A Monte Carlo method for the simulating hydrotreating of bio-oil model compounds
Abstract
Lignocellulosic biomass can be used as a source of hydrocarbons after an initial transformation by one of three different routes: biochemical conversion, chemical conversion and thermochemical conversion. In the last class, one of the possible approaches is fast pyrolysis, a process in which the biomass is exposed for a short time at high temperature and in the absence oxygen. Through this conversion step, gas, bio-char and bio-oil are the effluents that are generated. Bio-oil can be subsequently be upgraded into hydrocarbons by means of hydroconversion and hydrotreating. Like heavy oil fractions, fast pyrolysis oils are complex mixtures and, consequently, react via a complex reaction network. In the present work, the reaction pathways of model molecules representative of bio-oil are studied under hydrotreating conditions over a reduced NiMo/Al2O3 catalyst. To simulate the various reactions, a general kinetic Monte Carlo method, called Stochastic Simulation Algorithm, was developed and applied to a model molecule guaiacol. The simulations are compared to the experimental results.