Advanced Integrated Workflows for Incorporating Both Production and 4D Seismic-Related Data into Reservoir Models.
Résumé
Reservoir models are used for predicting future oil recovery or for evaluating alternative field management scenarios. They can be considered as reliable when they account for all available data collected on the field: data are split into static data such as logs or measurements carried out on cores extracted from wells and dynamic data such as pressures and flow rates. Since the late nineties, the latter also consist of 4D seismic data. This motivated the development of very specific workflows, which yield reservoir models respecting all collected data. In this paper, we focus on workflows for building reservoir models consistent with both production and inverted 4D seismic data. Seismic data are referred to as inverted since we do not consider the amplitudes of the seismic traces, but the acoustic impedances or velocities derived from amplitudes. Then, two application cases are presented. The first one is a synthetic case inspired by typical North Sea Brent fields. It aims to stress the potential of the proposed approach for determining reservoir models respecting production data. The second one is also rooted in a real field case, but focuses on the matching of impedances.
Domaines
Géologie appliquéeOrigine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...