, 𝜔)𝛿𝑐𝑚,𝑖 (𝑣).

For the sake of conciseness of the calculations, we assume that
𝑚 can be continuously distributed even if in practice, it will have
+ 1 discrete values specified by the characteristics of the different

ayers of the media, see Section 4. Hence, 𝜓 simplifies to 𝜓(𝑥, 𝑡, 𝜔, 𝑣) =
𝐼(𝑥, 𝑡, 𝜔)𝛿𝑐 (𝑣) + 𝑒(𝑥, 𝑡, 𝜔)𝛿𝑐𝑚 (𝑣). In the latter expression, 𝛿𝑐𝑚 , 𝛿𝑐 are such
that

∫{𝑉 }
𝛿𝑐 (𝑣)𝑑 𝑣 = 𝛿𝑉 ,𝑐 and ∫{𝑉 }

𝛿𝑐𝑚 (𝑣)𝑑 𝑣 = 𝛿𝑉 ,𝑐𝑚 , (14)

where 𝛿𝑉 ,𝑘 is the Kronecker symbol3 and {𝑉 } denotes the singleton 𝑉 .
In fact, 𝑣 is nothing more than a velocity which can be 𝑐 for photons
r 𝑐𝑚 for sensible heat. Let us now build the linear equation satisfied
y 𝜓 . Expression (13) can be rewritten (we drop the dependences for
onciseness):
𝜕𝑡(𝐼 𝛿𝑐 + 𝑒𝛿𝑐𝑚 ) + 𝑣𝜔 ⋅ ∇(𝐼 𝛿𝑐 + 𝑒𝛿𝑐𝑚 ) = − (𝑐 𝜎𝑡𝐼 𝛿𝑐 + 𝑐 𝜎𝑎𝜂 𝑒𝛿𝑐𝑚 + 𝑐𝑚𝜎𝑚𝑒𝛿𝑐𝑚 )

+
(

𝑐 𝜎𝑎𝛿𝑐𝜂 ∫4𝜋
𝑒 + 𝑐 𝜎𝑎𝛿𝑐𝑚 ∫4𝜋

𝐼

+𝑐𝑚𝜎𝑚𝛿𝑐𝑚 ∫4𝜋
𝑃𝑚𝑒 + 𝑐 𝜎𝑠𝛿𝑐 ∫4𝜋

𝐼
)

.

It remains to make 𝜓 appear in the collisional part. For the moment
the integration is only over the angular distribution. Let us introduce
the Kronecker symbols

𝛿𝑐𝑚 ,𝑐 (𝑣
′, 𝑣) = 𝛿𝑐𝑚 (𝑣

′)𝛿𝑐 (𝑣) and 𝛿𝑐 ,𝑐𝑚 (𝑣′, 𝑣) = 𝛿𝑐 (𝑣′)𝛿𝑐𝑚 (𝑣).

We can then rewrite the above equation as:

𝜕𝑡𝜓 + 𝑣𝜔 ⋅ ∇𝜓 + (𝑐 𝜎𝑡𝛿𝑐 (𝑣) + 𝑐 𝜎𝑎𝜂 𝛿𝑐𝑚 (𝑣) + 𝑐𝑚𝜎𝑚𝛿𝑐𝑚 (𝑣))𝜓 =

+ ∫ ∫4𝜋

[

𝑐 𝜎𝑎𝛿𝑐 ,𝑐𝑚 (𝑣′, 𝑣) + 𝑐 𝜎𝑠𝛿𝑐 ,𝑐 (𝑣′, 𝑣) + 𝑐 𝜎𝑎𝜂 𝛿𝑐𝑚 ,𝑐 (𝑣′, 𝑣) + 𝑐𝑚𝜎𝑚𝑃𝑚(𝑣′, 𝑣)
]

× 𝜓(𝑣′, 𝜔′)𝑑 𝑣′𝑑 𝜔′,

(15)

3 i.e. is such that 𝛿 = 0 if 𝑉 ≠ 𝑘 and 𝛿 = 1 if 𝑉 = 𝑘.
𝑉 ,𝑘 𝑉 ,𝑘

5 
with  = {𝑐𝑚, 𝑐} a discrete set with only two elements. One can check
hat performing ∫{𝑐} (15)𝑑 𝑣 allows recovering the first line of system
13) and that ∫{𝑐𝑚} (15)𝑑 𝑣 leads to the second equation of system (13).
e can identify the scattering 𝑣𝛴𝑠(𝑣, 𝑣′) and total 𝑣𝛴𝑡(𝑣) opacities to

ewrite the system above under the general form:

𝜕𝑡𝜓 + 𝑣𝜔∇𝜓 + 𝑣𝛴𝑡(𝑣)𝜓 = ∫ ∫4𝜋
𝑣𝛴𝑠(𝑣′, 𝑣)𝜓(𝑣′, 𝜔′)𝑑 𝑣′𝑑 𝜔′.

In the above expression, we have:
𝑣𝛴𝑡(𝑣) = 𝑐 𝜎𝑡𝛿𝑐 (𝑣) + 𝑐 𝜎𝑎𝜂 𝛿𝑐𝑚 (𝑣) + 𝑐𝑚𝜎𝑚𝛿𝑐𝑚 (𝑣),
𝛴𝑠(𝑣′, 𝑣) = 𝑐 𝜎𝑎𝛿𝑐 ,𝑐𝑚 (𝑣′, 𝑣) + 𝑐 𝜎𝑠𝛿𝑐 ,𝑐 (𝑣′, 𝑣) + 𝑐 𝜎𝑎𝜂 𝛿𝑐𝑚 ,𝑐 (𝑣′, 𝑣)
+𝑐𝑚𝜎𝑚𝑃𝑚(𝑣′, 𝑣).

Let us rewrite the scattering part as 𝑣𝛴𝑠(𝑣)𝑃𝑠(𝑣′, 𝑣) = 𝑣𝛴𝑠(𝑣′, 𝑣). By doing
so, we introduce 𝑃𝑠, the probability of being scattered with velocity 𝑣,
incoming with velocity 𝑣′: it is mainly used for a backward resolution.
This implies

𝑣𝛴𝑠(𝑣) = ∫ 𝑣𝛴𝑠(𝑣′, 𝑣)𝑑 𝑣′,

= ∫

[

𝑐 𝜎𝑎𝛿𝑐 ,𝑐𝑚 (𝑣′, 𝑣) + 𝑐 𝜎𝑠𝛿𝑐 ,𝑐 (𝑣′, 𝑣) + 𝑐 𝜎𝑎𝜂 𝛿𝑐𝑚 ,𝑐 (𝑣′, 𝑣)

+𝑐𝑚𝜎𝑚𝑃𝑚(𝑣′, 𝑣)
]

𝑑 𝑣′,
= (𝑐 𝜎𝑠 + 𝑐 𝜎𝑎𝜂)𝛿𝑐 (𝑣) + (𝑐 𝜎𝑎 + 𝑐𝑚𝜎𝑚)𝛿𝑐𝑚 (𝑣).

By definition of 𝑃𝑠 we have:

𝑃𝑠(𝑣′, 𝑣) =
𝑣𝛴𝑠(𝑣′, 𝑣)
𝑣𝛴𝑠(𝑣)

,

=

[

𝑐 𝜎𝑎𝛿𝑐 ,𝑐𝑚 (𝑣′, 𝑣) + 𝑐 𝜎𝑠𝛿𝑐 ,𝑐 (𝑣′, 𝑣) + 𝑐 𝜎𝑎𝜂 𝛿𝑐𝑚 ,𝑐 (𝑣′, 𝑣) + 𝑐𝑚𝜎𝑚𝑃𝑚(𝑣′, 𝑣)
]

(𝑐 𝜎𝑠 + 𝑐 𝜎𝑎𝜂)𝛿𝑐 (𝑣) + (𝑐 𝜎𝑎 + 𝑐𝑚𝜎𝑚)𝛿𝑐𝑚 (𝑣)
.

