Size Distributions of Sulfur, Vanadium, and Nickel Compounds in Crude Oils, Residues, and Their Saturate, Aromatic, Resin, and Asphaltene Fractions Determined by Gel Permeation Chromatography Inductively Coupled Plasma High-Resolution Mass Spectrometry - IFPEN - IFP Energies nouvelles
Article Dans Une Revue Energy & Fuels Année : 2017

Size Distributions of Sulfur, Vanadium, and Nickel Compounds in Crude Oils, Residues, and Their Saturate, Aromatic, Resin, and Asphaltene Fractions Determined by Gel Permeation Chromatography Inductively Coupled Plasma High-Resolution Mass Spectrometry

Résumé

The size distributions of sulfur (S), vanadium (V), and nickel (Ni) compounds in four crude oils, two residues, and their saturate, aromatic, resin, and asphaltene (SARA) fractions were determined using gel permeation chromatography (GPC) coupled to inductively coupled plasma high-resolution mass spectrometry (ICP HR MS). The results show trimodal distributions of V, Ni, and S compounds in the crude oils and residues. V and Ni compounds are present in both resins and asphaltenes. Trimodal distributions are clearly apparent in the resins but not apparent in the asphaltenes. In the latter, the predominant compounds have a high molecular weight (HMW), even when the solution of asphaltenes is diluted by 40000-fold. In the resins, compounds with a medium molecular weight (MMW) were expected; however, HMW compounds were observed, indicating that nanoaggregates or large molecules exist in both the asphaltenes and resins. Low-molecular-weight (LMW) compounds are predominantly present in the resins and do not represent more than 22% of V and Ni present in crude oil. These compounds appear to have molecular weights similar to simple metalloporphyrins.

Domaines

Chimie
Fichier non déposé

Dates et versions

hal-01755104 , version 1 (30-03-2018)

Identifiants

Citer

German Gascon, Vicmary Vargas, Llinaber Feo, Olga Castellano, Jimy Castillo, et al.. Size Distributions of Sulfur, Vanadium, and Nickel Compounds in Crude Oils, Residues, and Their Saturate, Aromatic, Resin, and Asphaltene Fractions Determined by Gel Permeation Chromatography Inductively Coupled Plasma High-Resolution Mass Spectrometry. Energy & Fuels, 2017, 31 (8), pp.7783 - 7788. ⟨10.1021/acs.energyfuels.7b00527⟩. ⟨hal-01755104⟩
136 Consultations
0 Téléchargements

Altmetric

Partager

More