3D Multiscale Analysis of the Hierarchical Porosity in Coscinodiscus Sp Diatoms using a Combination of Tomographic Techniques - IFPEN - IFP Energies nouvelles Access content directly
Journal Articles Nanoscale Advances Year : 2022

3D Multiscale Analysis of the Hierarchical Porosity in Coscinodiscus Sp Diatoms using a Combination of Tomographic Techniques

Abstract

A full 3D analysis of the hierarchical porosity in Coscinodiscus sp. diatom structures was carried out by using a multiscale approach that combines three advanced volumetric imaging techniques with resolutions and fields of view covering all the porous characteristics of such complex architectures: electron tomography, "slice and view" approach that uses a dual-beam microscope (FIB-SEM), and array tomography consisting of serial imaging of ultrathin specimen sections. This multiscale approach allowed the whole porosity network to be quantified and provided an unprecedented structural insight into these natural nanostructured materials with internal organization ranging from micrometer to nanometer. The analysed species is made of several nested layers with different pore sizes, shapes and connectivities and characterized by the presence of interconnected pores structured in various ways. The first evidence of the presence of a nanometric porosity made of ellipsoidal pores in the siliceous diatom frustules is also provided.
Fichier principal
Vignette du fichier
3D Multiscale Analysis of the Hierarchical Porosity in Coscinodiscus Sp Diatoms using a Combination of Tomographic Techniques.pdf (1.37 Mo) Télécharger le fichier
3D Multiscale Analysis of the Hierarchical Porosity in Coscinodiscus Sp Diatoms using a Combination of Tomographic Techniques Sup mat.pdf (1.43 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03655404 , version 1 (29-04-2022)

Licence

Attribution

Identifiers

Cite

Othmane Darouich, Walid Baaziz, Dris Ihiawakrim, Charles Hirlimann, Danièle Spehner, et al.. 3D Multiscale Analysis of the Hierarchical Porosity in Coscinodiscus Sp Diatoms using a Combination of Tomographic Techniques. Nanoscale Advances, 2022, 4 (6), pp.1587 - 1598. ⟨10.1039/d1na00691f⟩. ⟨hal-03655404⟩
69 View
52 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More