The above expression can be considerably simplified by noticing that

for 𝑣 = 𝑐𝑚, 𝑃𝑠(𝑐𝑚, 𝑣′) =
𝑐 𝜎𝑎𝛿𝑐 (𝑣′) + 𝑐𝑚𝜎𝑚𝑃𝑚(𝑣′, 𝑐𝑚)

(𝑐 𝜎𝑎 + 𝑐𝑚𝜎𝑚)
, for 𝑣 = 𝑐,

𝑃𝑠(𝑐 , 𝑣′) =
𝜎𝑠𝛿𝑐 (𝑣′) + 𝜎𝑎𝜂 𝛿𝑐𝑚 (𝑣′)

𝜎𝑠 + 𝜎𝑎𝜂
,

so that 𝑃𝑠 resumes to

𝑃𝑠(𝑣, 𝑣′) = 𝛿𝑐𝑚 (𝑣)
𝑐 𝜎𝑎𝛿𝑐 (𝑣′) + 𝑐𝑚𝜎𝑚𝑃𝑚(𝑣′, 𝑐𝑚)

(𝑐 𝜎𝑎 + 𝑐𝑚𝜎𝑚)
+ 𝛿𝑐 (𝑣)

𝜎𝑠𝛿𝑐 (𝑣′) + 𝜎𝑎𝜂 𝛿𝑐𝑚 (𝑣′)
𝜎𝑠 + 𝜎𝑎𝜂

.

Now, we are interested in a direct resolution of (13) on time step
𝑡𝑛, 𝑡𝑛 + 𝛥𝑡]. In other words, we need (cf. [71]) to characterise the total

and scattering opacities of the adjoint form of (13). It is given by

− 𝜕𝑡𝜓 − 𝑣𝜔 ⋅ ∇𝜓 + 𝑣𝛴𝑡(𝑣)𝜓 = ∫ ∫4𝜋
𝑣𝛴𝑆 (𝑣′, 𝑣)𝜓(𝑣′, 𝜔′)𝑑 𝑣′𝑑 𝜔′, (16)

where

𝑣𝛴𝑆 (𝑣, 𝑣′) = 𝑣𝛴𝑆 (𝑣)𝑃𝑆 (𝑣, 𝑣′) = 𝑣′𝛴𝑠(𝑣′)𝑃𝑠(𝑣, 𝑣′).

In the previous expression, 𝑃𝑆 is the probability of being scattered from
velocity 𝑣 toward velocity 𝑣′: it is used for a direct resolution. Then we
have

𝑣𝛴𝑆 (𝑣) = ∫
𝑣′𝛴𝑠(𝑣′)𝑃𝑠(𝑣, 𝑣′)𝑑 𝑣′,

= ∫

(

(𝑐 𝜎𝑠 + 𝑐 𝜎𝑎𝜂)𝛿𝑐 (𝑣′) + (𝑐 𝜎𝑎 + 𝑐𝑚𝜎𝑚)𝛿𝑐𝑚 (𝑣′)
)

×
(

𝛿𝑐𝑚 (𝑣
′)
𝑐 𝜎𝑎𝛿𝑐 (𝑣′) + 𝑐𝑚𝜎𝑚𝑃𝑚(𝑣′, 𝑐𝑚)

(𝑐 𝜎𝑎 + 𝑐𝑚𝜎𝑚)

+𝛿𝑐 (𝑣′)
𝑐 𝜎𝑠𝛿𝑐 (𝑣) + 𝑐 𝜎𝑎𝜂 𝛿𝑐𝑚 (𝑣)

𝑐 𝜎𝑠 + 𝑐 𝜎𝑎𝜂

)

𝑑 𝑣′

= (𝑐 𝜎𝑎 + 𝑐 𝜎𝑠)𝛿𝑐 (𝑣) + (𝑐 𝜎𝑎𝜂 + 𝑐𝑚𝜎𝑚)𝛿𝑐𝑚 (𝑣)
= 𝑐 𝜎𝑡𝛿𝑐 (𝑣) + (𝑐 𝜎𝑎𝜂 + 𝑐𝑚𝜎𝑚)𝛿𝑐𝑚 (𝑣) = 𝛴𝑡(𝑣).
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Few calculations, similar to the one already performed to identify 𝑃𝑆 ,
show that:

𝑃𝑆 (𝑣, 𝑣′) = 𝛿𝑐𝑚 (𝑣)
𝑐𝑚𝜎𝑚𝑃𝑚(𝑣′, 𝑐𝑚) + 𝑐 𝜎𝑎𝜂 𝛿𝑐 (𝑣′)

𝑐 𝜎𝑎𝜂 + 𝑐𝑚𝜎𝑚
+ 𝛿𝑐 (𝑣)

𝜎𝑠𝛿𝑐 (𝑣′) + 𝜎𝑎𝛿𝑐𝑚 (𝑣′)
𝜎𝑠 + 𝜎𝑎

.

With the above calculations, we identified the direct and adjoint
opacities for (13) to be revisited as a 2-group linear transport Eq. (16).
By selecting 𝜂 as

– 𝜂 = 𝜂𝑛, we use the SMC for the radiative counterpart as in [42],
– 𝜂 = 𝜂𝑛+1, we use the ISMC for the radiative counterpart as in [40].

In practice, in the next calculations, the ISMC solver is used. It natively
egenerates toward SMC when the problem is not stiff and allows

taking (stably) larger time steps than SMC for stiffer or stationary
problems.

4. Choosing 𝒄𝒎, 𝝈𝒎, 𝑷𝒎 with respect to 𝜿 , 𝝆𝒄𝒗

Until now, we mainly explained how the coupled system (9) can be
olved consistently, with Poissonian paths, independently of the choice

of 𝑐𝑚, 𝜎𝑚, 𝑃𝑚. Our aim now is to make some particular choices for the
solution of system (9) to coincide with the solution of system (1). For
his, we rely on the fact that in the diffusion limit [22] characterised
y 𝑐𝑚 ∼ ∞ and 𝑐𝑚𝜎𝑚 ∼ ∞, system (9) tends towards
⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑐
𝜕𝑡𝐼 + 𝜔 ⋅ ∇𝐼 + 𝜎𝑡𝐼 = 𝜎𝑎𝐵(𝑇𝑚) + 𝜎𝑠 ∫4𝜋

𝐼 𝑑 𝜔
′

4𝜋
,

𝜕𝑡𝐸(𝑇𝑚) − ∇ ⋅
(

𝑐𝑚
3𝜎𝑚

∇𝐸(𝑇𝑚)
)

= ∫4𝜋
𝑐 𝜎𝑎

( 𝐼
4𝜋

− 𝐵(𝑇𝑚)
)

𝑑 𝜔′.
(17)

The above system must be compared to
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
𝑐
𝜕𝑡𝐼 + 𝜔 ⋅ ∇𝐼 + 𝜎𝑡𝐼 = 𝜎𝑎𝐵(𝑇𝑚) + 𝜎𝑠 ∫4𝜋

𝐼 𝑑 𝜔
′

4𝜋
,

𝜕𝑡𝐸(𝑇𝑚) − ∇ ⋅
(

𝜅
𝜌𝑐𝑣

[

∇𝐸(𝑇𝑚) − 𝐸(𝑇𝑚)∇ ln (𝜌𝑐𝑣
)]

)

= ∫4𝜋
𝑐 𝜎𝑎

( 𝐼
4𝜋

− 𝐵(𝑇𝑚)
)

𝑑 𝜔′,

(18)

which corresponds to system (1) in which the change of variable 𝑇𝑚 =
𝐸
𝜌𝑐𝑣

has been performed in the spatial operator: ∇𝑇𝑚 in (1) has been
replaced by ∇ 𝐸

𝜌𝑐𝑣
.

We now aim at choosing 𝑐𝑚, 𝜎𝑚, 𝑃𝑚 with respect to 𝜅 , 𝜌𝑐𝑣 for the
solution of system (17) to coincide with the solution of system (18).
In order to constrain our choices, let us distinguish between two
situations, using the fact that we rely on constant-per-cell conductivities
and heat capacities:

(∗) within a cell, 𝑐𝑚
3𝜎𝑚

must be close to 𝜅
𝜌𝑐𝑣

= 𝐷 and a particle ‘‘sees’’
a homogeneous media.

(∗∗) 𝑐𝑚, 𝜎𝑚, 𝑃𝑚 must be able to take into account the term −𝐷∇ ln (𝜌𝑐𝑣
)

which is non-zero only when a particle crosses an interface be-
tween two media with different heat capacities.

For condition (∗) to be satisfied, we need to make sure that, additionally
o having
𝑐𝑚 ∼ ∞,
𝑐𝑚𝜎𝑚 ∼ ∞, (19)

we must satisfy

𝐷 =
𝑐𝑚
3𝜎𝑚

leading to 𝜎𝑚 =
𝑐𝑚
3𝐷

. (20)

With the above expression, we can define 𝑐𝑚 and 𝜎𝑚 up to a scaling
actor 𝑓 such that 𝑐𝑚 = 𝑐𝑚𝑓 and 𝜎𝑚 = �̃�𝑚𝑓 with 𝑓 ≫ 1 ‘‘large enough’’.

