Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed ℓ 1 /ℓ 2 Regularization
Résumé
The ℓ 1 /ℓ 2 ratio regularization function has shown good performance for retrieving sparse signals in a number of recent works, in the context of blind deconvolution. Indeed, it benefits from a scale invariance property much desirable in the blind context. However, the ℓ 1 /ℓ 2 function raises some difficulties when solving the nonconvex and nonsmooth minimization problems resulting from the use of such a penalty term in current restoration methods. In this paper, we propose a new penalty based on a smooth approximation to the ℓ 1 /ℓ 2 function. In addition, we develop a proximal-based algorithm to solve variational problems involving this function and we derive theoretical convergence results. We demonstrate the effectiveness of our method through a comparison with a recent alternating optimization strategy dealing with the exact ℓ 1 /ℓ 2 term, on an application to seismic data blind deconvolution. Index Terms Smoothed ℓ 1 /ℓ 2 regularization, norm ratio, sparsity, blind deconvolution, nonconvex optimization, preconditioned forward-backward algorithm, seismic data processing.
Fichier principal
Repetti_A_2015_j-ieee-spl_euclid_tsbdsl1l2r-sparse-blind-deconvolution-norm-ratio.pdf (155.89 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...