We will see in Section 6 what ‘‘large enough’’ must be in practice.
6 
Remark 2. It is important noting that the Poissonian approach we
suggest introduces 𝑓 as a numerical parameter (which echoes 𝛥𝑡 for
Brownian paths). One important feature of 𝑓 is that convergence of
(12) toward (1) is ensured as 𝑓 → ∞, see [72]. This means that
any user of a simulation code implementing this method needs to
perform a convergence study with respect to 𝑓 → ∞ in order to obtain
reliable results. The value of 𝑓 leading to reliable results is certainly
case dependent but as a guideline, with the numerical experiments we
performed, as soon as 𝑓 > 𝑓0 with 𝑓0 such that the averaged number
of collisions per particle reaches ≈ 30 − 40 during the time step, the
results seems to be satisfactory. A study of the choice of 𝑓 relative to
the choice of 𝑁𝑀 𝐶 is also provided in Section 6.1.2.

Constraints (19) and (20) are enough to satisfy (∗). But they are not
for the second condition (∗∗) to hold: the difficulty comes from the fact
that at the interface between two phases, 𝐷∇ ln (𝜌𝑐𝑣

)

is not defined.
We suggest relying on the preservation of some physical invariant at
the interface, namely the continuity of temperature, in order to impose
dditional constraints on 𝑐𝑚, 𝜎𝑚 with respect to 𝜌𝑐𝑣. For this, let us
onsider a configuration at equilibrium (i.e. for 𝑡 → ∞ for example),
ithout radiative transfer: in other words, in the case we have 𝜎𝑎 =
𝑠 = 𝜎𝑡 = 0. In this case, (9) degenerates towards

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝐼 + 𝑐 𝜔 ⋅ ∇𝐼 = 0,
𝜕𝑡𝑒 + 𝑐𝑚𝜔 ⋅ ∇𝑒 + 𝑐𝑚𝜎𝑚𝑒 = 𝑐𝑚𝜎𝑚 ∫ ∫4𝜋

𝑃𝑚𝑒
𝑑 𝜔′

4𝜋
𝑑 𝑐′𝑚,

with 𝐸(𝑇𝑚(𝑥, 𝑡)) = ∬ 𝑒(𝑥, 𝑡, 𝜔, 𝑐𝑚)𝑑 𝜔𝑑 𝑐𝑚.
(21)

In this configuration, photons are not anymore coupled with sensible
heat. Let us integrate with respect to both 𝜔, 𝑐𝑚 to get
⎧

⎪

⎨

⎪

⎩

𝜕𝑡𝐸(𝑥, 𝑡) + ∫ ∫ 𝑐𝑚𝜔 ⋅ ∇𝑒 = 0,

with 𝐸(𝑇𝑚(𝑥, 𝑡)) = ∬ 𝑒(𝑥, 𝑡, 𝜔, 𝑐𝑚)𝑑 𝜔𝑑 𝑐𝑚.
(22)

In an infinite medium, we must be able to recover the fact that inde-
endently of 𝜅, as 𝑡→ ∞, we must have a homogeneous temperature

𝑇𝑚(𝑥, 𝑡) = 𝑇𝑚,∀𝑥 ∈ 𝛺 , 𝑡→ ∞. (23)

Let us now consider two4 materials next to each other, with different
densities and heat capacities. Note that such test-case has already been
studied in order to enforce constraints in numerical methods in for
similar problems, see [57]. We have

𝐸(𝑥) = 𝜌(𝑥)𝑐𝑣(𝑥)𝑇𝑚(𝑥) = 𝜌(𝑥)𝑐𝑣(𝑥)𝑇𝑚, (24)

which means that even if 𝑇𝑚 is constant as 𝑡 → ∞, 𝐸 may suffer a jump
just because 𝑥 → 𝜌(𝑥)𝑐𝑣(𝑥) suffers a jump due to the presence of two
layers of different materials. Let us consider we have material 1 and
material 2 in presence, then we must have

𝑇𝑚 =
𝐸1
𝜌1𝑐𝑣,1

=
𝐸2
𝜌2𝑐𝑣,2

. (25)

This means that equilibrium imposes an additional constraint on the
flux at the interface between the two materials for equilibrium to
remain fulfilled. Indeed, let us come back to (22) with additional
hypothesis that 𝑡 → ∞, we then have

∫ ∫ 𝑐𝑚𝜔 ⋅ ∇𝑒(𝑥, 𝜔, 𝑐𝑚)𝑑 𝜔𝑑 𝑐𝑚 = 0. (26)

4 The generalisation to 𝑀 materials is almost straightforward but the
intuition is easier to get with only two.
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Let us integrate the above equation on two half spaces 𝛺 = 𝛺1 ∪𝛺2

∫𝛺 ∫ ∫ 𝑐𝑚𝜔 ⋅ ∇𝑒(𝑥, 𝜔, 𝑐𝑚)𝑑 𝜔𝑑 𝑐𝑚𝑑 𝑥 = 0,

∫ 𝑐𝑚 ∫ ∫𝜕 𝛺1∪𝛺2

𝜔 ⋅ 𝑛(𝑥)𝑒(𝑥, 𝜔, 𝑐𝑚)𝑑 𝑥𝑑 𝜔𝑑 𝑐𝑚 = 0,
(27)

where 𝑛 is the normal to the boundary 𝜕 𝛺 = 𝜕 𝛺1 ∪𝛺2. We obtain

∫ 𝑐𝑚 ∫ ∫𝜕 𝛺1

𝜔 ⋅ 𝑛1(𝑥)𝑒1(𝜔, 𝑐𝑚)𝑑 𝑥𝑑 𝜔𝑑 𝑐𝑚

+∫ 𝑐𝑚 ∫ ∫𝜕 𝛺2

𝜔 ⋅ 𝑛2(𝑥)𝑒2(𝜔, 𝑐𝑚)𝑑 𝑥𝑑 𝜔𝑑 𝑐𝑚 = 0,

∫ 𝑐𝑚 ∫ ∫𝜕 𝛺1∩𝜕 𝛺2

𝜔 ⋅ 𝑛(𝑥)𝑒1(𝜔, 𝑐𝑚)𝑑 𝑥𝑑 𝜔𝑑 𝑐𝑚

= ∫ 𝑐𝑚 ∫ ∫𝜕 𝛺2∩𝜕 𝛺1

𝜔 ⋅ 𝑛(𝑥)𝑒2(𝜔, 𝑐𝑚)𝑑 𝑥𝑑 𝜔𝑑 𝑐𝑚.

(28)

Furthermore, in the equilibrium diffusion limit, 𝑒 is isotropic
(i.e. 𝑒(𝑥, 𝑡, 𝜔, 𝑐𝑚) = 𝑒(𝑥, 𝑡, 𝑐𝑚)) leading to
1
4 ∫ 𝑐𝑚𝑒1(𝑐𝑚)𝑑 𝑐𝑚 = 1

4 ∫ 𝑐𝑚𝑒2(𝑐𝑚)𝑑 𝑐𝑚. (29)

The last equation can be reinterpreted as such: for equilibrium to be
ulfilled, the mean with respect to the velocity of 𝑐𝑚𝑒(𝑐𝑚) must be equal
n all the materials. There are several ways to make sure this equality

holds. Let us introduce the asymptotic expression (𝑡 → ∞) into the
previous equation to get
1
4 ∫ 𝑐𝑚𝐸1𝑑 𝑐𝑚 = 1

4 ∫ 𝑐𝑚𝐸2𝑑 𝑐𝑚.
1
4 ∫ 𝑐𝑚𝜌1𝑐𝑣,1𝑇𝑚𝑑 𝑐𝑚 = 1

4 ∫ 𝑐𝑚𝑇𝑚𝜌2𝑐𝑣,2𝑑 𝑐𝑚,

∫ 𝑐𝑚𝜌1𝑐𝑣,1𝑑 𝑐𝑚 = ∫ 𝑐𝑚𝜌2𝑐𝑣,2𝑑 𝑐𝑚.

(30)

In the next lines, we take 𝑑 𝑐𝑚 = 𝛿𝑐𝑚,1 (𝑐𝑚)𝑑 𝑐𝑚 in material 1 and 𝑑 𝑐𝑚 =
𝛿𝑐𝑚,2 (𝑐𝑚)𝑑 𝑐𝑚 in material 2, i.e. we enforce the relation quite naively by
making sure that the average velocities 𝑐𝑚,1 and 𝑐𝑚,2 in each materials
verify

𝑐𝑚,1𝜌1𝑐𝑣,1 = 𝑐𝑚,2𝜌2𝑐𝑣,2. (31)

More elaborated strategies may present nicer properties but this kind
of study is beyond the scope of this paper. In practice, for 𝑀 materials
(or 𝑁 cells), we will have

∀𝑖 ∈ {1,… , 𝑀}, 𝑐𝑚,𝑖𝜌𝑖𝑐𝑣,𝑖 = 𝑐𝑚𝑓 . (32)

It is easy to check that the last equation is compatible with the previous
ones given by (19)–(20). Finally, it remains to choose 𝑃𝑚. In practice,
we choose to take

𝑃𝑚(𝑥, 𝑣, 𝑣′) = 𝛿𝑐𝑚,𝑖 (𝑣)𝟏𝛺𝑖 (𝑥). (33)

In other words, a sensible heat MC particle incoming in medium 𝛺𝑖 has
velocity 𝑐𝑚,𝑖 after its first collision in 𝛺𝑖 and if enough collisions are
made, its average values within the material will get closer and closer
to 𝑐𝑚,𝑖.

To sum up, given some material physical quantities
(𝜅𝑖, 𝜌𝑖, 𝑐𝑣,𝑖)𝑖∈{1,…,𝑀}, we choose ∀𝑖 ∈ {1,… , 𝑀}
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑐𝑚,𝑖 =
𝑐𝑚𝑓
𝜌𝑖𝑐𝑣,𝑖

,

𝜎𝑖 =
𝑐𝑚,𝑖
3𝐷𝑖

= 𝑐𝑚𝑓
3𝐷𝑖𝜌𝑖𝑐𝑣,𝑖

,

𝑃𝑖(𝑥, 𝑣, 𝑣′) = 𝛿𝑐𝑚,𝑖 (𝑣)𝟏𝛺𝑖 (𝑥).

(34)

Parameter 𝑓 is the only numerical parameter and it guarantees the
convergence of (12) toward (1) as it tends to infinity. It must be used in
rder to satisfy condition (19). It must be acknowledged that satisfying

condition (19) may lead to computationally intensive calculations as
the larger 𝑓 is, the stiffer 𝜎𝑚 is and the more frequent the collisions and
he longer the calculations are for an MC resolution. In the numerical
7 
Section 6, we will see that despite the previous con, the strategy
emains interesting.

We finally insist on the fact that other choices could be made for
𝜎𝑚. For example, one could introduce a dependence of 𝜎𝑚 with respect
to 𝑣. For example in order to enforce a collision as soon as possible
when a sensible heat MC particle enters medium 𝛺𝑚 with velocity 𝑐𝑚′

with 𝑚′ ≠ 𝑚 (incoming from another medium 𝛺𝑚′ ), we can imagine an
opacity of the form

𝜎𝑚(𝑣) = 𝜎𝑚𝛿𝑐𝑚 (𝑣) +
1
𝜖
(1 − 𝛿𝑐𝑚 (𝑣)), with 𝜖 ∼ 0. (35)

This topic may be the scope of further studies aiming at accelerating our
new solver. For the moment, we remain with the simple choices (34)
and show that they already allow significant improvements (Section 6).

5. Revisiting the Brownian paths resolutions

Having the previous compatibility results in mind, it is possible
to revisit the Brownian paths resolution. The Brownian paths ensure
condition (∗) is satisfied. It remains to work on condition (∗∗) which
was ensured via constraints on the velocities of the particles, see (32).

he velocity of particles has no sense for Brownian particles. But
isplacements can be compared and the same analysis at equilibrium
olds. With this in mind, let us compare a Brownian displacements
nd a Poissonian one: a Brownian displacement on time step 𝛥𝑡 is
roportional to

√

2𝐷 𝛥𝑡. On this same time step, the equivalent velocity
s :

𝑐𝑚 ∝
√

2𝐷
𝛥𝑡
. (36)

Let us now apply the same conditions on the velocities as in the
previous case, i.e. 𝑐𝑚,1𝜌1𝑐𝑣,1 = 𝑐𝑚,2𝜌2𝑐𝑣,2, we then get :
√

2𝜅1
𝜌1𝑐𝑣,1𝛥𝑡1

𝜌1𝑐𝑣,1 =

√

2𝜅2
𝜌2𝑐𝑣,2𝛥𝑡2

𝜌2𝑐𝑣,2 ⟹
𝛥𝑡1
𝛥𝑡2

=
𝜅1𝜌1𝑐𝑣,1
𝜅2𝜌2𝑐𝑣,2

. (37)

In other words, the ratio of the time steps is the ratio of the squared
effusivities. Now introduce a reference time step 𝛥𝑡𝑟𝑒𝑓 : the velocity
ondition for continuity at the boundary translates into a condition on
he time steps used in each subdomains as

𝜅𝑖𝜌𝑖𝑐𝑣,𝑖𝛥𝑡𝑟𝑒𝑓 = 𝛥𝑡𝑖,∀𝑖 ∈ {1,… , 𝑀}. (38)

In the next section, this numerical strategy will be studied as well as the
transport (Poissonian) one. We will see that the previous simple anal-
ogy leads to efficient corrections of the Brownian path. Convergence as
𝛥𝑡𝑟𝑒𝑓 → 0 will even be observed.

6. Numerical results

In this section, we apply the material of the previous sections to sev-
eral test-cases. In Section 6.1, we begin by revisiting the benchmarks of
Section 1, which motivated our study, but with the strategies described
in Sections 3–4 and 5. The results are presented in Sections 6.1.1
and 6.1.2. The benchmark of Section 6.1.1 (with constant diffusivities
for which we have an analytical solution) studies the convergence
speed of the phonon model with respect to 𝑓 . The benchmark of
Section 6.1.2 allows focusing on conditions (19)–(20) for the phonon

odel resolution and on condition (38) for the Brownian one in the
case of a discontinuous conductivity 𝑥 → 𝜅(𝑥). In Section 6.1.3, we
consider a problem without conductivity jump but with discontinuous
𝜌𝑐𝑣. In Section 6.2, we test both of our suggested strategies for the
esolution of the full system (1) in the equilibrium diffusion limit for

photons and phonons, in layered media (discontinuous conductivities
– Section 6.2.1 – volumic heat capacity – Section 6.2.3 – or both at
the same time – Section 6.2.3): these test-cases are convenient because
obtaining a reference solution in the equilibrium diffusion limit is quite
easy with a deterministic solver. Finally, in Section 6.4, we consider
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Fig. 2. Results in terms of temperature profiles 𝑥 ↦ 𝑇𝑚(𝑥, 𝑡 = 10−2) obtained with the kinetic solver (left column) and the diffusive one (right column) on the constant diffusivity
benchmark of Section 1. Several solutions are displayed with different numerical parameters 𝑓 ∈ {101 , 102 , 103} for the Kinetic scheme and 𝛥𝑡𝑟𝑒𝑓 ∈ {10−5 , 10−6 , 10−7} for the Brownian
scheme.
t

t

f

some fully coupled physics with transparent media in which radiative
transfer cannot be approximated with the diffusion model.

Note that all the test-cases are such that the solution does not
nteract with the boundaries. This is mainly because we suggest ways
o overcome a problem which is more related to jumps of physical
uantities rather than boundary conditions. As such, the test-cases are
impler and this eases the reproducibility of the results. Note that taking
nto account the boundary conditions for the kinetic solver is very
lose to taking into account boundary condition for radiative transfer
4) solved with an MC scheme. For the corrected Brownian path, the

treatment of the boundary remains unaffected by the corrections we
suggest in Section 5.

In the next sections, the resolution strategy described in Sections 3–
4 is referred to as the kinetic solver or the solution with Poissonian paths.

he strategy consisting in Brownian paths with the time step corrections
escribed in Section 5 is referred to as the diffusive solver or the solution
ith Brownian paths.

6.1. Uncoupled benchmarks in layered media: with only diffusion for ma-
terial temperature

In this section, we revisit the benchmarks of Section 1 but with the
new resolution strategies described in Sections 3–4 and 5. We focus on
he resolution of the diffusion equation for material temperature (not

yet coupled to radiative transfer):

𝜕𝑡𝐸(𝑥, 𝑡) − ∇ ⋅
(

𝜅(𝑥)∇𝑇𝑚(𝑥, 𝑡)
)

= 0, (39)

with 𝜕𝑡𝐸(𝑥, 𝑡) = 𝜕𝑡𝐸(𝑇𝑚(𝑥, 𝑡)) = 𝜌(𝑥)𝑐𝑣(𝑥)𝜕𝑡𝑇𝑚(𝑥, 𝑡). The test-case of
Section 6.1.1 considers constant 𝜅 , 𝜌𝑐𝑣 and studies the sensitivity of

(Poissonian) and to 𝛥𝑡𝑟𝑒𝑓 (Brownian) on this simple benchmark. In
ection 6.1.2, we focus on a problem with discontinuous 𝑥↦ 𝜅(𝑥) and

in Section 6.1.3, on a problem with discontinuous 𝑥↦ 𝜌(𝑥)𝑐𝑣(𝑥).

6.1.1. Constant diffusivities (𝐷1 = 𝐷2) for heat conduction (no coupling
with radiative transfer)

In this section, we revisit the simple test-case of Section 1 (simple
case 𝐷1 = 𝐷2). We quantitatively exploit the fact that an analytical
olution is available and we study the convergence rate of the kinetic

strategy toward the equilibrium diffusion limit. Fig. 2 presents the
results obtained with the kinetic solver (left column) and the diffusive
one (right column) on the constant diffusivity benchmark. The results
are displayed in terms of temperature profiles 𝑥 ↦ 𝑇𝑚(𝑥, 𝑡 = 10−2). For
the Brownian paths (right), to reach census, i.e. final time 𝑡 = 10−2,
each MC particle encounters
8 
Fig. 3. Behavior of the errors with respect to 𝑁𝑀 𝐶 and 𝑓 for the Poissonian path and
o 𝑁𝑀 𝐶 and 𝛥𝑟𝑒𝑓 for the Brownian one quantified in terms of total scattering events.

– 102 collisions for 𝛥𝑡𝑟𝑒𝑓 = 10−5,
– 103 collisions for 𝛥𝑡𝑟𝑒𝑓 = 10−6,
– 104 collisions for 𝛥𝑡𝑟𝑒𝑓 = 10−7.

As soon as 𝛥𝑡𝑟𝑒𝑓 ≤ 10−6, equivalent to each particle performing more
han 1000 collisions, the results show a good agreement. The top left

picture of Fig. 2 displays the results obtained with the Poissonian paths
or three values of the factor 𝑓 ∈ {101, 102, 103}. For 𝑓 = 101, the

equilibrium diffusion limit is not reached and the results are similar
to the ones we obtain for transport in a semi transparent medium. As
soon as 𝑓 ≥ 100, the results are in agreement with the reference.

Fig. 3 presents some more quantitative results: it displays the evolu-
tions of the errors obtained with the Poissonian and Brownian methods
with respect to the number of scattering events (related to 𝑓 for the
Poissonian strategy and to 𝛥𝑡𝑟𝑒𝑓 for the Brownian one) for two different
MC discretisations (respectively 𝑁𝑀 𝐶 = 105 and 𝑁𝑀 𝐶 = 107). On
Fig. 3, we can see that the error for the Brownian method does not
depend on the number of scattering events (related to 𝛥𝑡𝑟𝑒𝑓 ) but rather
more directly on the number of MC particles used to solve the problem.
The convergence with respect to 𝛥𝑡𝑟𝑒𝑓 is fast. On another hand, for
the Poissonian method, by increasing 𝑓 , the number of scattering
events increases, the diffusive regime is better and better captured and
the error tends toward the one obtained with the Brownian scheme,
dictated by the number of MC particles 𝑁𝑀 𝐶 . The convergence seems
to be of order 1 with respect to the number of scattering events. As a
matter of fact, when the errors match, the two solvers are in exactly the
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Fig. 4. Results in terms of temperature profiles 𝑥 ↦ 𝑇𝑚(𝑥, 𝑡 = 10−2) obtained with the kinetic solver (left column) and the diffusive one (right column) on the discontinuous
conductivity 𝑥 ↦ 𝜅(𝑥) benchmark of Section 1. Several solutions are displayed with different numerical parameters 𝑓 ∈ {101 , 102 , 103} for the Kinetic scheme and 𝛥𝑡𝑟𝑒𝑓 ∈
{10−4 , 10−5 , 10−6} for the Brownian scheme.
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same conditions (same 𝑁𝑀 𝐶 , same time step, same number of cells and
ven same accuracies) and their run times are the almost the same. This
oint will be more developed in the next section but for discontinuous
onductivities.

6.1.2. Discontinuous conductivities (𝜅1 ≠ 𝜅2 and 𝜌𝑐𝑣,1 = 𝜌𝑐𝑣,2) for heat
onduction (no coupling with radiative transfer)

In this section, we revisit the test-case of Section 1 for which 𝑥 ↦
(𝑥) is discontinuous. It is given by 𝑥↦ 𝜅(𝑥) = 10 ×𝟏[0, 12 ](𝑥) + 1 ×𝟏[ 12 ,1](𝑥).
or this test-case, 𝑥 ↦ 𝜌(𝑥)𝑐𝑣(𝑥) = 1,∀𝑥 ∈ [0, 1]. We tackle it with the
aterial of the previous Sections 3–4 and 5.

Fig. 4 presents the results obtained with the kinetic solver (left
olumn) and the diffusive one (right column) on the discontinuous
onductivity 𝑥 ↦ 𝜅(𝑥) benchmark of Section 1. The results are displayed

in terms of temperature profiles 𝑥 ↦ 𝑇𝑚(𝑥, 𝑡 = 10−2). Note that the
profiles 𝑥 ↦ 𝜅(𝑥) and 𝑥 ↦ 𝜌(𝑥)𝑐𝑣(𝑥) are also displayed (the scales for
them are on the right vertical axis).

The solutions are obtained in the same numerical settings: 𝑁𝑥 = 100
cells, 𝑁𝑀 𝐶 = 106. The two resolution strategies give satisfactory results
as soon as 𝑓 = 102 for the kinetic solver and 𝛥𝑡 = 10−6 for the diffusion
one. For both cases of Fig. 4, the new strategies we suggest in this paper
re satisfactory in the sense they converge toward the physical solution
s their respective numerical parameters (𝑓 and 𝛥𝑡𝑟𝑒𝑓 ) are refined.

The previous results are satisfactory but one may wonder how the
fluctuations induced by the MC resolution (i.e. due to the stochasticity
f the solvers) impact the results. In the next lines, we aim at proving
hat the results of Fig. 4 are significantly sound. For this, let us now
ackle some performance tests in this discontinuous context: we cannot

rely anymore on any analytical reference solution in this case. For this
reason, we suggest comparing the two solvers with respect to their
mean and variance of the temperature profile obtained over 𝑁𝑠𝑒𝑒𝑑 = 100
computations (i.e. by changing 100 times the initial seed of the random
number generator of the stochastic simulators).

Fig. 5 presents the results obtained with 𝑁𝑀 𝐶 = 105 for both
solvers: with the coarse choices of numerical parameters (𝑓 = 10)
for the kinetic solver (Fig. 5 top left), the reference solution obtained
by the deterministic solver is not within the 95% confidence intervals
computed thanks to the 𝑁𝑠𝑒𝑒𝑑 simulations. For the Brownian scheme
with coarse time step 𝛥𝑡𝑟𝑒𝑓 = 10−4 (Fig. 5 top right), the reference
emperature profile is already within the 95% confidence intervals but
he mean of the simulations remains quite far from it.

For the middle line of Fig. 5, the numerical parameters are refined
nd the reference solution is now within the 95% confidence intervals
or both solvers. Note that the averaged simulation obtained with the
inetic solver is in better agreement with the reference solution than
he one obtained with the Brownian one.
9 
Table 1
Execution times averaged over the number of seeds (𝑁𝑠𝑒𝑒𝑑 = 100) for both solvers in
order to obtain similar accuracies on the mean and the variance.
𝑁𝑀 𝐶 = 105 Kinetic Brownian

𝑓 = 102 vs. 𝛥𝑡𝑟𝑒𝑓 = 10−5 0.296 s. 0.995 s.
𝑓 = 103 vs. 𝛥𝑡𝑟𝑒𝑓 = 10−6 2.622 s. 5.972 s.

𝑁𝑀 𝐶 = 106 Kinetic Brownian

𝑓 = 102 vs. 𝛥𝑡𝑟𝑒𝑓 = 10−5 1.095 s. 6.712 s.
𝑓 = 103 vs. 𝛥𝑡𝑟𝑒𝑓 = 10−6 19.90 s. 63.24 s.

On the last line of Fig. 5, the numerical parameters 𝑓 and 𝛥𝑡𝑟𝑒𝑓 are
nce again refined and for these last choices, the means obtained with
oth solvers are in excellent agreement with the reference solution. Fur-
hermore, the 95% confidence intervals of both solvers are significantly
he same. This typically means that we can compare the solvers for
imilar accuracies in terms of mean and variance for such choices of
arameters. Note that such comparisons could not have been obtained
ithout our corrected Brownian path (as the solutions of both solvers
ust converge toward the same limit for fair comparisons).

The purpose of Table 1 is precisely to exploit the possibility to
perform fair comparisons but before commenting on Table 1, let us
otice that Fig. 6 displays the same study as Fig. 5 but with 𝑁𝑀 𝐶 = 106
nstead of 𝑁𝑀 𝐶 = 105. All in all, similar comments as for Fig. 5 can be

made. One can notice that the 95% confidence intervals are now tighter
so that even for the coarse numerical parameters (top line of Fig. 5),
he reference solution is outside these bounds. For the middle plots, the
eference solution is within the confidence intervals for both solvers but

we can notice that the mean of the kinetic model is in better agreement
with the reference solution than the one of the Brownian path (just as
in Fig. 5 with 𝑁𝑀 𝐶 = 105): this testifies that increasing 𝑁𝑀 𝐶 cannot
compensate the need for decreasing 𝛥𝑡𝑟𝑒𝑓 in order to eliminate a bias.
But Fig. 6 allows another important comment: the optimal choice of 𝑓
(kinetic) or 𝛥𝑡𝑟𝑒𝑓 (Brownian) ensuring the true solution to be within the
confidence bounds strongly depends on the value of 𝑁𝑀 𝐶 . Being able to
increase the number of walkers (kinetic or Brownian) may impose finer
𝑓 or 𝛥𝑡𝑟𝑒𝑓 for the bias induced by coarse choices of such parameters to
be negligible with respect to the fluctuations induced by 𝑁𝑀 𝐶 . For this
reason, it is important identifying the faster solver between the kinetic
one and the corrected Brownian one.

Table 1 compares the execution times averaged over the number of
seeds (𝑁𝑠𝑒𝑒𝑑 = 100) for both solvers in order to obtain similar accuracies
n the mean and the variance (i.e. for the numerical parameters of the
iddle and bottom lines of Figs. 5 and 6). The kinetic solver is about 3

times faster than the corrected Brownian one for this benchmark (the
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Fig. 5. Results in terms of temperature profiles 𝑥↦ 𝑇𝑚(𝑥, 𝑡 = 10−2) (several seeds, mean, confidence intervals) obtained with the kinetic solver (left column) and the diffusive one
(right column) on the discontinuous conductivity 𝑥↦ 𝜅(𝑥) benchmark of Section 1 for 𝑁𝑠𝑒𝑒𝑑 = 100 different seeds and 𝑁𝑀 𝐶 = 105. Each line corresponds to a numerical parameter
choice: 𝑓 ∈ {101 , 102 , 103} for the Kinetic scheme and 𝛥𝑡𝑟𝑒𝑓 ∈ {10−4 , 10−5 , 10−6} for the Brownian scheme.
first line is non informative, the execution times are too small for fair
comparisons).

6.1.3. Discontinuous density/volumic heat capacity (𝜅1 = 𝜅2 and 𝜌𝑐𝑣,1 ≠
𝜌𝑐𝑣,2) for heat conduction (no coupling with radiative transfer)

In this section, we present some results on a benchmark for which
there are discontinuities for 𝑥↦ 𝜌(𝑥)𝑐𝑣(𝑥) but not for 𝑥 ↦ 𝜅(𝑥). We take
𝑥 ↦ 𝜅(𝑥) = 1,∀𝑥 ∈ [0, 1] and 𝑥 ↦ 𝜌(𝑥)𝑐𝑣(𝑥) = 10−1×𝟏[0, 12 ](𝑥) + 1 ×𝟏[ 12 ,1](𝑥).
Once again, as a reference, we rely on the solution provided by a
deterministic solver.

The results are displayed in Fig. 7. For the Poissonian numerical
strategy (left), as soon as the numerical parameter is well chosen (𝑓 ≫
1), the exact solution is captured. The factor 𝑓 must be equal to 104 for
accurate restitutions. The new Brownian strategy also allows capturing
10 
efficiently this problem even if a spike at 𝑥 = 1
2 , i.e. at the interface

between the two material is observable for the coarse values of 𝛥𝑡𝑟𝑒𝑓 .
We insist on the fact that the numerical parameters 𝑁𝑥 = 100 and
𝑁𝑀 𝐶 = 106 are the same for both resolution strategies: similar levels of
noise are qualitatively observable.

6.2. Coupled benchmark (resolution of system (1)) in the equilibrium dif-
fusion limit in layered media

In this section, we solve the full system (1) coupling radiative
transfer and the diffusion equation for material temperature in layered
media but in the equilibrium diffusion limit, i.e. in opaque materials for
photons. In such conditions [73–75], the solution of (1) coincides with
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Fig. 6. Results in terms of temperature profiles 𝑥↦ 𝑇𝑚(𝑥, 𝑡 = 10−2) (several seeds, mean, confidence intervals) obtained with the kinetic solver (left column) and the diffusive one
(right column) on the discontinuous conductivity 𝑥↦ 𝜅(𝑥) benchmark of Section 1 for 𝑁𝑠𝑒𝑒𝑑 = 100 different seeds and 𝑁𝑀 𝐶 = 106. Each line corresponds to a numerical parameter
choice: 𝑓 ∈ {101 , 102 , 103} for the Kinetic scheme and 𝛥𝑡𝑟𝑒𝑓 ∈ {10−4 , 10−5 , 10−6} for the Brownian scheme.
Fig. 7. Results in terms of temperature profiles 𝑥 ↦ 𝑇𝑚(𝑥, 𝑡 = 10−2) obtained with the kinetic solver (left column) and the diffusive one (right column) on a benchmark with
discontinuous 𝑥 ↦ 𝜌(𝑥)𝑐𝑣(𝑥). Several solutions are displayed with different numerical parameters 𝑓 ∈ {101 , 102 , 103} for the Kinetic scheme and 𝛥𝑡𝑟𝑒𝑓 ∈ {10−5 , 10−6 , 10−7} for the
Brownian scheme.
the solution of

𝜕𝑡
(

𝐸(𝑇𝑚(𝑥, 𝑡)) + 𝑎𝑇 4
𝑚(𝑥, 𝑡)

)

− ∇⋅
(

𝜅(𝑥)∇𝑇𝑚(𝑥, 𝑡) + 𝑐
3𝜎𝑎(𝑥)

∇
(

𝑎𝑇 4
𝑚(𝑥, 𝑡)

)

)

= 0

(40)
11 
with Dirichlet boundary conditions 𝑇𝑚 = 0 and the same Heaviside
initial condition as in the example of Section 1. In order to solve the
above model, we rely on a deterministic solver.
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Fig. 8. Spatial profile of the material temperature for two different solvers in the same configuration. The smooth curve comes from a deterministic simulation code solving the
quilibrium diffusion limit for both radiative transfer and material conduction at time 𝑡𝑓 = 5 × 10−3. The noisy curves are obtained from the phonon solver (left) and the corrected
rownian one (right).
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Table 2
Characteristics of the benchmark of Section 6.2.1.
𝛺 = [0, 1] 𝛺1 = [0, 1

2
] 𝛺2 = [ 12 , 1]

𝜅(𝑥) 10−1 1
𝜌(𝑥)𝑐𝑣(𝑥) 1 1
𝜎𝑎(𝑥) 5000 5000
𝜎𝑠(𝑥) 0 0

6.2.1. Resolution of system (1) in the equilibrium diffusion limit in layered
edia (discontinuous 𝜅)

In this section, we suggest considering a test problem with a full
coupling between radiative transfer and diffusion in a layered material
n the equilibrium diffusion limit. The solution of (1) in this regime
oincides with the solution of (40). The characteristics of the test-case

are summed up in Table 2. We insist on the fact that these test-cases
re more numerical than physical: we take 𝑐 = 5000 for the speed

of light and 𝑎 = 1 for the radiative constant. In practice, for the
numerical parameters, we take 𝛥𝑡 = 10−4, 𝑁𝑥 = 100 and 𝑁𝑀 𝐶 = 106
for both computations. The initial condition is given by 𝑇𝑚(𝑥, 𝑡 = 0) =
2 × 𝟏[0.45,0.55](𝑥). The final time 𝑡𝑓 = 5 × 10−3 has been chosen so that
the solutions do not interact significantly with the boundary in order to
avoid additional difficulties which would be beyond the scope of this
paper.

Fig. 8 displays the results in terms of temperature profiles 𝑥 ↦

𝑚(𝑥, 𝑡𝑓 = 5 × 10−3). They are obtained with both strategies suggested in
his paper, compared to a reference solution given by a deterministic
ode solving (40). Once again, even in this coupled context, the two

numerical strategies we suggest in this paper allow recovering the
reference solution as soon as 𝑓 and 𝛥𝑡𝑟𝑒𝑓 are fine enough.

6.2.2. Resolution of system (1) in the equilibrium diffusion limit in layered
edia (discontinuous 𝜌𝑐𝑣)

In this section, we suggest considering a test problem with a full
coupling between radiative transfer and diffusion in a layered material
n the equilibrium diffusion limit. The characteristics of the test-case are

summed up in Table 3. Once again, we take 𝑐 = 5000 for the speed
f light and 𝑎 = 1 for the radiative constant and 𝛥𝑡 = 10−4, 𝑁𝑥 = 100
nd 𝑁𝑀 𝐶 = 106 for both computations. The initial condition is given
y 𝑇𝑚(𝑥, 𝑡 = 0) = 2 × 𝟏[0.45,0.55](𝑥). The final time is 𝑡𝑓 = 1 × 10−3.

Fig. 9 displays the results in terms of temperature profiles 𝑥 ↦

𝑚(𝑥, 𝑡𝑓 = 10−3). They are obtained with both strategies suggested in
his paper, compared to a reference solution given by a deterministic
ode solving (40). Once again, even in this coupled context, the two

numerical strategies we suggest in this paper allow recovering the
reference solution as soon as 𝑓 and 𝛥𝑡 are fine enough.
𝑟𝑒𝑓

12 
Table 3
Characteristics of the benchmark of Section 6.2.2.
𝛺 = [0, 1] 𝛺1 = [0, 1

2
] 𝛺2 = [ 12 , 1]

𝜅(𝑥) 1 1
𝜌(𝑥)𝑐𝑣(𝑥) 10 1
𝜎𝑎(𝑥) 5000 5000
𝜎𝑠(𝑥) 0 0

Table 4
Characteristics of the benchmark of Section 6.2.3.
𝛺 = [0, 1] 𝛺1 = [0, 1

2
] 𝛺2 = [ 12 , 1]

𝜅(𝑥) 10−1 1
𝜌(𝑥)𝑐𝑣(𝑥) 10 1
𝜎𝑎(𝑥) 5000 5000
𝜎𝑠(𝑥) 0 0

6.2.3. Resolution of system (1) in the equilibrium diffusion limit in layered
media (discontinuous 𝜌𝑐𝑣 and 𝜅)

In this section, we consider a test-case which is a mix between the
wo previous ones in the sense that both 𝑥 ↦ 𝜅(𝑥) and 𝑥 ↦ 𝜌(𝑥)𝑐𝑣(𝑥)
re discontinuous. The characteristics of the test-case are summed up
n Table 4.

Fig. 10 displays the results obtained with both strategies suggested
in this paper, compared to a reference solution given by a deterministic
code the diffusion limit for both radiative transfer and material diffu-
ion. Even in this more complex case, the two strategies are in very
ood agreement with the reference solution.

6.3. Configurations with layers of air, Al2O3 and graphite

The previous studies of the paper were mainly dimensionless. In
his section, we consider more physical test-cases. The set-up is close
o the one of the previous benchmarks, i.e. 1D, with several layers
f different materials. For the material, we consider air, graphite and
l2O3. The information about the opacities, conductivities, densities
nd heat capacities are taken from [76,77] for graphite and from

[78,79] for Al2O3 and are quite classical for air [80]. They are summed-
up in Table 5 with their respective units. The speed of light is 𝑐 =
3 × 108 km s−1.

Once again, the spatial configuration is quite simple in the sense
hat two materials are on the left hand side and the right hand side

of the interface at 𝑥 = 1
2 . There are three different types of layers: an

air-graphite one with final time 𝑡𝑓 = 50 s, an Al2O3-graphite one with
inal time 𝑡𝑓 = 200 s and an air-Al2O3-graphite one with final time 𝑡𝑓 =
2000s. The material temperature profiles 𝑥 ↦ 𝑇 (𝑥, 𝑡 ) are displayed
𝑚 𝑓
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Fig. 9. Spatial profile of the material temperature for two different solvers in the same configuration. The smooth curve comes from a deterministic simulation code solving the
quilibrium diffusion limit for both radiative transfer and material conduction at time 𝑡𝑓 = 10−3. The noisy curves are obtained from the phonon solver (left) and the corrected
rownian one (right).
Fig. 10. Spatial profile of the material temperature for two different solvers in the same configuration. The smooth curve comes from a deterministic simulation code solving the
quilibrium diffusion limit for both radiative transfer and material conduction at time 𝑡𝑓 = 5 × 10−2. The noisy curves are obtained from the phonon solver (left) and the corrected
rownian one (right).
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Table 5
Characteristics of the benchmark of Section 6.3 for air [80], graphite [76,77] and Al2O3
[78,79]. The properties are taken at temperature 1000 ◦C and atmospheric pressure.

Units Air [80] Graphite [76,77] Al2O3 [78,79]

𝜅 (W m−1 K−1) 8.0 × 10−2 7.5 × 10+1 7.0 × 10+0
𝜌 (kg m−3) 1.0 × 10+0 1.8 × 10+3 3.9 × 10+3
𝑐𝑣 (J kg−1 K−1) 1.0 × 10+3 1.8 × 10+3 1.2 × 10+3
𝜎𝑎 (m−1) 0.0 × 10+0 4.2 × 10+6 1.0 × 10+4

in Fig. 11 for the three configurations. The first line corresponds to
he Al2O3-graphite layers and the second one to the air-graphite one.

The last line corresponds to a set-up with three layers, the first one is
air, the second is Al2O3 and the third one on the right is graphite. The
initial condition is the same for every configurations, the same as in
the previous sections.

Each time, two curves are plotted: the reference one is obtained with
a deterministic scheme solving (40), the noisy one is obtained with the
oissonian path strategy (left) or the corrected Brownian one (right).
et us comment first on the first line of Fig. 11, for the Al2O3-graphite

layers: both solvers are in excellent agreement with the reference curve.
Both have exactly the same number of particles 𝑁𝑀 𝐶 = 106, time step
𝛥𝑡 = 𝑡𝑓∕10. The corrected Brownian solver uses 𝛥𝑡𝑟𝑒𝑓 = 10−10 whereas
the Poissonian one uses 𝑓 = 104: these values are chosen so that about
the same accuracy is obtained for both solvers. To give an idea, in such
configuration, the Poissonian strategy is about 100 times faster.
13 
The second line of Fig. 11 presents the curves obtained for the
air-graphite configuration. As can be attested, the resolution in air
is much noisier than the resolution in graphite. This is mainly due
to the important jump in 𝑥 ↦ 𝜌(𝑥)𝑐𝑣(𝑥): this fact has already been
noticed in [64] in a quite different physical context: the ISMC resolution

ust be incriminated, and not the Poissonian or corrected Brownian
trategies we suggest in this paper. The solver DIMC (Discrete IMC) may
epresent an interesting alternative to ISMC combined to the strategies
uggested in this paper. We think the study of this phenomenon is
nteresting but beyond the scope of this paper. This will certainly be
he object of future works. Note that the temperature profile obtained
ith the corrected Brownian path has 10 times less MC particles and

he simulation takes 10 times more time than the Poissonian resolution.
his test-case also allows highlighting one important property of the
esolutions: even if the solution in air is noisy, the resolution in graphite
s very well handled.

Finally, the last line of Fig. 11 presents the results on the set-up
with three layers. For this set-up, the interfaces are at 𝑥𝑎𝑖𝑟−𝐴𝑙2𝑂3

=
1
3 and 𝑥𝐴𝑙2𝑂3−𝑔 𝑟𝑎𝑝ℎ𝑖𝑡𝑒 = 2

3 . First, the same remark as for the second
line can be made: the resolution in air is much noisier than in the
ther materials. This is true for both the Poissonian and the corrected

Brownian solver. Besides, the Poissonian simulation is much less costly
than the corrected Brownian one: for their cost to match, we increased
the time step 𝛥𝑡𝑟𝑒𝑓 = 10−7 for the corrected Brownian path. We can
learly see that 𝛥𝑡𝑟𝑒𝑓 = 10−7 is not small enough to damp the spike at

the interface 𝑥 = 1 between air and Al O . It is much more difficult
3 2 3
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Fig. 11. Spatial profiles of the material temperature for two different solvers (columns) in the same configurations (lines). The smooth curve comes from a deterministic simulation
code solving the equilibrium diffusion limit for both radiative transfer and material conduction at time 𝑡𝑓 . Note that for this benchmark, the values are not anymore dimensionless:
data for air, Al2O3 and graphite were taken from the literature.
to perform fair comparisons with such costly test-cases, that is why we
relied on the choice of time step and factor 𝑓 inspired from the previous
simulations. With this test-case, we highlight the fact that the strategy
s not limited to two layers and that the generalisation made in the

previous sections for 𝑀 materials does work. But it also highlights the
act that material per material tunings of 𝑓 and 𝛥𝑡𝑟𝑒𝑓 may be relevant
n order to improve the accuracy or the computation time. This will
ertainly be the purpose of future studies.

6.4. Resolution of system (1) in semi-transparent layered media

In this last section, we revisit the test-case of Section 6.2.3 but the
materials of the two layers are now semitransparent to photons (see
Table 6). With this test-case, we want to insist on the importance of
resorting to a transport model for photons in semitransparent material,
especially in a calibration context. We compare the results obtained by
three different models:

– the first model we consider is model (1). It is valid for semi-
transparent materials to photons. It needs to be given quantities
𝜎𝑎, 𝜎𝑠, 𝜅 , 𝜌, 𝑐𝑣 for each materials involved in the computation (𝑐 is
the speed of light and is fixed). In the next Fig. 12, it is solved
with the kinetic solver (left) and with the corrected Brownian
path (right). For this model (1), 𝑥 → 𝑇 (𝑥, 𝑡 ) and 𝑥 → 𝑇 (𝑥, 𝑡 )
𝑟 𝑓 𝑚 𝑓

14 
are displayed in Fig. 12 with 𝑡𝑓 = 5 × 10−2 the time of interest.
The curves of Fig. 12 relative to this model are obtained by using
the values of Table 6. Note that for this model, equilibrium may
not be fulfilled in some (semitransparent) materials. This means
that if we introduce the ‘‘radiative temperature’’ 𝑇𝑟, defined by
∫ 𝐼(𝑥, 𝑡, 𝜔, 𝜈) d𝜔 d𝜈 = 𝑎𝑇 4

𝑟 (𝑥, 𝑡), we may have 𝑇𝑟 ≠ 𝑇𝑚 for some
𝑥 ∈ . This is the case in Fig. 12 as equilibrium is fulfilled only
for 𝑥 ≤ 0.4 and 0.8 ≤ 𝑥.

– The second model we consider is model (40). To run a compu-
tation with model (40), one only needs to feed the code with
𝜎𝑎, 𝜌, 𝑐𝑣, 𝜅 (𝑐 is the speed of light, 𝑎 is the radiative constant and
they are both fixed) as 𝜅𝑟𝑎𝑑 = 𝑐

3𝜎𝑎
depends on the previous data.

Note that 𝜎𝑠 is not needed because the equilibrium diffusion limit
is defined by 𝜎𝑎 ∼ ∞ and in such condition 𝜎𝑡 = 𝜎𝑎 + 𝜎𝑠 ∼ 𝜎𝑎
and the model is not sensitive to 𝜎𝑠. Model (40) is the limit of
model (1) in opaque materials. In a sense, it means that in opaque
media, the same 𝜎𝑎 used to feed model (1) must be used to feed
model (40) and the solutions of both models will coincide. In
the plots of Fig. 12, the curve 𝑥 → 𝑇𝑚(𝑥, 𝑡𝑓 ) for this model is
the one named reference (diffusion limit). In other words, the ‘‘ref-
erence (diffusion limit)’’ curve is obtained by solving (40) with
the values of Table 6. The temperature profile obtained in the
previously described condition is quite far from the temperature
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Fig. 12. Spatial profile of the material temperature for two different solvers in the same configuration. The smooth curve comes from a deterministic simulation code solving the
quilibrium diffusion limit for both radiative transfer and material conduction at time 𝑡 = 10−2. The noisy curves are obtained from the phonon solver (left) and the corrected
rownian one (right) but with radiative transfer in a semitransparent material.
m
n

Table 6
Characteristics of the benchmark of Section 6.4. The speed of the photons is now 𝑐 = 5,
𝑎 = 1. The numerical parameters are 𝑁𝑥 = 100, 𝑁𝑀 𝐶 = 106 and 𝛥𝑡 = 10−4.
𝛺 = [0, 1] 𝛺1 = [0, 1

2
] 𝛺2 = [ 12 , 1]

𝜅(𝑥) 10−1 1
𝜌(𝑥)𝑐𝑣(𝑥) 10 1
𝜎𝑎(𝑥) 5 5
𝜎𝑠(𝑥) 0 0

profiles obtained by solving model (1): the diffusion limit is not
valid, the media being semitransparent. For this model, in this
configuration, the temperature is over-evaluated in the vicinities
of the propagation fronts and under-estimated in the vicinity of
the center of the domain.

– Now, model (40) is cheaper to solve than model (1). It is tempting
trying to replace 𝑐

3𝜎𝑎
by a fitted quantity in order to obtain

temperature profiles as close as possible as the ones obtained with
model (1) but with model (40). Let us introduce 𝜅𝑓 𝑖𝑡𝑡𝑒𝑑𝑟𝑎𝑑 ≠ 𝜅𝑟𝑎𝑑 .
In practice, in Fig. 12, we take 𝜅𝑓 𝑖𝑡𝑡𝑒𝑑𝑟𝑎𝑑 = 3.333 × 10−3 instead
of 𝜅𝑟𝑎𝑑 = 3.333 × 10−1. In Fig. 12, the result obtained with this
fitted model is denoted by diffusion limit with fitted conductivities.
This choice of 𝜅𝑓 𝑖𝑡𝑡𝑒𝑑𝑟𝑎𝑑 = 3.333 × 10−3 is motivated by the fact
that with such value, the material temperature 𝑇𝑚 obtained by
model (1) is very close to the one obtained with model (40). In
fact, 𝑇 (1)

𝑚 (𝑥, 𝑡𝑓 ) ≠ 𝑇 (40), fitted
𝑚 (𝑥, 𝑡𝑓 ) only in volume 𝑥 ∈ [0.48, 0.58],

i.e. for about 10% of the simulation domain. In other words, the
temperature profiles are in agreement on 90% of the domain.

Surprisingly, model (40) with 𝜅𝑓 𝑖𝑡𝑡𝑒𝑑𝑟𝑎𝑑 captures the vicinities of the
propagation waves 𝑥 ∼ 0.70 − 0.80, and coincides with 𝑇𝑟 for 𝑥 ∈
[0.45, 0.6]. But it under-estimates the temperature in the vicinity of
𝑥 ∼ 0.40 − 0.50 which is driven by radiative transfer in a semitransparent
medium. Of course, other criterion could be considered to fit 𝜅𝑓 𝑖𝑡𝑡𝑒𝑑𝑟𝑎𝑑 .
But the study of this section mainly aims at showing that our model
an also be used in semitransparent media. In this semitransparent
onfiguration, it is the reference solution. The study also shows that
itting a diffusion based model in semitransparent medium may be
isky or may need some compromise on the accuracy of the predicted
emperature and justifies the efforts made by the community to be able
o solve (1) with accuracy, independently of the resolution scheme.

7. Conclusion

In this paper, we tackle the problem of solving the conducto-
radiative equation with a Monte-Carlo scheme (MC) in some layered
15 
media. From the observation that the resolution of the transport equa-
tion (valid in transparent media) in layered media with MC schemes is
easy and the fact that the equilibrium diffusion limit is well captured
by state-of-the-art MC schemes, we suggest modeling the sensible heat
diffusion with a transport equation in a diffusive regime. The model
is close to what is commonly called a phonon model. In order to
capture the diffusion limit of material temperature (for the phonons),
we suggest some additional model parameters for the velocities and
opacities of phonons in the different layers (defined with respect to
the conductivities, densities and heat capacities in the different layers).
Those parameters are designed to both capture the diffusion limit and
to preserve some physical invariants (continuity of temperature at the
interface between materials) and ensure convergence. The model is
efficient to restitute analytical and reference solutions in the equilib-
rium diffusion limit and can be safely used coupled with radiative
transfer in transparent materials. From the analysis of the phonon
model and by performing some analogies between Poissonian paths
(which do not suffer jumps in material properties) and Brownian ones,
we even suggest some original, quite simple and efficient corrections
to the Brownian paths in layered media. In other words, two very
different numerical strategies (Poissonian and Brownian) are suggested
in this paper and both give very good results. The paper presents

any numerical examples testifying of the relevance of the suggested
umerical strategies in (transparent and opaque) layered media.
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